
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Program entanglement, feature interaction
and the feature language extensions

Wu-Hon F. Leung

Computer Science Department, Illinois Institute of Technology, Chicago, IL 60616, USA

Available online 14 September 2006

Responsible Editor: H. Rudin

Abstract

One of the most difficult tasks in software development is that the programmer must implement a feature going through
a laborious and error prone process of modifying the programs of other features. The programs of the different features
entangle in the same reusable program units of the programming language, making them also difficult to be verified, main-
tained and reused. We show that if (C1) the features interact, (C2) they are executed by the same process and (C3) they are
implemented in a programming language that requires the programmer to specify execution flows, program entanglement
is inevitable and the problem cannot be solved by software design alone. Applications with interacting features are com-
mon including those that require exception handling.

The feature language extensions (FLX) is a set of programming language constructs designed to enable the programmer
to develop interacting features as separate and reusable program modules even though the features interact. The program-
mer uses FLX to specify non-procedural program units, organize the program units into reusable features and integrate
features into executable feature packages. He develops a feature based on a model instead of the code of other features.
FLX supports an automatic procedure to detect the interaction condition among features; the programmer then resolve
the interaction in a feature package without changing feature code. FLX features and feature packages are reusable;
the programmer may package different combinations of them and resolve their interactions differently to meet different
user needs. An FLX to Java compiler has been implemented; our experience of using it has been very positive.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Feature interaction; Program entanglement; Programming language; Feature interaction resolution; Reusable programs;
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1. Introduction

Software development projects often use the term
feature to denote a development unit. In that con-
text, a feature represents a set of related and testable
functionalities of the system. For example, the reli-

able data transport and the congestion control func-
tions are two different features of the internet
transmission control protocol (TCP) [49]. Presently,
a feature is often implemented by modifying the
code of other features. This is a labor intensive
and error prone process. The programmer must go
through the code of the other features line by line
to determine where to make the changes. At the
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end, he is often left wondering whether he has cor-
rectly identified all the code that needs to be chan-
ged and what impact his changes may have on the
functionality of the other features. It will require
iterations of testing and debugging before the job
is considered done. The programmer needs to
thoroughly understand and test many times more
code than the code needed to implement the new
feature.

When a feature is implemented by modifying the
programs of other features, the programs of the fea-
tures are entangled: their program statements inter-
twine in the same reusable program unit (e.g. a
method) of the programming language. The entan-
glement is often scattered into many program mod-
ules. Entangled and scattered programs are difficult
to verify, reuse and maintain.

Most existing efforts to combat the program
entanglement problem have focused on software
architectural design. Such efforts may succeed
initially (and many do not), but as more features
are added to the system, entanglement and scatter-
ing become severe again. This phenomenon is often
called architecture erosion. We will show that for a
large class of applications, the program entangle-
ment problem cannot be solved by software archi-
tecture design alone.

The problem of program entanglement is related
to the notion of feature interaction. Two features
interact if their behaviors change when they are inte-

grated together. In other words, the behavior of
some feature programs cannot be predicted by the
input to the programs alone; it also depends whether
the feature programs have been integrated with
other feature programs. The term feature interaction
was first introduced by developers of telecommuni-
cations systems [24]. They observed that when the
message ‘‘termination request’’ comes in and
the phone is idle, the programs of the plain old tele-
phone service (POTS) will ring the phone. But if call
forwarding is added to POTS, the combined pro-
gram will give a ping-ring then forwards the call to
another phone. The concept is general and not con-
fined to telecommunication software.

Feature interaction is common in embedded sys-
tems. Take TCP as an example. Before congestion
control was implemented, a duplicated acknowl-
edgement will prompt the reliable data transport
feature to retransmit. After congestion control is
added, the same message may cause the sender also
to retreat to slow start. Applications that desire
exception handling encounter feature interaction.

Without exception handling, a program running
on UNIX will crash when someone hits con-

trol-c. When exception handling is added, the
program does not terminate and may even ask
‘‘why are you hitting control-c?’’ Call forwarding,
congestion control and exception handling have
been called features, services, concerns or aspects
interchangeably in the literature.

Researchers on the subject use the terms behavior
and integrate broadly because feature interaction
affects all stages of a software development, from
the difficulties in recognizing interaction conditions
during system specification to the difficulties in test-
ing as it requires the code base to be constantly
changing. This paper focuses on design and imple-
mentation, although the results reported here have
implications on specification and testing. More pre-
cise definitions of these two terms within the context
of our focus are given in Section 2.

The program entanglement problem relates to
feature interaction in the following way: If (C1)
two features interact, (C2) they are executed by
the same sequential process, and (C3) they are
implemented by a programming language that
require the programmer to specify execution
flows, then the programs of the two interacting
features will entangle. If the two features do not
interact, their programs do not have to entangle.
Feature interaction is a requirement of the appli-
cation, but it causes the program entanglement
problem and the problem cannot be solved by
software design alone. Existing general purpose
programming languages require C3. Since C1
and C2 are dictated by the application, changing
C3 is essential to solving the program entangle-
ment problem.

A solution to the program entanglement problem
should allow (R1) the programmer to develop the
programs of a feature independent of its interacting
features. It should allow (R2) the interacting
features to be integrated without changing their
programs. (R1) and (R2) imply that the feature
programs become reusable. We shall call the condi-
tions under which the behaviors of two interacting
features will change their interaction conditions.
Presently, the programmer must read code to deter-
mine when the condition becomes true. Therefore,
the solution should enable (R3) a tool to detect
the interaction condition among the features. When
these requirements are met, adding features will not
modify the code of other features and the task of
testing becomes easier. The tool that detects feature
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interaction conditions will also take the guessing out
of specifying them.

We have been developing a set of programming
language constructs, called the Feature Language
Extensions or FLX, to meet the above require-
ments. FLX enables non-procedural programming
in which the programmer does not specify the
execution flows of the program units. A FLX
program unit consists of a condition part and a
program body. The program body gets executed
when its corresponding condition part becomes
true. A FLX feature is composed of a set of pro-
gram units that implements the functionalities of a
feature. FLX features are integrated into feature

packages. FLX supports a tool to detect the interac-
tion condition among the features in a feature pack-
age where the interaction condition is resolved
without requiring changes to the features. Features
and feature packages are reusable programs; the
programmer may put together different combina-
tions of them in a feature package to meet different
user needs. FLX encourages a development para-
digm in which the programmer develops a feature
following a model, which defines the condition space
and the basic functionality of the application,
instead of examining the code of its interacting fea-
tures. A FLX to Java [5] compiler has been deve-
loped. Using the compiler, an executable FLX
program is invoked from a Java program and
FLX programs can reuse existing Java programs.

The focus of this paper is to show that FLX
meets (R1) and (R2). For (R3), several previous
results have shown that the problem of interaction
detection is a problem requiring the determination
of whether certain assertions on program variables
are satisfiable (e.g. [13]). In our case, the assertions
are condition parts of program units and they are
first order formulas on variables and predicates
defined using FLX provided constructs. We elabo-
rate on this briefly in Section 4. The details of the
FLX constructs for that purpose and the satisfiabil-
ity algorithm that we use are described in [63].

FLX takes the position that the software of com-
plex computer applications should be organized
into components and FLX is designed for the pro-
grammer to develop feature rich components. As
an example, FLX is used to develop a telephony sys-
tem. Each phone object in the system is associated
with two feature packages: one for digit collection
and analysis (allowing for features like speed call-
ing), and the other for call processing (allowing
for features like call waiting). Different phone

instances can be associated with different sets of fea-
ture packages. Other objects (e.g. GUI) that control
the phones are more conventionally coded. Tele-
phony systems are among the most difficult software
to develop [9]. Compared to TCP, the control mech-
anisms in our examples have similar number of
states but have more control messages, features
and interactions. We have also applied FLX to
develop a program that simulates human behavior
and are in the process of using FLX to develop a
multiplayer networked computer game.

We will discuss the entanglement conditions (C1,
C2 and C3) in Section 2. The set of foundation FLX
constructs is described in Section 3. They allow the
programmer to establish a model, write program
units and put them together in a feature. In Section
4, we describe FLX constructs and facilities to
resolve interactions among features when they are
integrated in a feature package. In Section 5, we
give a brief overview of the inheritance and excep-
tion handling mechanisms of FLX. Throughout
Sections 3–5 we use examples from the telephony
system developed using FLX. All the FLX con-
structs described in this paper have been imple-
mented. We acknowledge related work in Section
6 and conclude the paper in Section 7.

2. Conditions of entanglement

Recall that two features interact if they change the
behavior of one another when integrated together. A
feature is implemented by a set of computer
programs. The programs of a feature include the
program statements that get executed to invoke the
feature, those that execute the feature logic and
those that terminate the feature. In this context,
the behavior of a feature is manifested in its output
values and execution flow, referred to as the sequence
of statements that gets executed, for a given input to
its programs. We do not consider two features to be
interacting if the programs of one merely change the
input to the other but not its behavior.

Given C2, when the programs of two features are
integrated together and if the programs share vari-
ables, it implies that there will be only one instance
of the shared variables. As an example, when a TCP
duplicated acknowledgement is received, the receiv-
ing program will write the relevant content of the
message into some variables and there is only one
instance of these variables to both the reliable data
transport and congestion control features of TCP.
The behavior of a program is determined by the
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values of its variables at any point in time after the
program is invoked and before it terminates. A
necessary condition for two programs to interact
is that these two programs share variables; other-
wise they cannot affect the behavior of one another.
In fact, one of them must update some variables
used by the other while the other program is still
being executed. It follows that the two programs
are executed concurrently.

When two programs are executed concurrently by
a sequential process as required by C2, then one of
the program gets invoked first, but before its execu-
tion is completed, some statements of the other pro-
gram will get invoked. When C3 is true, the only way
the programmer can meet this requirement is to
change the code of one of the feature programs to
insert the code of the other feature program, leading
to entanglement. Often, the programmer has to
change the programs of both features.

We illustrate the above conclusion with an exam-
ple. Fig. 1 shows a portion of the finite state machine
that controls call origination and termination of the
POTS feature in our telephony system. We choose to
use the well researched State design pattern from the
seminal book on the topic [22] to implement finite
state machines. The design is shown in Fig. 2. The
Context class in the figure represents a single inter-
face to the outside world. It offers a method for each
event in the finite state machine. Each state in the
finite state machine is represented by a class derived
from the State abstract class. Context has a refer-
ence to the current state of the finite state machine
which is initially Idle. When Context receives
the Termination Request (shorten as TermReq
in Fig. 2) event, it calls the corresponding method in

IdleState which will then ring the phone. The
State design pattern does not specify where the state
change may take place. It can be done either in Con-
text or in IdleState. But the choice is immate-
rial for this paper.

Suppose that we want to add the Call For-

warding Busy Call (CFBC) feature. CFBC

responds to the Termination Request event by
forwarding the call if the phone is in the Talking,
Ringing, Dialing, and Audible states but not
in other states. The only way to add the feature to
the design of Fig. 2 will be to insert code to the
TermReq() methods in state classes corresponding
to Talking, Ringing, Dialing and Audible.
The programs of CFBC are therefore entangled and
scattered with those of POTS. The situation will get
exceedingly worse when more features that interact
with POTS are added to the design of Fig. 2.

The above example should not be considered as a
criticism to design patterns which is an important
contribution and deserves its coverage in text books
on software engineering. Other architectural propos-
als that we have seen suffer from the same problem.

C1, C2 and C3 are sufficient conditions. If we
relax C1, the programs of the two non-interacting
features can be executed consecutively without
change when integrated. Program entanglement is
not necessary. Since we do not presently have auto-
matic means to enforce that the programs of non-
interacting features will be written separately, this
is where disciplined software design methods, such
as object oriented programming, may help.

If we relax C2, the two interacting features will be
executed by two different processes. On the surface,
their code may not entangle. However, the two

Talking
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Answer

Termination
Request
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Answer
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Onhook
Onhook/

Disconnect
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Fig. 1. A finite state machine (partial) of the plain old telephone
services.
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Fig. 2. The design of POTS using the state design pattern.
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processes will affect the behavior of one another
because they exchange information either via a pro-
tocol or other means of inter-process communica-
tion. In practice, integrating the two processes
typically lead to code changes in both processes
and their development and verification are even
more difficult. A recent article [35] eloquently argues
against writing concurrent programs not to exploit
natural parallelism in the application but as structur-
ing method. To discuss this topic further will be out-
side the scope of this paper.

FLX relaxes C3. Features written in FLX are
integrated in a feature package that is executed by
a sequential process.

We derive the three conditions using a definition
of feature interaction specific to feature programs.
We use the term behavior to denote the computation
carried out by a feature program for a given input.
Ordinarily, the computation of a program changes
when its input changes. But if the program is inte-
grated with programs of its interacting features, its
computation may change even when the input does
not. When programs of interacting features are inte-
grated, we require that there is only one instance of
the variables that the programs share. This require-
ment reflects what needs to be done when programs
are integrated in the same sequential process. We
make no assumption on the nature of the feature
interaction and what triggers the interaction.

A number of studies have been conducted to
establish taxonomy of feature interaction according
to the cause or pattern of the interaction (e.g. [52]
and [33]). Such classifications are useful to alert
the programmer to recognize situations where inter-
action may occur. The classification given in [33] is
event driven and is based on the manners in which
the features apply actions to and receive trigger
events from devices. While the examples given in
this section are event driven, the conditions of
entanglement are not. The conditions are neutral
to the taxonomy given in [33]; they will predict pro-
gram entanglement independent of the different
classes of the taxonomy. As will be seen later that
FLX is event driven, but it allows the programmer
to specify program units without triggering events
and the interaction condition among FLX programs
does not necessarily involve trigger events.

3. The foundation FLX constructs

In this section, we describe the FLX constructs to
specify FLX program units, features, and the notion

of a model. A FLX model defines the condition space
and basic functionalities of an application. The con-
dition space is specified in a domain statement. The
basic functionality is specified in a special feature
called an anchor feature. Features are designed fol-
lowing the model and can be thought of as extensions
or enhancements to the anchor feature.

3.1. Domain statement

The domain statement contains the definition of
the condition variables, called domain variables,
and events used in the condition part of a program
unit as well as objects shared by all features called
resources.

The domain statement for the call processing fea-
ture packages in our telephony system is given in
Fig. 3. It contains a domain variable state that
can have a range of values and is initialized to
State.IDLE. It is declared to be of type DTenum.
DTenum is a domain data type, implemented with
a simple extension to the class enum recently
defined in Java 1.5 [29]. The extension is needed
for a fast algorithm (often called a first order SAT
solver) to determine the satisfiability of first order
predicate formulas and is elaborated in [63]. A
domain data type must contain public Boolean vari-
ables or predicates methods (methods that return
Boolean).

A domain variable is instantiated. Memory is
allocated to it. On the other hand, an event declared
in the domain statement merely says that it is in the
model. Multiple instances of the same event may be
used by FLX programs using the domain statement.

Some of the events specified in the domain
statement of Fig. 3 come from another phone

domain BasicTelephony {
variables:

DTenum State {DIALING, OUTPULSING,
BUSY, AUDIBLE,TALKING,
RINGING, DISCONNECT,IDLE};

State state= State.IDLE; //initial value
events:

TerminationRequest;
Busy;
Ringing;
Answer;
Disconnect;
Onhook;
Offhook;
Digits;
TimeOut;

Resources:
Phone fone;
Router rt;

}

Fig. 3. The domain statement for call processing.

484 W.-H.F. Leung / Computer Networks 51 (2007) 480–495
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announcing its intent (TerminationRequest,
Disconnect) or its state (Busy, Ringing,

Answer) to this phone. Other events are signals
(Onhook, Offhook. Digits) coming from the
lower level software of this phone. There is also a
Timeout event generated by the operating system.
An event object is of type event. It may contain
qualifying variables that are of domain data type.
For example, the event TerminationRequest

contains the qualifying variable FromPhoneID

identifying the phone that sends the event.
The domain statement also identifies the objects

fone and router as resources. Features are
applied to the fone and control messages for call
processing are sent to the switch router.
Resources are declared but not necessarily initial-
ized in the domain statement. They are initialized
when a feature package using the domain statement
is instantiated.

3.2. Program units and features

Recall that a program unit consists of a condition
part and a program body part. In the present imple-
mentation of FLX, the program body part is a Java
statement. It gets executed when the assertions in its
corresponding condition part becomes true.

The condition part of a program unit consists of
two statements. The condition part is true (and its
corresponding program body will get executed) if
both statements are true. The condition statement

is a first order predicate formula of some data mem-
bers of domain variables (if they are of type Bool-
ean) and their predicates. FLX does not explicitly
support the existential and universal quantifiers.
But if the programmer has the need to say some-
thing like ‘‘there exists some elements’’ we ask the
programmer to specify a predicate method, say
non-empty (), for the domain data type. To sup-
port a fast first order SAT solver described in [63],
a domain variable cannot be a function of other
domain variables. The compiler checks for that.

The event statement of the condition part speci-
fies a list of events and their respective qualifications.
The qualification of an event is a quantifier free first
order formula composed of qualifying variables and
their predicates of the event. An event statement is
true if an event in the list has been received, its qual-
ification is true and the run time system of FLX
chooses to process that event. FLX provides the
enter and leave pseudo-events for the programmer
to specify conditions without an actual triggering

event. An event statement specified with enter

becomes true when its corresponding condition
statement becomes true. If an event statement is
specified with leave, then it becomes true when
its corresponding condition statement becomes
false. The definitions for these pseudo-events came
from an earlier work [23].

The anchor feature of the call processing feature
package, POTS, is given in Fig. 4 showing only four
of its program units: MakeCall applies dial-tone
when the user picks up the phone; ReceiveCall
responds to a TerminationRequest event by
updating the state of the call to RINGING and return-
ing an event to the calling party of that fact. The pro-
gram unit RingPhone rings the phone whenever the
state of the phone is RINGING; and the program unit
RemoveRinging removes the ringing when the
state of the phone is no longer RINGING.

A successfully compiled anchor feature is execut-
able. The instantiation of a feature object is similar
to that of a class object as illustrated in the code
fragment of Fig. 5. In the example, the POTS
anchor feature is instantiated to the object fp.
The arguments passed to the object will initialize
the shared resources in the domain statement. The
base class of all executable feature objects includes
a number of system methods including the method
SendEvent() which allows other programs to
send an event to a feature object.

anchor feature Pots {
domain BasicTelephony;
Phone fone;

Router rt;
MakeCall {

condition: state.equals(State.IDLE);
event: Offhook; {

fone.applyDialTone();
state= State.DIALING;

}
}
ReceiveCall {

condition: state.equals (State.IDLE);
event: TerminationRequest e; {

state= State.RINGING;
}

}
RingPhone {

condition: state.equals (State.RINGING);
event: enter; {

fone.applyRinging();
}

}
RemoveRinging {

Condition: state.equals (State.RINGING);
Event: leave; {

Fone.removeRinging();
}

}
}

Fig. 4. A portion of the FLX POTS code.
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Once the domain statement and the anchor fea-
ture are defined, the programmer uses them as the
basis to design additional features. We show two
features, DoNotDisturb and CallForwarding

(showing only the essential program unit for each)
in Figs. 6 and 7 respectively. DoNotDisturb sends
back a Busy message to the caller whenever
the phone is called. The keyword all used in the
condition statement of SayBusy specifies that the
condition statement is true no matter what values

the domain variables have. CallForwarding

forwards the TerminationRequest to another
phone if it receives the message when the phone is
IDLE. The forwarding is done by relaying the
TerminationRequest message to another phone
if the call forwarding number has been specified (not
empty) and the call forwarding number is not the
same as the caller (identified by the FromPID field
of the TerminationRequest message e).

These two features are quite easy to write using
FLX. If they were implemented with a procedural
language using the state design pattern of Fig. 2,
one will not be able to put the programs of these
features in a single module and they will entangle
and scatter among the many programs of POTS.
The author was a developer in a telephony switching
system. In that system, the code for DoNotDis-

turb was inserted hundreds of times into all the
program modules in which the message Termina-
tionRequest may be handled.

A feature references the domain statement and
anchor feature that it is based on so that the com-
piler can perform a number of semantic analyses
such as that the condition statement of at least
one of the program unit of an anchor feature is sat-
isfiable given the initial values of the domain
variables.

4. Feature interaction resolution and feature

packages

The features POTS, DoNotDisturb and Call-

Forwarding interact with each other. We will
show how to put them together into a feature pack-
age in this section. Before we do that we discuss
briefly how we know that they interact.

4.1. Interaction detection

An instantiated feature package is executed by a
sequential process. The domain variables of the fea-
ture package are accessible by the features of the
feature package and nowhere else. Variables
declared within features and feature packages are
accessible only locally. The run time system for
FLX programs satisfies these two properties:

Property 1: It chooses only one event at a time to
evaluate whether the condition part of some pro-
gram units has become true. Once it finds such a
program unit, the event is consumed and execu-
tion of the program unit begins.

SomeJavaMethod ( ) {

// Other code

// Create phone and switch objects
Phone thisFone = new Phone (foneID);
Router thisRouter = new Router

(routerID);

// Create POTS feature and associate
// it with thisFone and thisRouter
Pots fp = new POTS (thisFone,

thisRouter);

// Some more code

//User picks up phon
fp.sendEvent (Offhook);

// Some other code

}

Fig. 5. Code fragment to show invocation of an executable
feature object.

feature DoNotDisturb {
domain BasicTelephony;
anchor POTS;
Router rt;

SayBusy {
condition: all;

event: TerminationRequest e; {
Busy b = new Busy();
rt.sendEvent (Event.FromPhoneID,

b);
}

}
}

Fig. 6. The feature DoNotDisturb.

feature CallForwarding {
domain BasicTelephony;
anchor POTS;
Router rt;
String forwardNumber;

ForwardCall {
condition:state.equals(State.IDLE);
event: TerminationRequest e; {

rt.sendEvent (forwardNumber, e);
}

}
}

Fig. 7. A portion of the CallForwarding feature.

486 W.-H.F. Leung / Computer Networks 51 (2007) 480–495



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Property 2: Execution of the program body of a
program unit is not interrupted because the val-
ues of some domain variables have been changed
and some events have been received during the
execution.

Given these two properties, one can show that if
the conjunction of the condition parts of two pro-
gram units is satisfiable, the two program units
interact and the satisfiable condition is their inter-
action condition. When the interaction condi-
tion becomes true, either program units may get
executed. FLX requires the programmer to remove,
or resolve, the ambiguity for the run time system.
When a feature is compiled, interaction among its
program units, if any, will have been resolved.

In FLX, two features interact if they are integrated
in the same feature package and one contains a pro-
gram unit that interacts with some program units in
the other. FLX requires the programmer to resolve
the interaction in the feature package so that the fea-
tures themselves need not be modified. The mecha-
nisms provided by FLX to resolve interaction
between program units within a feature or between
features within a feature package are similar. We will
only give examples in resolving feature interaction.

A number of researchers had recognized that fea-
ture interaction detection is a satisfiability problem.
While we deal with different logical systems (some-
times only slightly different), the derivation to the
conclusion is similar. Several of these researchers’
work are referenced in Section 6.

4.2. Interaction resolution with precedence list

in a feature package

The programmer uses a feature package to inte-
grate a set of features together. As a result, it con-
tains a statement specifying the list of domains
used by the features in the package. The anchor fea-
tures used by other features are included in the list
of features.

Fig. 8 shows the code of the feature package
QuietPhone integrating the features POTS and

DoNotDistrub. The two features interact when
the TerminationRequest message is received.
POTS will ring the phone while DoNotDisturb

will return Busy to the caller. The interactions
among the two features are resolved by the prece-
dence statement priorityPrecedence which
specifies that if a condition becomes true for some
program units in the list of features at the same
time, the program unit belonging to the highest
priority feature executes. Consequently when the
phone that uses QuietPhone receives a Termin-

ationRequest message, only the program unit
SayBusy of DoNotDisturb will be executed.
But when the phone receives an OffHook event
and the phone is IDLE, then the MakeCall pro-
gram unit of POTS gets invoked and the user can
make phone calls. This simple example shows that
the two interacting features can be integrated
together without changing each other’s code.

FLX currently supports another type of prece-
dence list called straightPrecedence. When
the condition parts become true for program units
from different features in the straightPredence
list, all these program units will get executed follow-
ing the order specified in the precedence list. Other
types of precedence lists are possible as long as they
define a partial ordering of the features and hence
resolve interaction condition. FLX allows multiple
precedence lists in a feature package, and the com-
piler checks that they do not result in contradic-
tions. One can show that priorityPrecedence
and straightPrecedence are primitive: they
can be used to implement an arbitrary partial order-
ing that does not contain contradictions [51].

4.3. Interaction resolution with program units

We shall use another example to illustrate two
points. First, feature packages with the same list
of features may have different functionalities
depending on how the interaction is resolved.
Secondly, the programmer may use program units
in a feature package to gain finer control of interac-
tion resolution on any specific condition.

Suppose that we want to integrate DoNotDis-

turb, and CallForwarding onto POTS. Call-
Forwarding interacts with the other two features
when the phone is called while IDLE. If we use pre-
cedence lists only and put DoNotDisturb ahead
of CallForwarding, no call will get forwarded.
If we reverse the precedence, then all calls will be

feature package QuietPhone {
domain: BasicTelephony;
Phone fone;
Router rt;
features: DoNotDisturb, POTS;
priorityPrecedence (DoNotDisturb, POTS);

}

Fig. 8. The QuietPhone feature package.
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forwarded while the phone is IDLE. The user may
not like either alternative.

The SelectToForward program unit of the
SelectiveForwarding feature package given
in Fig. 9 resolves the interaction condition that a
call comes in when the phone is idle. It forwards
the call if the caller belongs in a phoneIDlist,
otherwise the call is blocked. By convention, a pro-
gram unit in a feature package has the highest pre-
cedence. The stop statement at the end of
SelectToForward instructs the compiler to stop
executing any other program units whose condition
has also become true. SelectToForward does
not explicitly call the program units ForwardCall
of CallForwarding and SayBusy of DoNot-

Disturb. Instead, it refers to the features. The
FLX compiler generates code to invoke the correct
program units. Alternatively, the programmer can
explicitly call CallForwarding.ForwardCall
and DoNotDisturb.SayBusy. The compiler then
checks whether the program units are called ‘‘within
context’’.

5. Exception handling and inheritance

Exceptions handling and inheritance mechanisms
are both important topics in programming language
design. The programmer uses exception handling
mechanisms to specify what should happen after
an exception event, usually due to error conditions,
has occurred; and he uses inheritance mechanisms
to extend an existing class with additional data
and methods. For applications with fault tolerance
(or robustness) requirements, a significant portion,
sometimes a majority of their programs are devoted

to exception handling. Large scale software tends to
evolve over time and inheritance, when it can be
applied, is an elegant solution to deal with change.
Both topics continue to be actively researched.

We give an introduction to these mechanisms in
FLX in this section with emphasis on exception
handling. The issues with exception handling both
in the applications domain and in programming lan-
guage support are complex. It is not surprising that
researchers have observed that exception handling
programs are more likely to contain software bugs
than any other part of the software [15]. We focus
on two issues here: the observations that existing
mechanisms do not encourage writing reusable
exception handling code [36], and that they do not
handle change in exception handling definition
and policy well: a change often ripples through large
amount of code.

5.1. Exception handling programs in FLX are

features

To encourage reuse, FLX provides constructs for
the programmer to organize exception handling
code into exception features. FLX requires that pro-
gram units that are triggered by an exception event
to be contained in an exception feature, but not all
program units in an exception feature must be trig-
gered by an exception event. We show the reusable
exception feature DamageControl in Fig. 10. The
feature guards against illegal conditions, such as
when the phone is IDLE but the feature package
receives an Onhook event or when a hardware error
event RingCktBrokenException is received.
The condition statement of a program unit triggered

feature package SelectiveForwarding1 {
domain BasicTelephony;
features DoNotDisturb, CallForwarding(rt), Pots;
priorityPrecedence (DoNotDisturb, CallForwarding, Pots);

LinkedList phoneIDlist= new LinkedList (empty); // forwardable phones

SelectToForward {
condition: state.equals (State.IDLE);
event: TerminationRequest e; {

if (phoneIDlist.contains (TerminationRequest.FromPhoneID))
CallForwarding;
/* The program unit in CallForwarding that satisfies the
condition part is invoked.*/

else
DoNotDisturb;

stop;
}

}
}

Fig. 9. The SelectiveForwarding feature package.
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by an exception is called context, which identifies
the condition under which the exception was
thrown. In the program unit BrokenRingCkt,
the context is when the feature package enters
the RINGING state. Alternatively, the programmer
can identify a program unit in the condition state-
ment of the context. The context statement in
BrokenRingCkt can be written as ‘‘context:
{POTS.RingPhone()}’’.

The CatchAll exception feature shown in
Fig. 11 catches any condition not anticipated by
other program units in the feature package when
it is placed at the bottom of the precedence lists in
a feature package. CatchAll is a very useful fea-
ture especially during the testing and debugging
phase of development. We use it in every feature
package that we have developed.

The feature package shown in Fig. 12 integrates
these two exception features with the Selective-
Forwarding feature package of Fig. 9. Exceptions
that are not caught in a feature package are thrown
to the Java program that instantiates the feature
package.

5.2. Inheritance and exception features that

enhances portability

The call processing feature package of our tele-
phony prototype can be executed either in a central
switch or in a smart phone. In the former case, the
designer may decide to share a few ringing circuits
for all the phones controlled by the switch. The
method fone.applyRinging() will then throw
a NoMoreRingCktException that is not present
if the feature package is executed in the smart
phone. Importantly, the exception handling policy
will be different. In the switch, one can take advan-
tage of the existence of multiple hardware units to

exception feature DamageControl {
domain: BasicTelephonyWithExceptions;
anchor: POTS;

IllegalOnhook {
condition: state.equals (State.IDLE);
event: Onhook; {

System.out.println (“Illegal Onhook”);
fone.Disable();
stop;

}
}

BrokenRingCKT {
context: {

condition: state.equals (State.IDLE);
event: enter;
}

exception: RingCKTBrokenException; {
System.out.println (“Ring CKT broken”);
stop;

}
}

//Other program units not shown
}

Fig. 10. The DamageControl exception feature (partial).

exception feature CatchAll {
domain: BasicTelephonyWithExceptions;
anchor: POTS;

CatchNormal {
condition: all;
event: any; {

System.out.println (“CatchNormal: Unexpected condition and event”);
this.dump (domain, event);
}

}

CatchException {
context: {all};
exception: any; {

System.out.println (“CatchException: Unexpected exception”);
this.dump (domain, event);
}

}
}

Fig. 11. The CatchAll exception feature.

feature package RobustSelectiveForwarding {
domain: BasicTelephonyWithExceptions;
features: SelectiveForwarding, DamageControl, CatchAll;
priorityPrecedence (DamageControl, SelectiveForwarding, CatchAll);

}

Fig. 12. The RobustSelectiveForwarding feature package.
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make the system more fault-tolerant. Using a proce-
dural language, the programmer will have to change
code to handle the new exceptions and exception
handling policy. The complexity of doing so typi-
cally leads to the development of two different ver-
sions of the software.

With FLX, the different exception handling poli-
cies become different exception features that the
programmer chooses to include in a feature pack-
age. The programmer can use inheritance to accom-
modate the additional exception events of the
switch. The BasicTelephonyWithExceptions
domain statement shown in Fig. 13 is extended from
the BasicTelephony domain of Fig. 3 with com-
mon exception events that will be needed no matter
where the application will be executed. The example
in Fig. 14 extends from the one in Fig. 13 to add
exceptions that will be needed only if the application
is executed in the switch. The two exceptions shown
in Fig. 14 indicate no ringing circuit and no confer-
ence circuit is available. These two exceptions make
no sense in a smart phone.

When extending a domain statement, the pro-
grammer may add new domain variables, events,

exceptions and resources to an existing one. The ori-
ginal anchor feature and features written on the ori-
ginal model may be integrated with features using
the new domain statement. We show a simplified
Retry exception feature in Fig. 15. The program
unit RetryRinging calls the fone.repair()

method then waits for half a second when notified
that there is no ringing circuit for the time being.
When Retry is put ahead of POTS in a
straightPrecedence list of a feature package,
it will have the effect of pausing for half a second
and then try ringing again. The Retry feature will
not be included in the feature package if it is to be
executed on a smart phone.

6. Related works

The heritage of FLX comes from AI languages
that support non-procedural execution. What we
called feature interaction is conflict in rule-based
languages. Because of the differences in intended
usage, the structure and facilities provided by AI
languages are quite different from FLX. AI lan-
guages do not require explicit conflict detection

domain BaiscTelephonyWithExceptions extends BasicTelephony {
exceptions:

RingCKTBrokenException;
ConfCKTBrokenException;
// and others

}

Fig. 13. The BasicTelephonyWithExceptions domain statement.

domain SwitchTelephony extends BasicTelephonyWithExceptions {
exceptions:

NoMoreRingCKTException;
NoMoreConfCKTException;
// and others

}

Fig. 14. The SwitchTelephony domain statement.

exception feature Retry {
domain: SwitchTelephony;
anchor: POTS;

RetryRinging {
context: {

condition: state.equals (State.RINGING);
event: any;

};
exception: NoMoreRingCKTException e; {

fone.repair (e);
Thread.sleep (500);

}
}

}

Fig. 15. The Retry exception feature.
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and resolution before programs can be executed.
Programmers using them typically do not know
beforehand what program units may interact with
each other and their ability to resolve conflicts is
limited. Jackson [28] provides a very good coverage
on the most important AI languages.

FLX supports event driven programming: the
condition part of a FLX program unit is usually
triggered by an event. Event driven programming
is supported by the most popular programming
languages such as Java, Visual C++ and C# as
many applications require it. The most important
server side platforms such as Enterprise JavaBean
[39], Microsoft. NET [41] and the newly defined
Spring Framework [54] provide event handling
API’s. Each of them tries to handle asynchronous
and unpredictable events within the framework of
a procedural language, requiring programming
concepts, such as the non-reusable ‘‘inner class’’
and ‘‘anonymous class’’ of Java. A nonprocedural
approach is more natural.

Aspect oriented programming (AOP) [17] is argu-
ably the most influential programming language
concept proposed in recent years in terms of the
number of papers that have been written about it
and cited it. AOP has made important contributions
to the understanding of the problem of program
entanglement. FLX supports the AOP goal of sepa-
ration of concern. The fundamental difference
between FLX and the main stream AOP as embod-
ied in AspectJ [32] is that AOP applies to base code
written in a conventional programming language
with the obvious advantage that it can be applied
to legacy code.

In AOP, the programs of a feature that would
have been scattered throughout the base code are
put into a module called an aspect. An aspect

contains a set of pointcuts and advices. A
pointcut identifies some statements in the base
code and its corresponding advice instructs code
to be inserted before, after or around those
statements through a process called weaving.
AspectJ does not have a separate facility to combine
aspects. An aspect actually instructs the compiler to
modify the base code but the modification does not
appear in the base code. Some argue that the trans-
parent modification of other programs is detrimen-
tal [2]: An aspect cannot be understood in isolation.
Unless we limit its usefulness, an aspect is fragile
and has to be changed when the base code changes
and vice versa. Since a pointcut can refer to very
specific program artifacts such as the name of a var-

iable or a method, an aspect is tightly coupled
with its base program and in general is not reusable.

Researchers of AOP have been working to over-
come the above problems. There are two basic
approaches: (1) write aspects without knowledge
of the base program and then later connect the
aspects to the base program (e.g. [56]), or (2) limit
the aspect’s access to the artifacts of the base
program unless it is specifically allowed (e.g.
[1,44]). In general, the task of finding the connection
in the first approach will require examining and
modifying base and aspect code. The second
approach will constrain the usefulness of the
aspects. Without constraints, aspects can be very
powerful as those given in [14] that would modify
queues managed by an operating system kernel
but they are also very risky.

A number of empirical studies (e.g. [36]) have
shown that AOP can reduce the amount of code
written quite substantially. But that does not neces-
sary translate to programmer productivity. An ear-
lier study [42] to measure whether AOP improves
programmer productivity was inconclusive. It noted
that programmers often needed to ‘‘restructure the
base code to expose suitable join points.’’ This prob-
lem has not been improved upon over the years [19].
Another recent empirical study to investigate
whether AOP is beneficial in the implementation
of cross cutting (or interacting) design patterns is
quite critical of the AOP approach [12].

There are other AOP approaches. The multidi-
mensional concerns approach [45] requires the pro-
grammer to extensively review existing code to
support multiple concerns, although there is lan-
guage help for the restructuring effort. The compo-
sition filters approach [7] has its root from the UNIX
pipe [10] and streams [53] mechanisms. Again, it
requires programmer effort to find the programs in
the base to forward information to the filters.
Similar to the mainstream AOP, these approaches
also do not meet the requirements R1 and R2 put
forth in the introduction section of this paper.

FLX belongs to the family of programming lan-
guages that provides language constructs to help
specify systems that continuously respond to exter-
nal stimuli to produce outputs. Among the
languages in the family, Statechart [25], LOTOS
([57,38]), SDL [16] and Esterel [8] are the most
important. A good description and discussion of
the last three languages can also be found in [58].
Statechart is a component of the industry standard
unified modeling language (UML) [61]. LOTOS
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and SDL are both international standards. Esterel
and its associated languages and tools have been
developed for over two decades. All of them have
attracted substantial research and real products
have been developed using them.

These languages take different approaches. State-
chart provides a structured method to represent
finite state machines graphically. Esterel is a syn-
chronous language with the semantic that the execu-
tion of a reaction to an input event is instantaneous
(or uninterruptible). LOTOS is algebraic (or sym-
bolic) inducing the programmer to use refinement.
SDL is more concrete and is defined with most of
the artifacts of a general purpose programming lan-
guage. All of them either directly support the defini-
tion of finite state machines or generate one, thus
programs written in them are also directly amenable
for automatic analysis.

These languages were pioneers. Some of the crit-
icisms on them can now be fixed: that the synchro-
nous semantics of Esterel may lead to ‘‘causality
cycles’’ (an emitted signal leads to the instant gener-
ation of the same signal) [11], that LOTOS lacks
modularity constructs [3], and that the state condi-
tion in SDL is the name of a state instead of a more
general condition expression. The most important
lesson comes from an empirical study of using
LOTOS in a telecommunication system: ‘‘we have
to rewrite POTS several times as features were
added,’’ and ‘‘how could reusable (sub)specifica-
tions be declared and used?’’ [3]. These comments
apply to the other three languages as well.

There were subsequent improvements to these
languages (e.g. [11,46,55]) but the above two issues
were not addressed. A number of programming
languages were designed specifically for telecom-
munication software. VFSM [21] allows the pro-
grammer to specify finite state machines with
non-procedural program units but it is less devel-
oped compared to SDL. VoiceXML [62] and the
call processing language (CPL) [34] are both
markup languages. Adding features in these
languages requires changes to the existing features.

CRESS [59] is the first graphical language that
explicitly supports the specification and combina-
tion of features. It is a substantial work that also
includes tools to check for the correctness of pro-
grams written in CRESS and to translate them into
various formal languages. A feature written in
CRESS is reusable in the sense that it can be
invoked multiple times by another feature; but com-
bining features is done by ‘‘splicing’’ and ‘‘insert-

ing’’ features to one another requiring the
programmer to manually determine the insertion
points.

Among the many contributions from the FIRE-
works project [20], the results of Plath and Ryan
([47] and [48]) are most relevant to our work. They
extended the input languages of the model checkers
SMV [40] and SPIN [26] to allow specification of
features extending from a base system. Since the
input languages of the model checkers are largely
non-procedural, their results on feature specification
are very similar to ours. They already have the con-
cepts of anchor features and features; we provide
additional facilities for the integration of features.
In their approach, feature specifications are directly
translated into input to a model checker and are read-
ily verified; our feature specifications are translated
into Java (or other implementation languages) and
can readily integrate with the rest of the implementa-
tion software. Their result will influence our next
phrase of work to verify FLX programs even more.

The term ‘‘Feature (or Service) Oriented Pro-
gramming (or Architecture)’’ has recently become
fashionable. Prehofer first coined the term when
he introduced language extensions on Java to spec-
ify features [50]. His extensions are procedural pro-
gramming extensions and require the programmer
to resolve the interaction between every pairs of fea-
tures often by changing existing programs. Batory
and his group proposed an elegant mathematical
model for composing features (e.g. feature interac-
tions are derivatives as in calculus) ([37], [6]). But
in practice, they require the programmer to have
thorough understanding of the feature programs
and to integrate features by changing code in a man-
ner similar to the method of Prehofer.

FLX supports automatic detection of feature
interaction. The topic was studied quite extensively
using temporal logics, such as Linear Temporal
Logic (LTL) in [18] and in Computation Tree Logic
(CTL) in [31], as well as using Petri Nets [43] and
other formalism. The problem is a satisfiability
problem and a number of researchers use existing
model checkers to solve the problem (e.g. [4,13,48]
and [60]). Our contribution to the topic is to use
programming language facilities to assist a fast algo-
rithm to determine the satisfiability of first order
formulas [63]. Most existing results on the topic
were concerned with determining interaction on
the specification of the features; we are concerned
with determining interaction on the implementation
of the features.
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A large amount of work has been done to mini-
mize program entanglement in the presence of fea-
ture interaction by software architectural design.
Many innovative ideas have been put forth, among
them the distributed feature composition [27], a
pipe-and-filter like architecture, and the
feature interaction manager architecture [30]. We
benefited from the observation in [30] and others
that the interaction among some features can be
resolved by arranging the execution of the features
according to priority.

We are indebted to the above and many other
results. The special strength of FLX is that it
enables the programmers to develop interacting
features as independent and reusable program
modules, so that features can be added without
changing existing code.

7. Conclusions

FLX has two design objectives: (1) to enable the
development of interacting features as separate and
reusable program modules, and (2) to facilitate the
automatic verification of programs written in
FLX. From our experience so far, FLX meets the
first design objective and has a positive impact on
programmer productivity. We had implemented a
fast first order SAT solver and the FLX compiler
generates a finite state machine from an executable
FLX program, therefore programs written in FLX
are amenable for automatic analysis. But we have
not yet developed the verification tool and objective
(2) has not been accomplished.

About thirty different features and feature pack-
ages were written in FLX for the telephony system
described earlier. Most of the features were deve-
loped by two graduate students over a period of
about nine months when they also have to take clas-
ses and work on the compiler. POTS were developed
with 195 lines of FLX code. The student who wrote
POTS did not need to be concerned with call waiting
and other features, nor Retry and other exception
handling policies. The student who wrote call wait-
ing only need to become familiar with POTS but not
other features that call waiting also interacts with.
Integration of features in feature packages was not
a problem and usually accomplished in a couple of
days. Interaction conditions are automatically
detected and most are resolved by precedence lists.
We did not encounter a single case when the imple-
mentation of a new feature requires changes to
existing features.

When a feature is developed, it is tested with its
anchor feature first. When well-tested features are
integrated in a feature package, the testing and
debugging can focus on the feature package. There
was only one instance when the testing of a feature
package revealed an error in a feature and the error
was fixed with changes to the programs of that fea-
ture only.

The generated code of a FLX program looks a
lot like how one may write the program in Java.
We therefore suggest that the performance of FLX
programs will be comparable to those written in
Java. The FLX code written for the prototype is
several times less than its generated code. This is
partly due to the non-procedural nature of the lan-
guage and partly due to short hands, such as the
keywords all and any, supported by the language.
Consider the DoNotDisturb feature given in
Fig. 6. Its code will have to be duplicated many
times if the features are written in a procedural lan-
guage using the design pattern given in Fig. 2.

A more rigorous and extensive study to evaluate
FLX is planned. Another focus of our future work
will be to develop a verification tool for programs
written in FLX.
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