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Abstract. With existing general purpose programming languages, interacting 
features executed in the same process must be implemented by changing the code 
of one another [1]. The Feature Language Extensions (FLX) is a set of 
programming language constructs that enables the programmer to develop 
interacting features as separate and reusable program modules. Features are 
integrated and have their interactions resolved in feature packages. FLX provides 
the precedence list facilities for the programmer to specify the execution order of 
the features in a feature package. While not applicable in all situations, 
precedence lists can be used to resolve many interaction conditions in a single 
statement. This paper describes the two types of precedence lists supported by 
FLX and their usage. We give the contradiction conditions that may occur when 
multiple precedence lists are used in a feature package and show how to resolve 
them. Finally, we show that the two types of FLX precedence lists are primitive: 
they can be used to implement arbitrary precedence relations among features that 
do not exhibit contradictions. 

Keywords: Feature interaction, program entanglement, feature interaction 
resolution, reusable feature modules, Feature Language Extensions. 

1 Introduction 

In software engineering literature, the terms feature, aspect and concern are often used 
synonymously to denote certain functionality of a software system. For example, 
reliable data transport and congestion control are two features of the Internet TCP 
protocol. Features are implemented by computer programs. Two features interact if 
their behaviors change when their programs are integrated together. The behavior of a 
computer program is manifested in the sequence of program statements that gets 
executed and its output for a given input. Consider TCP again. Without congestion 
control, reliable data transport will retransmit when a duplicated acknowledgement is 
received. After congestion control is added, the same message may cause the sender to 
retreat to slow start. Thus these two features interact. The term feature interaction was 
coined by developers of telecommunications systems, but its occurrence is common 
place: when a software system evolves, it usually means that new features are added to 
the system changing the behavior of existing features.  

We showed earlier [1] that if (C1) two features interact, (C2) they are executed by 
the same sequential process, and (C3) they are implemented by a programming 
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language that requires the programmer to specify execution flows, then the programs of 
the two features will inevitably entangle in the same reusable program unit of the 
programming language. If the features do not interact, then program entanglement is 
not necessary. Program entanglement implies that features are implemented by 
changing the code of one another. Besides making it difficult to develop features, 
entangled programs are difficult to reuse, maintain and tailor to different user needs. 
And feature interaction is the root cause of program entanglement. 

(C1) and (C2) are generally dictated by the application such as the examples given 
earlier in TCP. Today’s general purpose programming languages require (C3). Existing 
TCP implementations are notoriously entangled (e.g. see [2]). It is not because the 
programmers lacked skill; they could not help it. 

The Feature Language Extensions (FLX) is a set of programming language 
constructs developed to solve the program entanglement problem. A FLX program unit 
consists of a condition part and a program body. The program body gets executed 
when its corresponding condition part becomes true. The programmer does not specify 
the execution flows of program units; hence FLX relaxes (C3). A feature is composed 
of a set of program units; it is designed according to a model instead of the code of 
other features. Features are integrated in a feature package. Features and feature 
packages are reusable. Different combinations of them can be packaged to meet 
different needs. We have added the foundation FLX constructs to Java. A research 
version of the FLX to Java compiler is downloadable from [3]. 

We call the conditions under which two interacting features change their behavior 
their interaction conditions, and the interaction is resolved with specification on the 
new behavior. Presently, the programmer read code to determine when the interaction 
conditions may become true, and change code to resolve the interaction conditions. 
This is a labor intensive and error prone process, and a main reason why software 
development is complex. 

Due to the way that the FLX compiler generates code, two program units written in 
FLX interact if the conjunction of their condition parts is satisfiable, or equivalently, if 
the condition parts of the two program units can become true at the same time. Two 
features interact when some of their program units interact. The satisfiable condition is 
their interaction condition. Several other researchers have constructed systems with this 
property (e.g. see [15]). As we shall see later, the condition part of a program unit is a 
set of quantifier-free first order predicate formulas. Detecting feature interaction in 
programs written in FLX then requires an algorithm, often called a satisfiability solver, 
which determines the satisfiability of such formulas. 

The first order predicate satisfiability solver of FLX does not require iterations of 
trial and error incurred in prior art and is overviewed in [4]. This paper focuses on 
using FLX to integrate features and resolve their interaction without changing their 
code. In particular, we discuss usage of the precedence list facilities provided by FLX. 
A precedence list establishes a strict partial ordering2 among a set of features in a 
feature package. FLX supports two types of precedence lists: a straight precedence list 
specifies that if the interaction condition for some of the features becomes true the 
programs of the features with higher precedence will get executed before the programs 
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of features with lower precedence; and a priority precedence list specifies that only the 
program unit belonging to the feature with the highest precedence will get executed.  

Precedence list is a powerful facility. For example, in a telephony application 
written in FLX, the feature DoNotDisturb  interacts with the plain old telephone 
service (POTS) whenever the phone is called. The interaction conditions of the two 
features are resolved in a single precedence list statement in a feature package. One of 
the authors came from the telecommunication industry and was involved in the 
development of DoNotDisturb  in a production digital switch. The programmers in 
that project needed to go through hundred of thousands lines of code to find several 
hundred places to insert code for the feature. Later, as new features are added to the 
system, they had to remember not to forget including the code for the feature. 

We first introduced precedence lists in [5]. A more detailed discussion is given in 
this paper. We review briefly the FLX constructs to specify features and feature 
packages in Section 2. In Section 3, we describe the two different types of precedence 
lists implemented in FLX. We also show there that precedence lists alone is not 
sufficient in certain situations. When that happens, the interaction condition is resolved 
by program units in the feature package. In Section 4, we discuss the integration of 
multiple precedence lists. This can happen, for example, when two feature packages 
each with its own precedence list is integrated in a feature package. Multiple 
precedence lists can lead to contradictions that need to be resolved. In the same section, 
we introduce the compound precedence statement which specifies the precedence 
relations among precedence lists. It is a short hand for multiple precedence lists. In 
Section 5, we show that the two types of precedence lists supported by FLX are 
primitive in the sense that they can be used to specify arbitrary precedence 
relationships that do not contain contradictions. We review related work in Section 6. 
Our method to integrate interacting features without changing feature code appears to 
be new. The use of precedence lists as language mechanisms to resolve interaction is 
also new. We conclude the paper in Section 7. 

2   Some FLX basics 

FLX supports the view that complex software should be organized as a collection of 
components and FLX is meant for the development of feature rich components called 
feature packages. In a telephone system developed using FLX, each telephone object is 
associated with two feature packages: a call processing feature package for features like 
call forwarding, and a digit analysis feature package for features like speed calling. 
Different telephone objects can be associated with different feature packages 
containing different sets of features, or the set of features can be the same but the 
feature interactions are resolved differently. We will use the call processing feature 
package as a running example for this paper. 

As mentioned earlier, a feature written in FLX is developed according to a model. 
The model is composed of an anchor feature and a domain statement. The anchor 
feature implements the basic functionality; other features can be considered as its 
enhancements. Condition variables, called domain variables and events, are defined in 
the domain statement. They are used in the condition part of a program unit. Domain 
variables are initialized in the domain statement and space is allocated for them when a 
feature package using the domain statement is instantiated. 



For this paper, we will skip showing the syntax of a domain statement. The domain 
statement for the call processing package, called BasicTelephony , contains a 
domain variable state which is a simple extension of the class enum defined in Java 
1.5. We will not describe the extension here as it is related to the FLX satisfiability 
algorithm only. The possible values of state,  such as IDLE, RINGING, 
TALKING, define the different states that the phone associated with the feature 
package can have. 

Some of the events specified in the BasicTelephony  domain statement come 
from another phone announcing its intent (TerminationRequest , Disconnect ) 
or its state (Busy , Ringing , Answer ) to this phone. Other events are signals 
(Onhook , Offhook . Digits ) coming from the device driver of the phone. Events 
exchanged between phones contain a field FromPID  identifying the sending phone. 

Surprisingly large number of features can be developed using this relatively simple 
domain statement. Since a domain statement can be extended using the inheritance 
mechanisms of FLX [1], we advocate a minimalist approach in designing domain 
statements: Define only those domain variables and events for the set of features to be 
implemented at the time. Later, if new features require new domain variables, such as 
the role play by the phone, and new events, such as request to add a video channel, they 
can be added without affecting features that have already been developed. 

A portion of the code for the anchor feature of the call processing feature package, 
called the plain old telephone service (POTS) feature, is given in Figure 1 showing only 
two of its program units: MakeCall  applies dial tone when the user picks up the 
phone; ReceiveCall  responds to a TerminationRequest  event by updating the 
state of the call to RINGING and telling the calling party of that fact.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The condition part of a program unit is composed of a condition statement and an 
event statement. The condition statement is a quantifier free first order formula of 
domain variables and their predicate methods. We do not support the existential and 

 anchor feature Pots { 
     domain BasicTelephony; 
      
MakeCall { 

condition: state.equals(State.IDLE); 
event: Offhook; { 

fone.applyDialTone(); 
state = State.DIALING; 

  } 
} 

ReceiveCall { 
condition: state.equals (State.IDLE); 
event: TerminationRequest e; { 

 Ringing r = new Ringing (e.FromPID);  
 rt.sendEvent (r); 

state = State.RINGING; 
  } 

} 
} 
    . 
    . 
    . 

} 

Figure 1. A Portion of the FLX POTS code 



universal quantifiers explicitly. When the programmer has the need to say something 
like “there exists some elements”, we ask him to write a predicate method non-
empty()  instead. The event statement specifies a list of events. Each event may be 
attached with a qualification which is a first order formula on data carried in the event. 

The feature DoNotDisturb  is shown in Figure 2. Its program unit SayBusy  
returns a busy  event to the caller (identified by the fromPID  of the received event e) 
whenever the phone receives a TerminationRequest  event. 

 
 
 
 
 
 
 
 
 
 

 
 

FLX requires that the interaction among the program units in a feature be resolved 
before the feature is compiled; similarly, the interaction conditions among features in a 
feature package must be resolved before the feature package is compiled. 
DoNotDisturb  and POTS interact: when the event TerminationRequest is 
received, the condition part of SayBusy  in DoNotDisturb  becomes true and the 
condition part of several program units in POTS, including ReceiveCall , may 
become true. We show how these two features may be integrated in a feature package 
in Section 3.1. 

The essential elements of a feature package are shown in Figure 3. It identifies one 
or more features and feature packages that will be integrated in the package and the 
domain statement used by them. The FLX compiler checks that the anchor feature is 
included in the list of features. The feature package may contain several precedence 
lists and program units. We will show how to use them to resolve interactions. 

3 Resolving Feature Interaction with Precedence Lists 

FLX provides two types of precedence lists, priority precedence and straight 
precedence. They are described in this section, illustrated with examples. We also show 
that while precedence lists are powerful mechanisms, there are situations that they are 
not sufficient.  

3.1   Priority Precedence 

When a programmer decides to use priority precedence list to resolve feature 
interactions, he specifies the features in descending order of priority in a list with the 
highest priority feature at the first position of the list. When an interaction condition 
becomes true, the program unit from the feature with the highest priority gets executed. 

feature DoNotDisturb { 
domain BasicTelephony; 
anchor POTS; 
 
SayBusy { 

condition: all; 
event: TerminationRequest e; { 

Busy b = new Busy(e.FromPID); 
rt.sendEvent (b); 

     } 
 } 
} 

Figure 2. The feature DoNotDisturb  

feature package Fp3{ 
domain: BasicTelephony; 
features: Fp1, F2; 
priorityPrecedence(Fp1, F2); 

PU1{ 
  
 } 

} 

Figure 3.  feature package in FLX  



To help explain this, we show in Figure 4 the code of the feature package 
QuitePhone  which integrates DoNotDisturb , POTS and CatchAll  and uses a 
priority precedence list to resolve their interaction. The code for the feature CatchAll 
is given in Figure 5. 

 
 
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 

When a phone assigned with QuietPhone  receives the TerminationRequest  
event (i.e. when it is called), SayBusy  of DoNotDisturb  will be invoked and a 
busy  event will be sent back to the caller. Program units of POTS and CatchAll  
will not be invoked. However, when the phone receives an OffHook  event and it is 
idle, then the MakeCall  program unit of POTS gets invoked and the user can make 
phone calls. The Catch  program unit of CatchAll  will be invoked only when the 
phone is in a particular state and an event unexpected by DoNotDisturb  and POTS 
arrives. CatchAll  is a very useful exception handling feature. We introduced 
exception handling in FLX in [1] and will cover it more fully in a separate article. 

3.2   Straight Precedence 

With a straight precedence list, when an interaction condition becomes true program 
units from features that satisfy this condition are executed following the order in which 
the features are specified in the list. Figure 6 shows the StartMeter  program unit of 
the Billing  feature. It creates a billing record and starts the timer when a call is 
answered. StartMeter  interacts with the CallAnswered  program unit of POTS. 
Other program units of Billing  and POTS also interact. The two features are 
integrated in the feature package NoFreeCalls  as shown in Figure 7 with their 
interactions resolved in a straight precedence list.  

Using this method, changing billing policy becomes quite easy. One can simply 
substitute one billing feature with another to gather different billing data. 

 

Feature package QuitePhone { 
domain: BasicTelephony; 
features: DoNotDisturb, CatchAll, POTS; 
priorityPrecedence(DoNotDisturb, POTS, CatchAll); 
} 

Figure 4. QuitePhone feature package  

feature CatchAll{ 
domain: BasicTelephony; 
anchor: Pots; 

Catch{ 
condition: all; 
event: any; { 

     System.err.println("unexpected condition and e vent”); 
     BasicTelephonyEvent.getEventID(e)); 

} 
} 

} 

Figure 5.  CatchAll feature package 
 



 
 
 
 
 
 
 
 

3.3   Precedence Lists Are Not Always Sufficient 

In the examples of Figure 4 and Figure 7, a single precedence statement is used to 
resolve the interactions of features in a feature package. But very often, more flexible 
and finer control of the interaction condition is needed.  

Consider the CallForwarding  feature with its most important program unit 
shown in Figure 8. CallForward  transfers an incoming call by relaying the 
TerminationRequest  event to the forward number if that number is defined and 
the call is not coming from that phone. Suppose that we integrate DoNotDisturb  
and CallForwarding  together and place DoNotDisturb  ahead of 
CallForwarding  in a priority precedence list, no call will be forwarded. If we place 
CallForwarding  ahead of DoNotDisturb , all calls will be forwarded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The programmer can choose to use a program unit in the feature package to resolve 

the interaction among the two features. In the example given in Figure 9, the 

feature Billing { 
domain: BasicTelephony; 
anchor: POTS; 
 
StartMeter { 

condition: state.equals(State.IDLE); 
event: Answer e; { 
    CallRecord = new CallRe cord 

(e.fromPID); 
    meter.start (1 second); 
 } 
} 

} 

Figure 6 A program unit in Billing  

feature package NoFreeCalls { 
domain: BasicTelephony; 
features: Billing,Pots;  
straightPrecedence (Billing, Pots); 
} 

Figure 7 The NoFreeCalls feature 
package  

feature CallForwarding { 
domain: BasicTelephony; 
anchor: POTS; 
 
ForwardCall { 
     condition: state.equals (State.IDLE); 
     event: TerminationRequest e; { 
 if ((forwardNumber != “”) && (forwardNumber != e.f romPID)) {  
  rt.send (forwardNumber, e); 
  stop; 
  } 
 } 
      } 
} 

Figure 8. The ForwardCall program unit of CallForwarding  



interaction between DoNotDisturb and CallForwarding is resolved depending on 
whether the caller is identified in a list of phone numbers. 

 
  
      

 
 
 
 
 
 
 
 
 
 
 
 
 

By convention, a program unit in a feature package has highest precedence. Thus 
when the interaction condition becomes true, SelectToForward  is executed first. 
The stop  statement at the end of the program unit instructs the compiler not to invoke 
program units of lower precedence. In the example, SelectToForward refers to the 
features instead of calling their program units. The FLX compiler generates code to 
invoke the correct program units in these features. Alternatively, the program may call 
the program units of the features explicitly. In that case, the compiler will check that 
the program units are called with the correct condition as SelectToForward . 

4   Multiple and Compound Precedence Lists 

FLX supports multiple precedence lists and compound precedence lists in a feature 
package. When feature packages containing precedence lists are integrated together, the 
integrating feature package contains multiple precedence lists by definition. A 
compound precedence list is a short hand to multiple precedence lists. Some FLX 
programmers argue that it is easier to understand than multiple lists. Precedence lists 
may contradict one another. The FLX compiler needs to identify the contradiction and 
enable the programmer to resolve the contradiction. 

4.1 Combining Precedence Lists of the Same Type 

FLX encourages its programmer to develop a feature based on the anchor feature only. 
The feature is usually tested with the anchor feature and beneficially with CatchAll  
in a feature package. When the programmer is finished with testing, he has two 
reusable programs: the feature itself and the feature package that he used to test the 
feature. The feature package that integrates the 3-way calling test package, called 
3WayPackage , and SelectiveCallForwarding  (Figure 9) is given in Figure 
10. The new feature package has two priority precedence lists: one from 

feature package SelectiveCallForwarding { 
 domain: BasicTelephony; 
 features: DoNotDisturb, CallForwarding, Pots, Catc hAll; 
 priorityPrecedence (DoNotDisturb,CallForwarding,PO TS,CatchAll); 
 
 LinkedList phoneList = LinkedList (empty); // forw ardable phones 

 
SelectToForward { 
 condition: state.equalsTo(State.idle); 
 event: TerminationRequest e; { 

  if (phoneList.contains (e.FromPID)) 
   CallForwarding; 
  else 
   DoNotDisturb; 
  stop; 

  } 
} 

} 
 Figure 9. SelectiveCallForwarding feature package  



3WayPackage  containing the features 3Way, POTS and CatchAll ; the other comes 
from SelectiveCallForwarding  containing DoNotDisturb , 
CallForwarding , POTS and CatchAll . The interaction between the two feature 
packages is resolved in another priority precedence list. 
 
 
 
 
 
 
 

When combining precedence lists of the same type, which is the case in the example 
of Figure 10, the FLX compiler applies two rules: First, a feature may appear in 
multiple lists but only one instance of it will appear in the combined list. Second, the 
partial ordering specified in the different lists is merged into a combined list. Following 
these two rules, the priority precedence list of the feature package in Figure 10 contains 
the following features in descending order: 3Way, SelectiveCallForwarding , 
DoNotDisturb , POTS, and CatchAll . SelectiveCallForwarding  is 
considered a feature as it contains program units of its own. The net effect of 
combining the precedence lists in the example is adding the 3Way feature to 
SelectiveCallForwarding : When the phone is in its talking state, it can invoke 
the 3Way feature. Incoming calls are no longer blocked by DoNotDisturb  in talking 
state; they will cause an audible signal to the speaker as specified by 3Way. 

The first rule of combining precedence lists is similar to virtual base classes in 
C++. The second rule may not be possible if in one list a feature f1  precedes feature 
f2  but in another list f2  is specified to precede f1 . When that occurs, the FLX 
compiler will identify an order contradiction. An order contradiction is relevant only in 
the condition where f1  and f2  interact. The FLX compiler will identify that condition 
and the programmer can resolve the contradiction in a program unit of the feature 
package that combines the two lists. The condition part of the program unit will include 
the interaction condition and its program body will specify the computation when the 
condition becomes true. 

4.2 Integrating Precedence Lists of Different Types 

Suppose that we want to integrate the features Billing  (Figure 6), POTS and 
CatchAll  together. Billing  has a straight precedence relationship over POTS and 
both of them should have priority precedence over CatchAll . The programmer can 
simply put these three precedence relations in the feature package that integrates these 
three features as shown in Figure 11. 

Following the precedence specifications, when some interaction condition between 
Billing  and POTS becomes true, appropriate program units from these two features 
will be executed in order, and CatchAll  will not get invoked as the other two 
features have priority precedence over it. 
 
 
 

feature package 3WayAndSelectiveCallForwarding { 
domain: BasicTelephony; 
anchor: POTS; 
features: 3WayPackage, SelectiveCallForwarding; 
priorityPrecedence (3WayPackage, SelectiveCallForwa rding);  

} 

Figure 10.  3WayAndSelectiveCallForwarding feature package 

 



 
 
 
 
 
 
 

When precedence lists of different types are combined, the FLX compiler checks for 
whether there is type contradiction. A type contradiction occurs when a feature is 
specified as having both priority and straight precedence over the other. For example, 
feature f1  has straight precedence over f2  and f3  in one list. In another list f2  has 
priority precedence over f3 . When an interaction condition for the three features 
becomes true, it is not clear what should be done for the program unit in f3  after 
program units from f1  and f2  have been executed. The FLX compiler identifies the 
interaction condition, and the programmer must specify in a program unit in the 
integrating feature package to resolve the ambiguity. 

Precedence lists of the same type can be combined into a single partial ordering list, 
but not for precedence lists of different types. If we have a first priority precedence list 
including f1 , f2  and f3 , and a second priority precedence list including f2  and f4 , 
we know that f1  has priority precedence over f4  from the transitivity property of strict 
partial orderings. But if the second list specifies straight precedence, then we do not 
know the precedence relationship between f1  and f4 . 

4.3 Compound Precedence List 

One observes that in the feature package of Figure 11, both Billing  and POTS have 
priority precedence over CatchAll . Using a method similar to factorization in 
algebra, one can reduce the multiple precedence lists into a single compound 
precedence list as shown in Figure 12. 
 
 
 
 
 
 
 

The precedence list of Figure 12 says that when an interaction condition becomes 
true for the three features, program units in Billing  and POTS will be executed in 
order according to the straight precedence clause. The program unit in CatchAll  will 
not be executed because of the priority precedence specification. In essence, the 
compound precedence list of Figure 12 is a short hand of the precedence lists in Figure 
11. We know that they are equivalent because both will generate the same partial 
ordering as well as precedence types among the different features. 

feature package BillingPackage { 
 domain: BasicTelephony; 
 feature: Billing, POTS, CatchAll; 
 straightPrecedence (Billing, POTS); 
 priorityPrecedence (Billing, CatchAll); 
 priorityPrecedence (POTS, CatchAll); 
} 

Figure 11. Billing Package feature package  

feature package BillingPackage { 
domain: BasicTelephony; 
feature: Billing, POTS, CatchAll; 
priorityPrecedence(straightPrecedence(Billing,POTS) , CatchAll); 
} 

Figure 12. BillingPackage feature package 

 



5. Priority and Straight Precedence Lists are Primitive 

With two features, when we say one precedes the other there can be only two meanings: 
that the program of one overrides that of the other (priority precedence), or the program 
of one should be executed before the other (straight precedence). When there are more 
features, a question arises: Can we use only the priority and straight precedence list to 
implement arbitrary precedence relations among arbitrary number of features? 
Arbitrary combinations of these features may have different precedence relations with 
one another. 

The question is important because precedence list mechanisms directly affect the 
way the compiler generates code. Each time we discover a precedence relation that 
cannot be implemented by the mechanisms already provided, we need to modify the 
compiler to support it. 

Fortunately, the answer to the question is affirmative if the desired precedence 
relation among the features does not contain order nor type contradictions. We use two 
steps to show the above statement. First, we show that features with arbitrary 
precedence relations and without contradiction can be represented generically. Step 2 
shows that such a generic representation can always be implemented by the two types 
of precedence relations. 

Consider a set of features f1  to fn . Since there is no order contradiction, the 
features can be arranged linearly according to their partial ordering (such that f(i-1)  
either precedes or has no precedence relationship with fi) . The possible precedence 
relationship among the features can be represented in a square matrix with the features 
arranged in order on the coordinates of the matrix. The diagonal of the matrix is empty 
as it makes no sense to say a feature precedes itself. The lower left triangle of the 
matrix underneath the diagonal is also empty because we already say that fi  does not 
precede fj  for i  > j .  

Each element in the upper right triangle above the diagonal will indicate the type 
of precedence between fi  and fj , for all i  < j . Since there is no type contradiction, 
the value in each such element is either empty, showing priority precedence or showing 
straight precedence. Figure 13 shows such a matrix for the feature package given in 
Figure 12. 

 
 Billing POTS CatchAll 

Billing  Straight precedence Priority precedence 

POTS   Priority precedence 

CatchAll    
 

Figure 13. Precedence relation matrix among the features in the feature package of Figure 12. 
 

Given a precedence relation represented by such a matrix, the simplest way to 
implement it will be to use the appropriate precedence list for each nonempty element 
linking fi  and fj , hence the answer is affirmative to the question of whether priority 
and straight precedence lists are primitive. The interested reader is encouraged to 
devise algorithms, similar to Karnaugh maps [6], which will generate the minimum 
number of precedence lists using compound precedence lists. In a feature package with 
many features, the programmer may find it useful to construct such a table to aid in the 
feature interaction resolution design. 



6. Related Work 

The feature interaction problem affects all stages of software development, from the 
difficulties in recognizing interaction conditions during system specification to the 
difficulties in testing as feature programs constantly get changed if they are 
implemented with existing programming languages. FLX and its precedence lists 
facilities focus on solving the implementation problem of enabling the programmer to 
develop reusable feature modules without entanglement. The discussion in this section 
therefore emphasizes on work that allows specification of executable feature code. 

Among the pioneers that used programming language to facilitate the development 
of features, the languages Statechart [7], LOTOS (e.g. [8]), DSL [9] and Esterel [10] 
are the most important. They take different approaches. For example, Statechart is 
graphical and Esterel assumes instantaneous reaction to input. All of them support 
explicitly definition of finite state machines. Several of them, e.g. Esterel and LOTOS, 
developed verifiers for programs developed using them. But one cannot use them to 
develop interacting features as reusable program modules without entanglement. An 
empirical study [11] using these languages observed that “we have to rewrite POTS 
several times as features were added,” and asked: “how could reusable 
(sub)specifications be declared and used?” 

CRESS [12] is the first graphical language that explicitly supports the specification 
of features and their integration. It is a substantial work that included a model checker. 
But integrating features in CRESS require the programmer to manually determine 
where to “splice” and “insert” code to the features. 

Plath and Ryan extended the input languages of the model checkers SMV [13] and 
SPIN [14] to allow for the specification of features extending from a base system ([15] 
and [16]). Since the input languages of SMV and SPIN are mainly nonprocedural, their 
result on feature specification is quite similar to ours. They already had the concepts of 
anchor feature and features; we provide additional constructs and facilities to integrate 
features without requiring changing code. 

The notion that feature interaction can be resolved by arranging the features in 
some priority or precedence order has been suggested by a number of authors (e.g. 
[29]). We are aware of only one other work that has defined programming language 
facilities to specify feature precedence. Similar to FLX, the “Stack Service Model 
(SSM)” [30] associates a phone with a number of features. The features in SSM are put 
into a stack. The priority of a feature is determined by its position in the stack. The 
notion of feature interaction resolution in SSM is by preserving the safety assertions of 
the features; in FLX, it is specifying behavior change. Precedence relationship in FLX 
is partial ordering of two different types; SSM has a single stack and depends on 
feature code to determine whether a feature will override or will execute before 
features of lower precedence. Execution of a feature in SSM is triggered by a token 
passed from one feature to the other in the same stack; in FLX, it is due to a condition 
becomes true. Because of these differences, we believe that the feature programs in 
SSM will tend to be more tightly coupled with one another than the feature modules in 
FLX, and adding a feature in the stack of SSM will often require code changes in the 
other features. 

The related works discussed so far are often considered to be “specification 
languages” instead of “programming languages”. For example, they typically do not 
allow the programmer to define more complex data structures. More recently, there are 



three other programming language approaches besides our own: Aspect oriented 
programming (AOP) [17], Call Processing Language (CPL) [18] and Feature oriented 
programming (FOP) [19]. 

AOP textually separates the code of a feature from the base code and put it into a 
program module called an aspect. An aspect is a nonprocedural program containing a 
set of (point cut, advice) pairs. A point cut is an assertion on some syntactic artifacts 
(class and method names, etc.) of the base code; it must pin point some specific 
statements (called joint points) in the base code. Its corresponding advice specifies how 
the base code is changed by adding to or replacing the joint points. The AOP compiler 
will weave the aspect into the base code. In general, the programmer manually reviews 
code to determine the point cuts to the base code and to other aspects; the advices are 
not independent of the base code and other aspects. As a result, aspects are not easily 
reusable without one another. Empirical studies conducted a decade apart showed that 
AOP does not improve programmer productivity ([20] and [21]), despite studies that 
showed it can significantly reduce the amount of code to be written (e.g. [22]). 

The term FOP was first coined by Prehofer in [23] where he introduced procedural 
language extensions to Java to specify the notion of a feature. But his approach requires 
resolving the interaction between every pair of features and often by changing code. 
Batory and his group propose that composition of features follows mathematical 
formulas (e.g. feature interactions are derivatives as in calculus [24]). But in general his 
method requires the programmer to significantly reconfigure code manually. 

Similar to VoiceXML [25], CPL and its variants such as LESS [26] are mark up 
languages. Adding features with these languages require changing code.  

We should also mention Service Oriented Architecture (SOA). SOA is a recent 
architectural approach. It proposes to relax (C2) of the entanglement conditions so that 
every feature is a process. The service processes interact by requesting and providing 
services to one another. Many features are required to be executed in the same process, 
and a deeper analysis showed that SOA exhibits a fractal structure with significant 
performance and complexity implications (A fractal structure leads to chaos) [27].  

7. Conclusion 

FLX is designed to enable the programmer to develop interacting features separately as 
reusable program modules. The precedence lists are language facilities that allow the 
programmer to integrate interacting features and resolve their interaction conditions 
without requiring changing their code. While there are cases where precedence list 
cannot apply, they are powerful mechanisms: A single precedence can resolve a large 
amount of interaction conditions for many features. We gave more than ten examples to 
illustrate their usage including when multiple precedence lists are combined in a feature 
package.  

For readability, the examples given in the paper are relatively simple. But we have 
developed fairly complex software using FLX. We used it to develop more than forty 
features and feature packages on a simulated telephony system. The telephony systems 
were developed mainly to test FLX concepts and its compiler. We have started to use 
FLX to develop something that can be used. We recently finished developing the basic 
features of a call center based on Skype [28]. We started on the development of a 
composable operating system.  



When FLX was first conceived, reviewers can immediately see that it will help in 
improving programmer productivity in the development of individual features, because 
the programmer can focus on the feature independent of other features. Many, however, 
were skeptical that we are just pushing the complexity to the feature package where the 
features are integrated. Our experience shows that because FLX can detect feature 
interaction conditions automatically and provides mechanisms like precedence lists to 
facilitate interaction resolution, integrating features can usually be accomplished 
without much difficulty.  

A number of results on FLX including its interaction detection algorithm, 
exception handling mechanisms, and language constructs to extend application models 
are not yet published. But materials (theses, powerpoints) on them as well as a research 
version of the FLX to Java compiler and example FLX code can be found in its web 
site [3]. FLX is designed so that programs written in it can be verified using assertions 
based verification instead of completely relying on testing. The basis of that goal is 
given in [4]. 
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