Resolving Feature I nteraction with Precedence Listsin
the Featur e L anguage Extensions

L. Yang, A. Chavan, K. Ramachandran, W. H. Léung
Computer Science Department
Illinois Ingtitute of Technology, Chicago, IL 60616

Abstract. With existing general purpose programming langsageteracting
features executed in the same process must benmapted by changing the code
of one another [1]. The Feature Language Extensi®isX) is a set of
programming language constructs that enables tlgrggnmer to develop
interacting features as separate and reusable gonognodules. Features are
integrated and have their interactions resolvefgaure packages. FLX provides
the precedence list facilities for the programmer to specify the exémutorder of
the features in a feature package. While not agipléc in all situations,
precedence lists can be used to resolve many dtitaraconditions in a single
statement. This paper describes the two types esfepience lists supported by
FLX and their usage. We give the contradiction @onk that may occur when
multiple precedence lists are used in a featur&ggecand show how to resolve
them. Finally, we show that the two types of FL)¢gedence lists are primitive:
they can be used to implement arbitrary precedezladons among features that
do not exhibit contradictions.

Keywords: Feature interaction, program entanglement, featateraction
resolution, reusable feature modules, Feature Laggi&xtensions.

1 Introduction

In software engineering literature, the terfieeture, aspect andconcern are often used
synonymously to denote certain functionality of aftware system. For example,
reliable data transport and congestion control teue features of the Internet TCP
protocol. Features are implemented by computerrprog. Two featuresnteract if
their behaviors change when their programs are integrated togettner behavior of a
computer program is manifested in the sequencerefram statements that gets
executed and its output for a given input. ConsifiéP again. Without congestion
control, reliable data transport will retransmitesha duplicated acknowledgement is
received. After congestion control is added, theesaessage may cause the sender to
retreat to slow start. Thus these two featuresante The term feature interaction was
coined by developers of telecommunications systés,its occurrence is common
place: when a software systawolves, it usually means that new features are added to
the system changing the behavior of existing fesstur

We showed earlier [1] that if (C1) two featuresnaict, (C2) they are executed by
the same sequential process, and (C3) they areeineplted by a programming

! Corresponding Author: W. H. Leung, Computer Scenitinois Institute of Technology,
10 West 31 Street, Chicago, lllinois 60616, USA; E-mail: lg@iit.edu.

language that requires the programmer to speciygugion flows, then the programs of
the two features will inevitablgntangle in the same reusable program unit of the
programming language. If the features do not iterthen program entanglement is
not necessary. Program entanglement implies thatures are implemented by
changing the code of one another. Besides makimdiffitult to develop features,
entangled programs are difficult to reuse, maintaid tailor to different user needs.
And feature interaction is the root cause of progestanglement.

(C1) and (C2) are generally dictated by the appboasuch as the examples given
earlier in TCP. Today’s general purpose programrfanguages require (C3). Existing
TCP implementations are notoriously entangled (seg [2]). It is not because the
programmers lacked skill; they could not help it.

The Feature Language Extensions (FLX) is a set rofjrpamming language
constructs developed to solve the program entarggieproblem. A FLXprogram unit
consists of acondition part and aprogram body. The program body gets executed
when its corresponding condition part becomes ffhe. programmer does not specify
the execution flows of program units; hence FLXarek (C3). Afeature is composed
of a set of program units; it is designed accordm@ model instead of the code of
other features. Features are integrated ifeature package. Features and feature
packages are reusable. Different combinations efmttcan be packaged to meet
different needs. We have added the foundation Fbistucts to Java. A research
version of the FLX to Java compiler is downloaddtben [3].

We call the conditions under which two interactfiegtures change their behavior
their interaction conditions, and the interaction isesolved with specification on the
new behavior. Presently, the programmer read aodietermine when the interaction
conditions may become true, and change code tdveedloe interaction conditions.
This is a labor intensive and error prone procassl a main reason why software
development is complex.

Due to the way that the FLX compiler generates cbde program units written in
FLX interact if the conjunction of their conditiqgrarts is satisfiable, or equivalently, if
the condition parts of the two program units canobee true at the same time. Two
features interact when some of their program untsact. The satisfiable condition is
their interaction condition. Several other researsthave constructed systems with this
property (e.g. see [15]). As we shall see latex,dbndition part of a program unit is a
set of quantifier-free first order predicate foremil Detecting feature interaction in
programs written in FLX then requires an algorithoften called a satisfiability solver,
which determines the satisfiability of such fornmila

The first order predicate satisfiability solverFifX does not require iterations of
trial and error incurred in prior art and is ovewed in [4]. This paper focuses on
using FLX to integrate features and resolve theieraction without changing their
code. In particular, we discuss usage offteeedence list facilities provided by FLX.

A precedence list establishes a strict partial imgé among a set of features in a
feature package. FLX supports two types of preceeléints: astraight precedence list

specifies that if the interaction condition for sorof the features becomes true the
programs of the features with higher precedenckegetl executed before the programs

2 A strict partial order is an irreflexive, asymme#ind transitive relation between two
elements of a set, denoted by “<”. For all a, b @aimP, we have (i) ~(a < a) (irreflexivity); (ii)
if (a < b) then ~(b < a) (asymmetry); and (iii{# < b) and (b < c) then (a < ¢) (transitivity).

of features with lower precedence; anpriority precedence list specifies that only the
program unit belonging to the feature with the legttprecedence will get executed.

Precedence list is a powerful facility. For exampte a telephony application
written in FLX, the featurddoNotDisturb interacts with the plain old telephone
service POTS whenever the phone is called. The interactiondimms of the two
features are resolved in a single precedencetéitgraent in a feature package. One of
the authors came from the telecommunication ingluattd was involved in the
development oDoNotDisturb in a production digital switch. The programmers in
that project needed to go through hundred of thwlsdines of code to find several
hundred places to insert code for the feature.rLat® new features are added to the
system, they had to remember not to forget inclyithie code for the feature.

We first introduced precedence lists in [5]. A mdegailed discussion is given in
this paper. We review briefly the FLX constructs dpecify features and feature
packages in Section 2. In Section 3, we describewio different types of precedence
lists implemented in FLX. We also show there the¢cpdence lists alone is not
sufficient in certain situations. When that happehs interaction condition is resolved
by program units in the feature package. In Secfipwe discuss the integration of
multiple precedence lists. This can happen, fompta, when two feature packages
each with its own precedence list is integratedainfeature package. Multiple
precedence lists can leaddmtradictions that need to be resolvdd.the same section,
we introduce the compound precedence statementhwdpecifies the precedence
relations among precedence lists. It is a shortlHfan multiple precedence lists. In
Section 5, we show that the two types of preceddiste supported by FLX are
primitive in the sense that they can be used tocifgpearbitrary precedence
relationships that do not contain contradiction® WVview related work in Section 6.
Our method to integrate interacting features withehanging feature code appears to
be new. The use of precedence lists as languageamisms to resolve interaction is
also new. We conclude the paper in Section 7.

2 SomeFL X basics

FLX supports the view that complex software shdwddorganized as a collection of
components and FLX is meant for the developmeriéatiure rich components called
feature packages. In a telephone system develagped ELX, each telephone object is
associated with two feature packages: a call psaegseature package for features like
call forwarding, and a digit analysis feature paykdor features like speed calling.
Different telephone objects can be associated wdiffierent feature packages
containing different sets of features, or the defeatures can be the same but the
feature interactions are resolved differently. Wi wuse the call processing feature
package as a running example for this paper.

As mentioned earlier, a feature written in FLX msveloped according to model.
The model is composed of amchor feature and a domain statement. The anchor
feature implements the basic functionality; otheatfires can be considered as its
enhancements. Condition variables, callechain variables andevents, are defined in
the domain statement. They are used in the condi#st of a program unit. Domain
variables are initialized in the domain statemert space is allocated for them when a
feature package using the domain statement isnitistad.

For this paper, we will skip showing the syntaxaalomain statement. The domain
statement for the call processing package, cdbedicTelephony , contains a
domain variablestate which is a simple extension of the classim defined in Java
1.5. We will not describe the extension here ds felated to the FLX satisfiability
algorithm only. The possible values ctate, such asIDLE, RINGING,
TALKING, define the different states that the phone aasesti with the feature
package can have.

Some of the events specified in BasicTelephony domain statement come
from another phone announcing its inteh¢rminationRequest , Disconnect)
or its state Busy, Ringing , Answer) to this phone. Other events are signals
(Onhook, Offhook . Digits) coming from the device driver of the phone. Egent
exchanged between phones contain a fie@mPID identifying the sending phone.

Surprisingly large number of features can be d@erousing this relatively simple
domain statement. Since a domain statement carxtbaded using the inheritance
mechanisms of FLX [1], we advocatenanimalist approach in designing domain
statements: Define only those domain variablesemetts for the set of features to be
implemented at the time. Later, if new featuresumemnew domain variables, such as
the role play by the phone, and new events, sucacpest to add a video channel, they
can be added without affecting features that h&ready been developed.

A portion of the code for the anchor feature of tia# processing feature package,
called the plain old telephone servi€T9 feature, is given in Figureshowing only
two of its program unitsMakeCall applies dial tone when the user picks up the
phone;ReceiveCall responds to @erminationRequest event by updating the
state of the call tRINGING and telling the calling party of that fact.

anchor feature Pots {
domain BasicTelephony;

MakecCall {
condition: state.equals(State.IDLE);
event: Offhook; {
fone.applyDialTone();
state = State.DIALING;

}

ReceiveCall {
condition: state.equals (State.IDLE);
event: TerminationRequest e; {
Ringing r = new Ringing (e.FromPID);
rt.sendEvent (r);
state = State.RINGING;

}
}

Figure 1. A Portion of the FLX POTS code

The condition part of a program unit is composeé obndition statement and an
event statement. The condition statement is a quantifier freetfosder formula of
domain variables and their predicate methods. Weatcsupport the existential and

universal quantifiers explicitly. When the prograsmias the need to say something
like “there exists some elements”, we ask him tdteva predicate methodon-
empty() instead. The event statement specifies a lisivehts. Each event may be
attached with gualification which is a first order formula on data carriedhe event.
The featureDoNotDisturb is shown in Figure 2. Its program ur8ayBusy
returns abusy event to the caller (identified by tfi@mPID of the received ever)

whenever the phone receiveSerminationRequest event.

feature DoNotDisturb {
domain BasicTelephony;
anchor POTS;

SayBusy {
condition: all;
event: TerminationRequest e; {
Busy b = new Busy(e.FromPID);
rt.sendEvent (b);

feature package Fp3({

domain: BasicTelephony;

features: Fpl, F2;

priorityPrecedence(Fp1, F2);
PU1{

}
}

Fiaure 3. feature package in FLX

}

Figure 2. The featureDoNotDisturb

FLX requires that the interaction among the progranits in a feature be resolved
before the feature is compiled; similarly, the iatgion conditions among features in a
feature package must be resolved before the feapaekage is compiled.

DoNotDisturb and POTS interact: when the evenfterminationRequest is
received, the condition part &ayBusy in DoNotDisturb becomes true and the
condition part of several program units ROTS including ReceiveCall , may

become true. We show how these two features maytbgrated in a feature package
in Section 3.1.

The essential elements of a feature package awensimoFigure 3. It identifies one
or more features and feature packages that wilhtagrated in the package and the
domain statement used by them. The FLX compileclch¢hat the anchor feature is
included in the list of features. The feature pgekanay contain several precedence
lists and program units. We will show how to usenthto resolve interactions.

3 Resolving Feature Interaction with Precedence Lists

FLX provides two types of precedence lists, pnorpprecedence and straight
precedence. They are described in this sectiostiited with examples. We also show
that while precedence lists are powerful mechanishese are situations that they are
not sufficient.

3.1 Priority Precedence

When a programmer decides to use priority precexleist to resolve feature
interactions, he specifies the features in desogndider of priority in a list with the
highest priority feature at the first position bktlist. When an interaction condition
becomes true, the program unit from the featurk thieé highest priority gets executed.

To help explain this, we show in Figure 4 the codfethe feature package
QuitePhone which integrateDoNotDisturb , POTSandCatchAll and uses a
priority precedence list to resolve their interastiThe code for the featu@atchAll

is given in Figure 5.

Feature package QuitePhone {

domain: BasicTelephony;

features: DoNotDisturb, CatchAll, POTS;
priorityPrecedence(DoNotDisturb, POTS, CatchAll);
}

Figure 4. QuitePhone feature package

feature CatchAll{
domain: BasicTelephony;
anchor: Pots;
Catch{
condition: all;
event: any; {
System.err.printin("unexpected condition and e vent”);
BasicTelephonyEvent.getEventID(e));

Figureb. CatchAll feature package

When a phone assigned wi@uietPhone receives thererminationRequest
event (i.e. when it is calledfayBusy of DoNotDisturb will be invoked and a
busy event will be sent back to the caller. Programtsunf POTSand CatchAll
will not be invoked. However, when the phone reesianOffHook event and it is
idle, then theMakeCall program unit ofPOTSgets invoked and the user can make
phone calls. Th€atch program unit ofCatchAll will be invoked only when the
phone is in a particular state and an event unéggdryDoNotDisturb andPOTS
arrives. CatchAll is a very useful exception handling feature. Weontuced
exception handling in FLX in [1] and will coverriore fully in a separate article.

3.2 Straight Precedence

With a straight precedence list, when an interactiondition becomes true program
units from features that satisfy this condition executed following the order in which
the features are specified in the list. Figure @xshtheStartMeter program unit of
the Billing feature. It creates a billing record and starts timer when a call is
answeredStartMeter interacts with theCallAnswered program unit oPOTS
Other program units oBilling and POTS also interact. The two features are
integrated in the feature packabyeFreeCalls as shown in Figure 7 with their
interactions resolved in a straight precedence list

Using this method, changing billing policy becontgste easy. One can simply
substitute one billing feature with another to gattiifferent billing data.

feature Billing {
domain: BasicTelephony;
anchor: POTS;

StartMeter {
condition: state.equals(State.IDLE);
event: Answer e; {
CallRecord = new CallRe cord
(e.fromPID);
meter.start (1 second);

}

Fiaure6 A proaram unit in Billina

feature package NoFreeCalls {
domain: BasicTelephony;
features: Billing,Pots;
straightPrecedence (Billing, Pots);

}
Figure 7 The NoFreeCalls feature

3.3 Precedence Lists Are Not Always Sufficient

In the examples of Figure 4 and Figure 7, a simgkredence statement is used to
resolve the interactions of features in a featwekpge. But very often, more flexible
and finer control of the interaction condition iseded.

Consider theCallForwarding feature with its most important program unit
shown in Figure 8.CallForward transfers an incoming call by relaying the
TerminationRequest event to the forward number if that number is miedi and
the call is not coming from that phone. Supposé ¥ integrateDoNotDisturb
and CallForwarding together and place DoNotDisturb ahead of
CallForwarding in a priority precedence list, no call will befarded. If we place
CallForwarding ahead oDoNotDisturb , all calls will be forwarded.

feature CallForwarding {
domain: BasicTelephony;
anchor: POTS;

ForwardCall {
condition: state.equals (State.IDLE);
event: TerminationRequest e; {

if ((forwardNumber !="") && (forwardNumber != e.f romPID)) {
rt.send (forwardNumber, e);
stop;
}

}

Fiaure 8. The ForwardCall proaram unit of CallForwardina

The programmer can choose to use a program uthieifieature package to resolve
the interaction among the two features. In the ¢tanmpiven in Figure 9, the

interaction between DoNotDisturb and CallForwardiisg resolved depending on
whether the caller is identified in a list of phonembers.

feature package SelectiveCallForwarding {
domain: BasicTelephony;

features: DoNotDisturb, CallForwarding, Pots, Catc hAll;
priorityPrecedence (DoNotDisturb,CallForwarding,PO TS,CatchAll);
LinkedList phoneList = LinkedList (empty); // forw ardable phones

SelectToForward {
condition: state.equalsTo(State.idle);
event: TerminationRequest e; {
if (phoneList.contains (e.FromPID))
CallForwarding;
else
DoNotDisturb;
stop;
}
}
}

Fiaure 9. SelectiveCallForwardina feature nackaae
By convention, a program unit in a feature package highest precedence. Thus
when the interaction condition becomes tr8electToForward is executed first.
Thestop statement at the end of the program unit instrilgiscompiler not to invoke
program units of lower precedence. In the exam@kdectToForward refers to the
features instead of calling their program unitse THLX compiler generates code to
invoke the correct program units in these featubdternatively, the program may call
the program units of the features explicitly. Iattltase, the compiler will check that
the program units are called with the correct chodiasSelectToForward

4 Multipleand Compound Precedence Lists

FLX supports multiple precedence lists and compopratedence lists in a feature
package. When feature packages containing precedistscare integrated together, the
integrating feature package contains multiple ptenee lists by definition. A
compound precedence list is a short hand to meltpkcedence lists. Some FLX
programmers argue that it is easier to understaad multiple lists. Precedence lists
may contradict one another. The FLX compiler ndedslentify the contradiction and
enable the programmer to resolve the contradiction.

4.1 Combining Precedence Lists of the Same Type

FLX encourages its programmer to develop a featased on the anchor feature only.
The feature is usually tested with the anchor featund beneficially witfCatchAll

in a feature package. When the programmer is fistvith testing, he has two
reusable programs: the feature itself and the fegtackage that he used to test the
feature. The feature package that integrates th&y3<€alling test package, called
3WayPackage, and SelectiveCallForwarding (Figure 9) is given in Figure
10. The new feature package has two priority precee lists: one from

3WayPackage containing the feature®dVay, POTSandCatchAll ; the other comes
from SelectiveCallForwarding containing DoNotDisturb
CallForwarding , POTSandCatchAll . The interaction between the two feature
packages is resolved in another priority precedéste

feature package 3WayAndSelectiveCallForwarding {
domain: BasicTelephony;
anchor: POTS;
features: 3WayPackage, SelectiveCallForwarding;
priorityPrecedence (3WayPackage, SelectiveCallForwa rding);

Figure 10. 3WayAndSelectiveCallForwarding feature package

When combining precedence lists of the same typé&hnis the case in the example
of Figure 10, the FLX compiler applies two rulesrsg a feature may appear in
multiple lists but only one instance of it will aggr in the combined list. Second, the
partial ordering specified in the different lisssmerged into a combined list. Following
these two rules, the priority precedence list effdmture package in Figure 10 contains
the following features in descending ord@wWay, SelectiveCallForwarding ,
DoNotDisturb , POTS and CatchAll . SelectiveCallForwarding is
considered a feature as it contains program urfitéésoown. The net effect of
combining the precedence lists in the example idinad the 3Way feature to
SelectiveCallForwarding : When the phone is in its talking state, it cavoke
the 3Way feature. Incoming calls are no longer blockedimNotDisturb in talking
state; they will cause an audible signal to thekpeas specified tBWay.

The first rule of combining precedence lists isikimto virtual base classes in
C++. The second rule may not be possible if in listea featurefl precedes feature
f2 but in another lisf2 is specified to precedd . When that occurs, the FLX
compiler will identify anorder contradiction. An order contradiction is relevant only in
the condition wherél andf2 interact. The FLX compiler will identify that coidn
and the programmer can resolve the contradictioa program unit of the feature
package that combines the two lists. The condjte of the program unit will include
the interaction condition and its program body witlecify the computation when the
condition becomes true.

4.2 Integrating Precedence Lists of Different Types

Suppose that we want to integrate the featBiling (Figure 6),POTS and
CatchAll togetherBilling has a straight precedence relationship ®&@fSand
both of them should have priority precedence @vatchAll . The programmer can
simply put these three precedence relations irfehtire package that integrates these
three features as shown in Figure 11.

Following the precedence specifications, when sorteraction condition between
Billing andPOTSbecomes true, appropriate program units from theedeatures
will be executed in order, an@atchAll will not get invoked as the other two
features have priority precedence over it.

feature package BillingPackage {
domain: BasicTelephony;
feature: Billing, POTS, CatchAll;
straightPrecedence (Billing, POTS);
priorityPrecedence (Billing, CatchAll);
priorityPrecedence (POTS, CatchAll);
}

Figure1l. Billing Package feature package
When precedence lists of different types are costhithe FLX compiler checks for
whether there igype contradiction. A type contradiction occurs when a feature is
specified as having both priority and straight poemce over the other. For example,

featurefl has straight precedence o¥2r andf3 in one list. In another lif2 has
priority precedence ovef3 . When an interaction condition for the three featu
becomes true, it is not clear what should be damettfe program unit if3 after
program units fronfl andf2 have been executed. The FLX compiler identifies th
interaction condition, and the programmer must i§pgo a program unit in the
integrating feature package to resolve the ambiguit

Precedence lists of the same type can be comhmed isingle partial ordering list,
but not for precedence lists of different typeswdf have a first priority precedence list
including fl , f2 andf3 , and a second priority precedence list includhgandf4 ,
we know thafl has priority precedence ovi@ from the transitivity property of strict
partial orderings. But if the second list specifstgight precedence, then we do not
know the precedence relationship betwlerandf4 .

4.3 Compound PrecedencelList

One observes that in the feature package of FitliréothBilling andPOTShave
priority precedence ove€CatchAll . Using a method similar to factorization in
algebra, one can reduce the multiple precedends ilgo a single compound
precedence list as shown in Figure 12.

feature package BillingPackage {
domain: BasicTelephony;
feature: Billing, POTS, CatchAll;
priorityPrecedence(straightPrecedence(Billing,POTS) , CatchAll);
}

Figure 12. BillingPackage feature package

The precedence list of Figure 12 says that whemtamnaction condition becomes
true for the three features, program unit8iting andPOTSwill be executed in
order according to the straight precedence clatbse program unit irCatchAll will
not be executed because of the priority precedespeeification. In essence, the
compound precedence list of Figure 12 is a shortl ltd the precedence lists in Figure
11. We know that they are equivalent because bdlhgenerate the same partial
ordering as well as precedence types among theretiff features.

5. Priority and Straight Precedence Listsare Primitive

With two features, when we say one precedes ther tilere can be only two meanings:
that the program of one overrides that of the ofpeority precedence), or the program
of one should be executed before the other (straigitcedence). When there are more
features, a question arises: Can we use only fbatprand straight precedence list to
implement arbitrary precedence relations amongtrargi number of features?
Arbitrary combinations of these features may haifferént precedence relations with
one another.

The question is important because precedence #shamisms directly affect the
way the compiler generates code. Each time we disca precedence relation that
cannot be implemented by the mechanisms alreadydady we need to modify the
compiler to support it.

Fortunately, the answer to the question is affimeatf the desired precedence
relation among the features does not contain ardetype contradictions. We use two
steps to show the above statement. First, we shwaw features with arbitrary
precedence relations and without contradiction lmamepresented generically. Step 2
shows that such a generic representation can alb&ysplemented by the two types
of precedence relations.

Consider a set of featuré$s to fn . Since there is no order contradiction, the
features can be arranged linearly according ta freeitial ordering (such théi-1)
either precedes or has no precedence relationsthipfijv . The possible precedence
relationship among the features can be represém@dquare matrix with the features
arranged in order on the coordinates of the mafitve diagonal of the matrix is empty
as it makes no sense to say a feature preced#s Tise lower left triangle of the
matrix underneath the diagonal is also empty becagsalready say théit does not
preceddj fori >j.

Each element in the upper right triangle abovediagonal will indicate the type
of precedence betwedn andfj , for alli <j . Since there is no type contradiction,
the value in each such element is either emptywistgopriority precedence or showing
straight precedence. Figure 13 shows such a mfatrithe feature package given in
Figure 12.

Billing POTS CatchAll
Billing Straight precedencel Priority precedence
POTS Priority precedence
CatchAll

Figure 13.Precedence relation matrix among the featuresdifighiture package of Figure 12.

Given a precedence relation represented by suckatexmthe simplest way to
implement it will be to use the appropriate preceelist for each nonempty element
linking fi andfj , hence the answer is affirmative to the questiowrether priority
and straight precedence lists are primitive. Thierested reader is encouraged to
devise algorithms, similar to Karnaugh maps [6]jclwhwill generate the minimum
number of precedence lists using compound precedests. In a feature package with
many features, the programmer may find it usefldastruct such a table to aid in the
feature interaction resolution design.

6. Reated Work

The feature interaction problem affects all stanfesoftware development, from the
difficulties in recognizing interaction conditiorduring system specification to the
difficulties in testing as feature programs condyarget changed if they are
implemented with existing programming languagesX Find its precedence lists
facilities focus on solving thiamplementation problem of enabling the programmer to
develop reusable feature modules without entangieniée discussion in this section
therefore emphasizes on work that allows specifinatf executable feature code.

Among the pioneers that used programming languadacilitate the development
of features, the languages Statechart [7], LOTO& (8]), DSL [9] and Esterel [10]
are the most important. They take different appneac For example, Statechart is
graphical and Esterel assumes instantaneous neacticnput. All of them support
explicitly definition of finite state machines. $al of them, e.g. Esterel and LOTOS,
developed verifiers for programs developed usirggnthBut one cannot use them to
develop interacting features as reusable programiutes without entanglement. An
empirical study [11] using these languages obsethiatl “we have to rewrite POTS
several times as features were added,” and askédw “could reusable
(sub)specifications be declared and used?”

CRESS [12] is the first graphical language thatlieitly supports the specification
of features and their integration. It is a subséntork that included a model checker.
But integrating features in CRESS require the @ogner to manually determine
where to “splice” and “insert” code to the features

Plath and Ryan extended the input languages ohtiiel checkers SMV [13] and
SPIN [14] to allow for the specification of featarextending from a base system ([15]
and [16]). Since the input languages of SMV and\S&tke mainly nonprocedural, their
result on feature specification is quite similaoto's. They already had the concepts of
anchor feature and features; we provide additionaktructs and facilities to integrate
features without requiring changing code.

The notion that feature interaction can be resolgdarranging the features in
some priority or precedence order has been sughbste number of authors (e.g.
[29]). We are aware of only one other work that Hafined programming language
facilities to specify feature precedence. SimilarRLX, the “Stack Service Model
(SSM)” [30] associates a phone with a number diufess. The features in SSM are put
into a stack. The priority of a feature is detereairby its position in the stack. The
notion of feature interaction resolution in SSMspreserving the safety assertions of
the features; in FLX, it is specifying behavior nja. Precedence relationship in FLX
is partial ordering of two different types; SSM hassingle stack and depends on
feature code to determine whether a feature wikrade or will execute before
features of lower precedence. Execution of a featurSSM is triggered by a token
passed from one feature to the other in the saaok;sh FLX, it is due to a condition
becomes true. Because of these differences, wevbethat the feature programs in
SSM will tend to be more tightly coupled with oreother than the feature modules in
FLX, and adding a feature in the stack of SSM wften require code changes in the
other features.

The related works discussed so far are often cermidto be “specification
languages” instead of “programming languages”. &le, they typically do not
allow the programmer to define more complex datactires. More recently, there are

three other programming language approaches besidesown: Aspect oriented
programming (AOP) [17], Call Processing LanguagPBL(C[18] and Feature oriented
programming (FOP) [19].

AOP textually separates the code of a feature ftmrbase code and put it into a
program module called aaspect. An aspect is a nonprocedural program containing a
set of point cut, advice) pairs. A point cut is an assertion on some syitactifacts
(class and method names, etc.) of the base codaust pin point some specific
statements (calleint points) in the base code. Its corresponding advice sSpsdifow
the base code is changed by adding to or replabmgpint points. The AOP compiler
will weave the aspect into the base code. In génbeaprogrammer manually reviews
code to determine the point cuts to the base cnde@other aspecttie advices are
not independent of the base code and other aspects.result, aspects are not easily
reusable without one another. Empirical studiedlooted a decade apart showed that
AOP does not improve programmer productivity ([20d [21]), despite studies that
showed it can significantly reduce the amount afecto be written (e.g. [22]).

The term FOP was first coined by Prehofer in [2BEve he introduced procedural
language extensions to Java to specify the nofienfeature. But his approach requires
resolving the interaction between every pair ofufezs and often by changing code.
Batory and his group propose that composition eftues follows mathematical
formulas (e.g. feature interactions are derivatagf calculus [24]). But in general his
method requires the programmer to significantipnéigure code manually.

Similar to VoiceXML [25], CPL and its variants suels LESS [26] are mark up
languages. Adding features with these languagesreschanging code.

We should also mention Service Oriented Architect{80A). SOA is a recent
architectural approach. It proposes to relax (G2he entanglement conditions so that
every feature is a process. The service procease®ct by requesting and providing
services to one another. Many features are reqtiree executed in the same process,
and a deeper analysis showed that SOA exhibitaaafr structure with significant
performance and complexity implications (A fractalicture leads to chaos) [27].

7. Conclusion

FLX is designed to enable the programmer to devigltgracting features separately as
reusable program modules. The precedence listiaageiage facilities that allow the
programmer to integrate interacting features arswlve their interaction conditions
without requiring changing their code. While theme cases where precedence list
cannot apply, they are powerful mechanisms: A sifgecedence can resolve a large
amount of interaction conditions for many featui&®& gave more than ten examples to
illustrate their usage including when multiple péence lists are combined in a feature
package.

For readability, the examples given in the paperrafatively simple. But we have
developed fairly complex software using FLX. Wedigeto develop more than forty
features and feature packages on a simulated telg@ystem. The telephony systems
were developed mainly to test FLX concepts andotapiler. We have started to use
FLX to develop something that can be used. We ticénished developing the basic
features of a call center based on Skype [28]. Vdetesl on the development of a
composable operating system.

When FLX was first conceived, reviewers can immedyasee that it will help in
improving programmer productivity in the developrhehindividual features, because
the programmer can focus on the feature indeperadaher features. Many, however,
were skeptical that we are just pushing the conilyléx the feature package where the
features are integrated. Our experience shows hbeause FLX can detect feature
interaction conditions automatically and provideschmnisms like precedence lists to
facilitate interaction resolution, integrating femds can usually be accomplished
without much difficulty.

A number of results on FLX including its interactialetection algorithm,
exception handling mechanisms, and language catstra extend application models
are not yet published. But materials (theses, poomts) on them as well as a research
version of the FLX to Java compiler and example Fiode can be found in its web
site [3]. FLX is designed so that programs writiteit can be verified using assertions
based verification instead of completely relying testing. The basis of that goal is
given in [4].

References

1. Leung, W. H.: Program Entanglement, Featurerdcton and the Feature Language
Extensions. Computer Networks, Volume 51, Febru2®97, 480-495

2. M. Musuvathi and D. Engler: Model Checking Lafjetwork Protocol Implementations,
Proceedings of Symposium on Network Systems Designimplementation, 2004.

3. www.openflx.org

4. W. H. Leung: On the Verifiability of Programs Mt&n in the Feature Language Extensions,
Proceedings of #DIEEE International Symposium on High Assuranceté&ys, November,
2007.

5. Leung, W. H.: Writing Reusable Feature Prograwith the Feature Language Extensions,
Proceedings of Feature Interactions in Telecomnatiimics and Software Systems VIII, 10S
Press, 2005.

6. Karnaugh, M.: The Map Method for Synthesis offBmational Logic Circuits. Transactions
of American Institute of Electrical Engineers parg (9): 593-599, November 1953.

7. Harel, D.e.a., Statemate: A Working Environmientthe Development of Complex Reactive
Systems. |[EEE Transactions on Software Engineet®@p. 16(4).

8. Turner, K. J., “A LOTOS-based Development StygteFormal Description Techniques I,
pages 117-132, 1990.

9. Ellsberger, J., D. Hogrefe, and A. Sarma, SDlnfab Object-oriented Language for
Communicating Systems. Hemel Hempstead: PrentiteEdeope, 1997.

10. Berry, G., and Gonthier, G., “The ESTEREL Synalous Programming Language: Design,
Semantics, Implementation,” Science of Computegimming, 19:87-152, 1992.

11. Ardis, M. A., “Lessons from Using Basic LOTOSProceedings of the International
Conference on Software Engineering, May 1994.

12. Turner, K. J., “Modular Feature SpecificatioRrbceedings of MICON, August, 2001.

13. McMillan, “Symbolic Model Checking,” Kluwer Acgemic Publishers, 1993.

14. Holzmann, G. J., The SPIN Model Checker : Priamel Reference Manual, Addison-Wesley
Professional, September 4, 2003.

15. Plath, M. and Ryan, M. D., “A Feature ConstifiactPromela,” in SPIN'98 — Proceedings of
the 4th SPIN Workshop, November 1998.

16. Plath, M. and Ryan, M. D., “Feature Integratidsing a Feature Construct,” Science of
Computer Programming, January 2001.

17. Elrad, T., R.E. Eilman, and A. Bader, Aspede@ted Programming. Communications of the
ACM, October, 2001. 44(10).

18. Lennox, J., X. Wu and H. Schulzrinne, “Call ¢&ssing Language (CPL): A Language for
User Control of Internet Telephony Services,” IERFC 3880, October 2004.

19. Batory, D., J. N. Sarvela and A. Rauschmayealiigy Step-Wise Refinement, Proceedings
of International Conference on Software Enginee20§3 (ICSE 2003), Portland, Oregon,
May 2003.

20. Murphy, G.C., R.J. Walker, and L.A. Baniassdtlaluating Emerging Software
Development Technologies: Lessons Learned from g&#sg Aspect-Oriented Programming.
IEEE Transactions on Software Engineering, 19994)25

21. Filho, F., Rubira, C., Garcia, A., “A Quantitat Study on the Aspectization of Exception
Handling,” Proceedings of ECOOP Workshop on Exceptiandling in OO Systems, July,
2005.

22. Lippert, M., and C. V. Lopes, A Study on ExdeptDetection and Handling Using Aspect-
Oriented Programming, Proceedings of Internatiddahference on Software Engineering,
ICSE 2000.

23. Prehofer, C., An Object Oriented Approach tatkee Interaction, Proceedings of the Feature
Interaction Workshop, 1997, 10S Press.

24. Liu, J., Batory, D. and Nedunuri, S., “Modeliingeractions in Feature Oriented Software
Design,” Proceedings of Feature Interactions ired@nmunications and Software Systems,
VIIl, June, 2005.

25. www Consortium, “Voice Browser Activity,” 200Bitp://www.w3.org/Voice

26. Wu, X., and Schulzrinne, H.: Handling featun&eraction in the language for end system
services, Computer Networks, Volume 51, Februad9,72

27. Bussler, C.: The fractal nature of web servittleSE Computer, March 2007.

28. http://skype.com

29. Chen, Y.L., Lafortune, S. and Lin, F., “Resplyi Feature Interactions Using Modular
Supervisory Control with Priorities,” Proceedingsf dreature Interactions in
Telecommunications Systems, 1997, I0S Press, Adaster

30. Samborski, “Stack Service Model,” Gilmore, &g Ryan, M., editors, Language Constructs
for Describing Features, Springer-Verlag, Londod, 12000/2001.

