
Resolving Feature Interaction with Precedence Lists in
the Feature Language Extensions

L. Yang, A. Chavan, K. Ramachandran, W. H. Leung1
Computer Science Department

Illinois Institute of Technology, Chicago, IL 60616

Abstract. With existing general purpose programming languages, interacting
features executed in the same process must be implemented by changing the code
of one another [1]. The Feature Language Extensions (FLX) is a set of
programming language constructs that enables the programmer to develop
interacting features as separate and reusable program modules. Features are
integrated and have their interactions resolved in feature packages. FLX provides
the precedence list facilities for the programmer to specify the execution order of
the features in a feature package. While not applicable in all situations,
precedence lists can be used to resolve many interaction conditions in a single
statement. This paper describes the two types of precedence lists supported by
FLX and their usage. We give the contradiction conditions that may occur when
multiple precedence lists are used in a feature package and show how to resolve
them. Finally, we show that the two types of FLX precedence lists are primitive:
they can be used to implement arbitrary precedence relations among features that
do not exhibit contradictions.

Keywords: Feature interaction, program entanglement, feature interaction
resolution, reusable feature modules, Feature Language Extensions.

1 Introduction

In software engineering literature, the terms feature, aspect and concern are often used
synonymously to denote certain functionality of a software system. For example,
reliable data transport and congestion control are two features of the Internet TCP
protocol. Features are implemented by computer programs. Two features interact if
their behaviors change when their programs are integrated together. The behavior of a
computer program is manifested in the sequence of program statements that gets
executed and its output for a given input. Consider TCP again. Without congestion
control, reliable data transport will retransmit when a duplicated acknowledgement is
received. After congestion control is added, the same message may cause the sender to
retreat to slow start. Thus these two features interact. The term feature interaction was
coined by developers of telecommunications systems, but its occurrence is common
place: when a software system evolves, it usually means that new features are added to
the system changing the behavior of existing features.

We showed earlier [1] that if (C1) two features interact, (C2) they are executed by
the same sequential process, and (C3) they are implemented by a programming

1 Corresponding Author: W. H. Leung, Computer Science, Illinois Institute of Technology,

10 West 31st Street, Chicago, Illinois 60616, USA; E-mail: leung@iit.edu.

language that requires the programmer to specify execution flows, then the programs of
the two features will inevitably entangle in the same reusable program unit of the
programming language. If the features do not interact, then program entanglement is
not necessary. Program entanglement implies that features are implemented by
changing the code of one another. Besides making it difficult to develop features,
entangled programs are difficult to reuse, maintain and tailor to different user needs.
And feature interaction is the root cause of program entanglement.

(C1) and (C2) are generally dictated by the application such as the examples given
earlier in TCP. Today’s general purpose programming languages require (C3). Existing
TCP implementations are notoriously entangled (e.g. see [2]). It is not because the
programmers lacked skill; they could not help it.

The Feature Language Extensions (FLX) is a set of programming language
constructs developed to solve the program entanglement problem. A FLX program unit
consists of a condition part and a program body. The program body gets executed
when its corresponding condition part becomes true. The programmer does not specify
the execution flows of program units; hence FLX relaxes (C3). A feature is composed
of a set of program units; it is designed according to a model instead of the code of
other features. Features are integrated in a feature package. Features and feature
packages are reusable. Different combinations of them can be packaged to meet
different needs. We have added the foundation FLX constructs to Java. A research
version of the FLX to Java compiler is downloadable from [3].

We call the conditions under which two interacting features change their behavior
their interaction conditions, and the interaction is resolved with specification on the
new behavior. Presently, the programmer read code to determine when the interaction
conditions may become true, and change code to resolve the interaction conditions.
This is a labor intensive and error prone process, and a main reason why software
development is complex.

Due to the way that the FLX compiler generates code, two program units written in
FLX interact if the conjunction of their condition parts is satisfiable, or equivalently, if
the condition parts of the two program units can become true at the same time. Two
features interact when some of their program units interact. The satisfiable condition is
their interaction condition. Several other researchers have constructed systems with this
property (e.g. see [15]). As we shall see later, the condition part of a program unit is a
set of quantifier-free first order predicate formulas. Detecting feature interaction in
programs written in FLX then requires an algorithm, often called a satisfiability solver,
which determines the satisfiability of such formulas.

The first order predicate satisfiability solver of FLX does not require iterations of
trial and error incurred in prior art and is overviewed in [4]. This paper focuses on
using FLX to integrate features and resolve their interaction without changing their
code. In particular, we discuss usage of the precedence list facilities provided by FLX.
A precedence list establishes a strict partial ordering2 among a set of features in a
feature package. FLX supports two types of precedence lists: a straight precedence list
specifies that if the interaction condition for some of the features becomes true the
programs of the features with higher precedence will get executed before the programs

2 A strict partial order is an irreflexive, asymmetry and transitive relation between two

elements of a set, denoted by “<”. For all a, b and c in P, we have (i) ~(a < a) (irreflexivity); (ii)
if (a < b) then ~(b < a) (asymmetry); and (iii) if (a < b) and (b < c) then (a < c) (transitivity).

of features with lower precedence; and a priority precedence list specifies that only the
program unit belonging to the feature with the highest precedence will get executed.

Precedence list is a powerful facility. For example, in a telephony application
written in FLX, the feature DoNotDisturb interacts with the plain old telephone
service (POTS) whenever the phone is called. The interaction conditions of the two
features are resolved in a single precedence list statement in a feature package. One of
the authors came from the telecommunication industry and was involved in the
development of DoNotDisturb in a production digital switch. The programmers in
that project needed to go through hundred of thousands lines of code to find several
hundred places to insert code for the feature. Later, as new features are added to the
system, they had to remember not to forget including the code for the feature.

We first introduced precedence lists in [5]. A more detailed discussion is given in
this paper. We review briefly the FLX constructs to specify features and feature
packages in Section 2. In Section 3, we describe the two different types of precedence
lists implemented in FLX. We also show there that precedence lists alone is not
sufficient in certain situations. When that happens, the interaction condition is resolved
by program units in the feature package. In Section 4, we discuss the integration of
multiple precedence lists. This can happen, for example, when two feature packages
each with its own precedence list is integrated in a feature package. Multiple
precedence lists can lead to contradictions that need to be resolved. In the same section,
we introduce the compound precedence statement which specifies the precedence
relations among precedence lists. It is a short hand for multiple precedence lists. In
Section 5, we show that the two types of precedence lists supported by FLX are
primitive in the sense that they can be used to specify arbitrary precedence
relationships that do not contain contradictions. We review related work in Section 6.
Our method to integrate interacting features without changing feature code appears to
be new. The use of precedence lists as language mechanisms to resolve interaction is
also new. We conclude the paper in Section 7.

2 Some FLX basics

FLX supports the view that complex software should be organized as a collection of
components and FLX is meant for the development of feature rich components called
feature packages. In a telephone system developed using FLX, each telephone object is
associated with two feature packages: a call processing feature package for features like
call forwarding, and a digit analysis feature package for features like speed calling.
Different telephone objects can be associated with different feature packages
containing different sets of features, or the set of features can be the same but the
feature interactions are resolved differently. We will use the call processing feature
package as a running example for this paper.

As mentioned earlier, a feature written in FLX is developed according to a model.
The model is composed of an anchor feature and a domain statement. The anchor
feature implements the basic functionality; other features can be considered as its
enhancements. Condition variables, called domain variables and events, are defined in
the domain statement. They are used in the condition part of a program unit. Domain
variables are initialized in the domain statement and space is allocated for them when a
feature package using the domain statement is instantiated.

For this paper, we will skip showing the syntax of a domain statement. The domain
statement for the call processing package, called BasicTelephony , contains a
domain variable state which is a simple extension of the class enum defined in Java
1.5. We will not describe the extension here as it is related to the FLX satisfiability
algorithm only. The possible values of state, such as IDLE, RINGING,
TALKING, define the different states that the phone associated with the feature
package can have.

Some of the events specified in the BasicTelephony domain statement come
from another phone announcing its intent (TerminationRequest , Disconnect)
or its state (Busy , Ringing , Answer) to this phone. Other events are signals
(Onhook , Offhook . Digits) coming from the device driver of the phone. Events
exchanged between phones contain a field FromPID identifying the sending phone.

Surprisingly large number of features can be developed using this relatively simple
domain statement. Since a domain statement can be extended using the inheritance
mechanisms of FLX [1], we advocate a minimalist approach in designing domain
statements: Define only those domain variables and events for the set of features to be
implemented at the time. Later, if new features require new domain variables, such as
the role play by the phone, and new events, such as request to add a video channel, they
can be added without affecting features that have already been developed.

A portion of the code for the anchor feature of the call processing feature package,
called the plain old telephone service (POTS) feature, is given in Figure 1 showing only
two of its program units: MakeCall applies dial tone when the user picks up the
phone; ReceiveCall responds to a TerminationRequest event by updating the
state of the call to RINGING and telling the calling party of that fact.

The condition part of a program unit is composed of a condition statement and an
event statement. The condition statement is a quantifier free first order formula of
domain variables and their predicate methods. We do not support the existential and

 anchor feature Pots {
 domain BasicTelephony;

MakeCall {

condition: state.equals(State.IDLE);
event: Offhook; {

fone.applyDialTone();
state = State.DIALING;

 }
}

ReceiveCall {
condition: state.equals (State.IDLE);
event: TerminationRequest e; {

 Ringing r = new Ringing (e.FromPID);
 rt.sendEvent (r);

state = State.RINGING;
 }

}
}
 .
 .
 .

}

Figure 1. A Portion of the FLX POTS code

universal quantifiers explicitly. When the programmer has the need to say something
like “there exists some elements”, we ask him to write a predicate method non-
empty() instead. The event statement specifies a list of events. Each event may be
attached with a qualification which is a first order formula on data carried in the event.

The feature DoNotDisturb is shown in Figure 2. Its program unit SayBusy
returns a busy event to the caller (identified by the fromPID of the received event e)
whenever the phone receives a TerminationRequest event.

FLX requires that the interaction among the program units in a feature be resolved
before the feature is compiled; similarly, the interaction conditions among features in a
feature package must be resolved before the feature package is compiled.
DoNotDisturb and POTS interact: when the event TerminationRequest is
received, the condition part of SayBusy in DoNotDisturb becomes true and the
condition part of several program units in POTS, including ReceiveCall , may
become true. We show how these two features may be integrated in a feature package
in Section 3.1.

The essential elements of a feature package are shown in Figure 3. It identifies one
or more features and feature packages that will be integrated in the package and the
domain statement used by them. The FLX compiler checks that the anchor feature is
included in the list of features. The feature package may contain several precedence
lists and program units. We will show how to use them to resolve interactions.

3 Resolving Feature Interaction with Precedence Lists

FLX provides two types of precedence lists, priority precedence and straight
precedence. They are described in this section, illustrated with examples. We also show
that while precedence lists are powerful mechanisms, there are situations that they are
not sufficient.

3.1 Priority Precedence

When a programmer decides to use priority precedence list to resolve feature
interactions, he specifies the features in descending order of priority in a list with the
highest priority feature at the first position of the list. When an interaction condition
becomes true, the program unit from the feature with the highest priority gets executed.

feature DoNotDisturb {
domain BasicTelephony;
anchor POTS;

SayBusy {

condition: all;
event: TerminationRequest e; {

Busy b = new Busy(e.FromPID);
rt.sendEvent (b);

 }
 }
}

Figure 2. The feature DoNotDisturb

feature package Fp3{
domain: BasicTelephony;
features: Fp1, F2;
priorityPrecedence(Fp1, F2);

PU1{

 }

}

Figure 3. feature package in FLX

To help explain this, we show in Figure 4 the code of the feature package
QuitePhone which integrates DoNotDisturb , POTS and CatchAll and uses a
priority precedence list to resolve their interaction. The code for the feature CatchAll
is given in Figure 5.

When a phone assigned with QuietPhone receives the TerminationRequest
event (i.e. when it is called), SayBusy of DoNotDisturb will be invoked and a
busy event will be sent back to the caller. Program units of POTS and CatchAll
will not be invoked. However, when the phone receives an OffHook event and it is
idle, then the MakeCall program unit of POTS gets invoked and the user can make
phone calls. The Catch program unit of CatchAll will be invoked only when the
phone is in a particular state and an event unexpected by DoNotDisturb and POTS
arrives. CatchAll is a very useful exception handling feature. We introduced
exception handling in FLX in [1] and will cover it more fully in a separate article.

3.2 Straight Precedence

With a straight precedence list, when an interaction condition becomes true program
units from features that satisfy this condition are executed following the order in which
the features are specified in the list. Figure 6 shows the StartMeter program unit of
the Billing feature. It creates a billing record and starts the timer when a call is
answered. StartMeter interacts with the CallAnswered program unit of POTS.
Other program units of Billing and POTS also interact. The two features are
integrated in the feature package NoFreeCalls as shown in Figure 7 with their
interactions resolved in a straight precedence list.

Using this method, changing billing policy becomes quite easy. One can simply
substitute one billing feature with another to gather different billing data.

Feature package QuitePhone {
domain: BasicTelephony;
features: DoNotDisturb, CatchAll, POTS;
priorityPrecedence(DoNotDisturb, POTS, CatchAll);
}

Figure 4. QuitePhone feature package

feature CatchAll{
domain: BasicTelephony;
anchor: Pots;

Catch{
condition: all;
event: any; {

 System.err.println("unexpected condition and e vent”);
 BasicTelephonyEvent.getEventID(e));

}
}

}

Figure 5. CatchAll feature package

3.3 Precedence Lists Are Not Always Sufficient

In the examples of Figure 4 and Figure 7, a single precedence statement is used to
resolve the interactions of features in a feature package. But very often, more flexible
and finer control of the interaction condition is needed.

Consider the CallForwarding feature with its most important program unit
shown in Figure 8. CallForward transfers an incoming call by relaying the
TerminationRequest event to the forward number if that number is defined and
the call is not coming from that phone. Suppose that we integrate DoNotDisturb
and CallForwarding together and place DoNotDisturb ahead of
CallForwarding in a priority precedence list, no call will be forwarded. If we place
CallForwarding ahead of DoNotDisturb , all calls will be forwarded.

The programmer can choose to use a program unit in the feature package to resolve

the interaction among the two features. In the example given in Figure 9, the

feature Billing {
domain: BasicTelephony;
anchor: POTS;

StartMeter {

condition: state.equals(State.IDLE);
event: Answer e; {
 CallRecord = new CallRe cord

(e.fromPID);
 meter.start (1 second);
 }
}

}

Figure 6 A program unit in Billing

feature package NoFreeCalls {
domain: BasicTelephony;
features: Billing,Pots;
straightPrecedence (Billing, Pots);
}

Figure 7 The NoFreeCalls feature
package

feature CallForwarding {
domain: BasicTelephony;
anchor: POTS;

ForwardCall {
 condition: state.equals (State.IDLE);
 event: TerminationRequest e; {
 if ((forwardNumber != “”) && (forwardNumber != e.f romPID)) {
 rt.send (forwardNumber, e);
 stop;
 }
 }
 }
}

Figure 8. The ForwardCall program unit of CallForwarding

interaction between DoNotDisturb and CallForwarding is resolved depending on
whether the caller is identified in a list of phone numbers.

By convention, a program unit in a feature package has highest precedence. Thus
when the interaction condition becomes true, SelectToForward is executed first.
The stop statement at the end of the program unit instructs the compiler not to invoke
program units of lower precedence. In the example, SelectToForward refers to the
features instead of calling their program units. The FLX compiler generates code to
invoke the correct program units in these features. Alternatively, the program may call
the program units of the features explicitly. In that case, the compiler will check that
the program units are called with the correct condition as SelectToForward .

4 Multiple and Compound Precedence Lists

FLX supports multiple precedence lists and compound precedence lists in a feature
package. When feature packages containing precedence lists are integrated together, the
integrating feature package contains multiple precedence lists by definition. A
compound precedence list is a short hand to multiple precedence lists. Some FLX
programmers argue that it is easier to understand than multiple lists. Precedence lists
may contradict one another. The FLX compiler needs to identify the contradiction and
enable the programmer to resolve the contradiction.

4.1 Combining Precedence Lists of the Same Type

FLX encourages its programmer to develop a feature based on the anchor feature only.
The feature is usually tested with the anchor feature and beneficially with CatchAll
in a feature package. When the programmer is finished with testing, he has two
reusable programs: the feature itself and the feature package that he used to test the
feature. The feature package that integrates the 3-way calling test package, called
3WayPackage , and SelectiveCallForwarding (Figure 9) is given in Figure
10. The new feature package has two priority precedence lists: one from

feature package SelectiveCallForwarding {
 domain: BasicTelephony;
 features: DoNotDisturb, CallForwarding, Pots, Catc hAll;
 priorityPrecedence (DoNotDisturb,CallForwarding,PO TS,CatchAll);

 LinkedList phoneList = LinkedList (empty); // forw ardable phones

SelectToForward {
 condition: state.equalsTo(State.idle);
 event: TerminationRequest e; {

 if (phoneList.contains (e.FromPID))
 CallForwarding;
 else
 DoNotDisturb;
 stop;

 }
}

}
 Figure 9. SelectiveCallForwarding feature package

3WayPackage containing the features 3Way, POTS and CatchAll ; the other comes
from SelectiveCallForwarding containing DoNotDisturb ,
CallForwarding , POTS and CatchAll . The interaction between the two feature
packages is resolved in another priority precedence list.

When combining precedence lists of the same type, which is the case in the example
of Figure 10, the FLX compiler applies two rules: First, a feature may appear in
multiple lists but only one instance of it will appear in the combined list. Second, the
partial ordering specified in the different lists is merged into a combined list. Following
these two rules, the priority precedence list of the feature package in Figure 10 contains
the following features in descending order: 3Way, SelectiveCallForwarding ,
DoNotDisturb , POTS, and CatchAll . SelectiveCallForwarding is
considered a feature as it contains program units of its own. The net effect of
combining the precedence lists in the example is adding the 3Way feature to
SelectiveCallForwarding : When the phone is in its talking state, it can invoke
the 3Way feature. Incoming calls are no longer blocked by DoNotDisturb in talking
state; they will cause an audible signal to the speaker as specified by 3Way.

The first rule of combining precedence lists is similar to virtual base classes in
C++. The second rule may not be possible if in one list a feature f1 precedes feature
f2 but in another list f2 is specified to precede f1 . When that occurs, the FLX
compiler will identify an order contradiction. An order contradiction is relevant only in
the condition where f1 and f2 interact. The FLX compiler will identify that condition
and the programmer can resolve the contradiction in a program unit of the feature
package that combines the two lists. The condition part of the program unit will include
the interaction condition and its program body will specify the computation when the
condition becomes true.

4.2 Integrating Precedence Lists of Different Types

Suppose that we want to integrate the features Billing (Figure 6), POTS and
CatchAll together. Billing has a straight precedence relationship over POTS and
both of them should have priority precedence over CatchAll . The programmer can
simply put these three precedence relations in the feature package that integrates these
three features as shown in Figure 11.

Following the precedence specifications, when some interaction condition between
Billing and POTS becomes true, appropriate program units from these two features
will be executed in order, and CatchAll will not get invoked as the other two
features have priority precedence over it.

feature package 3WayAndSelectiveCallForwarding {
domain: BasicTelephony;
anchor: POTS;
features: 3WayPackage, SelectiveCallForwarding;
priorityPrecedence (3WayPackage, SelectiveCallForwa rding);

}

Figure 10. 3WayAndSelectiveCallForwarding feature package

When precedence lists of different types are combined, the FLX compiler checks for
whether there is type contradiction. A type contradiction occurs when a feature is
specified as having both priority and straight precedence over the other. For example,
feature f1 has straight precedence over f2 and f3 in one list. In another list f2 has
priority precedence over f3 . When an interaction condition for the three features
becomes true, it is not clear what should be done for the program unit in f3 after
program units from f1 and f2 have been executed. The FLX compiler identifies the
interaction condition, and the programmer must specify in a program unit in the
integrating feature package to resolve the ambiguity.

Precedence lists of the same type can be combined into a single partial ordering list,
but not for precedence lists of different types. If we have a first priority precedence list
including f1 , f2 and f3 , and a second priority precedence list including f2 and f4 ,
we know that f1 has priority precedence over f4 from the transitivity property of strict
partial orderings. But if the second list specifies straight precedence, then we do not
know the precedence relationship between f1 and f4 .

4.3 Compound Precedence List

One observes that in the feature package of Figure 11, both Billing and POTS have
priority precedence over CatchAll . Using a method similar to factorization in
algebra, one can reduce the multiple precedence lists into a single compound
precedence list as shown in Figure 12.

The precedence list of Figure 12 says that when an interaction condition becomes
true for the three features, program units in Billing and POTS will be executed in
order according to the straight precedence clause. The program unit in CatchAll will
not be executed because of the priority precedence specification. In essence, the
compound precedence list of Figure 12 is a short hand of the precedence lists in Figure
11. We know that they are equivalent because both will generate the same partial
ordering as well as precedence types among the different features.

feature package BillingPackage {
 domain: BasicTelephony;
 feature: Billing, POTS, CatchAll;
 straightPrecedence (Billing, POTS);
 priorityPrecedence (Billing, CatchAll);
 priorityPrecedence (POTS, CatchAll);
}

Figure 11. Billing Package feature package

feature package BillingPackage {
domain: BasicTelephony;
feature: Billing, POTS, CatchAll;
priorityPrecedence(straightPrecedence(Billing,POTS) , CatchAll);
}

Figure 12. BillingPackage feature package

5. Priority and Straight Precedence Lists are Primitive

With two features, when we say one precedes the other there can be only two meanings:
that the program of one overrides that of the other (priority precedence), or the program
of one should be executed before the other (straight precedence). When there are more
features, a question arises: Can we use only the priority and straight precedence list to
implement arbitrary precedence relations among arbitrary number of features?
Arbitrary combinations of these features may have different precedence relations with
one another.

The question is important because precedence list mechanisms directly affect the
way the compiler generates code. Each time we discover a precedence relation that
cannot be implemented by the mechanisms already provided, we need to modify the
compiler to support it.

Fortunately, the answer to the question is affirmative if the desired precedence
relation among the features does not contain order nor type contradictions. We use two
steps to show the above statement. First, we show that features with arbitrary
precedence relations and without contradiction can be represented generically. Step 2
shows that such a generic representation can always be implemented by the two types
of precedence relations.

Consider a set of features f1 to fn . Since there is no order contradiction, the
features can be arranged linearly according to their partial ordering (such that f(i-1)
either precedes or has no precedence relationship with fi) . The possible precedence
relationship among the features can be represented in a square matrix with the features
arranged in order on the coordinates of the matrix. The diagonal of the matrix is empty
as it makes no sense to say a feature precedes itself. The lower left triangle of the
matrix underneath the diagonal is also empty because we already say that fi does not
precede fj for i > j .

Each element in the upper right triangle above the diagonal will indicate the type
of precedence between fi and fj , for all i < j . Since there is no type contradiction,
the value in each such element is either empty, showing priority precedence or showing
straight precedence. Figure 13 shows such a matrix for the feature package given in
Figure 12.

 Billing POTS CatchAll

Billing Straight precedence Priority precedence

POTS Priority precedence

CatchAll

Figure 13. Precedence relation matrix among the features in the feature package of Figure 12.

Given a precedence relation represented by such a matrix, the simplest way to
implement it will be to use the appropriate precedence list for each nonempty element
linking fi and fj , hence the answer is affirmative to the question of whether priority
and straight precedence lists are primitive. The interested reader is encouraged to
devise algorithms, similar to Karnaugh maps [6], which will generate the minimum
number of precedence lists using compound precedence lists. In a feature package with
many features, the programmer may find it useful to construct such a table to aid in the
feature interaction resolution design.

6. Related Work

The feature interaction problem affects all stages of software development, from the
difficulties in recognizing interaction conditions during system specification to the
difficulties in testing as feature programs constantly get changed if they are
implemented with existing programming languages. FLX and its precedence lists
facilities focus on solving the implementation problem of enabling the programmer to
develop reusable feature modules without entanglement. The discussion in this section
therefore emphasizes on work that allows specification of executable feature code.

Among the pioneers that used programming language to facilitate the development
of features, the languages Statechart [7], LOTOS (e.g. [8]), DSL [9] and Esterel [10]
are the most important. They take different approaches. For example, Statechart is
graphical and Esterel assumes instantaneous reaction to input. All of them support
explicitly definition of finite state machines. Several of them, e.g. Esterel and LOTOS,
developed verifiers for programs developed using them. But one cannot use them to
develop interacting features as reusable program modules without entanglement. An
empirical study [11] using these languages observed that “we have to rewrite POTS
several times as features were added,” and asked: “how could reusable
(sub)specifications be declared and used?”

CRESS [12] is the first graphical language that explicitly supports the specification
of features and their integration. It is a substantial work that included a model checker.
But integrating features in CRESS require the programmer to manually determine
where to “splice” and “insert” code to the features.

Plath and Ryan extended the input languages of the model checkers SMV [13] and
SPIN [14] to allow for the specification of features extending from a base system ([15]
and [16]). Since the input languages of SMV and SPIN are mainly nonprocedural, their
result on feature specification is quite similar to ours. They already had the concepts of
anchor feature and features; we provide additional constructs and facilities to integrate
features without requiring changing code.

The notion that feature interaction can be resolved by arranging the features in
some priority or precedence order has been suggested by a number of authors (e.g.
[29]). We are aware of only one other work that has defined programming language
facilities to specify feature precedence. Similar to FLX, the “Stack Service Model
(SSM)” [30] associates a phone with a number of features. The features in SSM are put
into a stack. The priority of a feature is determined by its position in the stack. The
notion of feature interaction resolution in SSM is by preserving the safety assertions of
the features; in FLX, it is specifying behavior change. Precedence relationship in FLX
is partial ordering of two different types; SSM has a single stack and depends on
feature code to determine whether a feature will override or will execute before
features of lower precedence. Execution of a feature in SSM is triggered by a token
passed from one feature to the other in the same stack; in FLX, it is due to a condition
becomes true. Because of these differences, we believe that the feature programs in
SSM will tend to be more tightly coupled with one another than the feature modules in
FLX, and adding a feature in the stack of SSM will often require code changes in the
other features.

The related works discussed so far are often considered to be “specification
languages” instead of “programming languages”. For example, they typically do not
allow the programmer to define more complex data structures. More recently, there are

three other programming language approaches besides our own: Aspect oriented
programming (AOP) [17], Call Processing Language (CPL) [18] and Feature oriented
programming (FOP) [19].

AOP textually separates the code of a feature from the base code and put it into a
program module called an aspect. An aspect is a nonprocedural program containing a
set of (point cut, advice) pairs. A point cut is an assertion on some syntactic artifacts
(class and method names, etc.) of the base code; it must pin point some specific
statements (called joint points) in the base code. Its corresponding advice specifies how
the base code is changed by adding to or replacing the joint points. The AOP compiler
will weave the aspect into the base code. In general, the programmer manually reviews
code to determine the point cuts to the base code and to other aspects; the advices are
not independent of the base code and other aspects. As a result, aspects are not easily
reusable without one another. Empirical studies conducted a decade apart showed that
AOP does not improve programmer productivity ([20] and [21]), despite studies that
showed it can significantly reduce the amount of code to be written (e.g. [22]).

The term FOP was first coined by Prehofer in [23] where he introduced procedural
language extensions to Java to specify the notion of a feature. But his approach requires
resolving the interaction between every pair of features and often by changing code.
Batory and his group propose that composition of features follows mathematical
formulas (e.g. feature interactions are derivatives as in calculus [24]). But in general his
method requires the programmer to significantly reconfigure code manually.

Similar to VoiceXML [25], CPL and its variants such as LESS [26] are mark up
languages. Adding features with these languages require changing code.

We should also mention Service Oriented Architecture (SOA). SOA is a recent
architectural approach. It proposes to relax (C2) of the entanglement conditions so that
every feature is a process. The service processes interact by requesting and providing
services to one another. Many features are required to be executed in the same process,
and a deeper analysis showed that SOA exhibits a fractal structure with significant
performance and complexity implications (A fractal structure leads to chaos) [27].

7. Conclusion

FLX is designed to enable the programmer to develop interacting features separately as
reusable program modules. The precedence lists are language facilities that allow the
programmer to integrate interacting features and resolve their interaction conditions
without requiring changing their code. While there are cases where precedence list
cannot apply, they are powerful mechanisms: A single precedence can resolve a large
amount of interaction conditions for many features. We gave more than ten examples to
illustrate their usage including when multiple precedence lists are combined in a feature
package.

For readability, the examples given in the paper are relatively simple. But we have
developed fairly complex software using FLX. We used it to develop more than forty
features and feature packages on a simulated telephony system. The telephony systems
were developed mainly to test FLX concepts and its compiler. We have started to use
FLX to develop something that can be used. We recently finished developing the basic
features of a call center based on Skype [28]. We started on the development of a
composable operating system.

When FLX was first conceived, reviewers can immediately see that it will help in
improving programmer productivity in the development of individual features, because
the programmer can focus on the feature independent of other features. Many, however,
were skeptical that we are just pushing the complexity to the feature package where the
features are integrated. Our experience shows that because FLX can detect feature
interaction conditions automatically and provides mechanisms like precedence lists to
facilitate interaction resolution, integrating features can usually be accomplished
without much difficulty.

A number of results on FLX including its interaction detection algorithm,
exception handling mechanisms, and language constructs to extend application models
are not yet published. But materials (theses, powerpoints) on them as well as a research
version of the FLX to Java compiler and example FLX code can be found in its web
site [3]. FLX is designed so that programs written in it can be verified using assertions
based verification instead of completely relying on testing. The basis of that goal is
given in [4].

References

1. Leung, W. H.: Program Entanglement, Feature Interaction and the Feature Language
Extensions. Computer Networks, Volume 51, February, 2007, 480-495

2. M. Musuvathi and D. Engler: Model Checking Large Network Protocol Implementations,
Proceedings of Symposium on Network Systems Design and Implementation, 2004.

3. www.openflx.org
4. W. H. Leung: On the Verifiability of Programs Written in the Feature Language Extensions,

Proceedings of 10th IEEE International Symposium on High Assurance Systems, November,
2007.

5. Leung, W. H.: Writing Reusable Feature Programs with the Feature Language Extensions,
Proceedings of Feature Interactions in Telecommunications and Software Systems VIII, IOS
Press, 2005.

6. Karnaugh, M.: The Map Method for Synthesis of Combinational Logic Circuits. Transactions
of American Institute of Electrical Engineers part I 72 (9): 593-599, November 1953.

7. Harel, D.e.a., Statemate: A Working Environment for the Development of Complex Reactive
Systems. IEEE Transactions on Software Engineering, 1990. 16(4).

8. Turner, K. J., “A LOTOS-based Development Strategy,” Formal Description Techniques II,
pages 117-132, 1990.

9. Ellsberger, J., D. Hogrefe, and A. Sarma, SDL Formal Object-oriented Language for
Communicating Systems. Hemel Hempstead: Prentice Hall Europe, 1997.

10. Berry, G., and Gonthier, G., “The ESTEREL Synchronous Programming Language: Design,
Semantics, Implementation,” Science of Computer Programming, 19:87-152, 1992.

11. Ardis, M. A., “Lessons from Using Basic LOTOS,” Proceedings of the International
Conference on Software Engineering, May 1994.

12. Turner, K. J., “Modular Feature Specification,” Proceedings of MICON, August, 2001.
13. McMillan, “Symbolic Model Checking,” Kluwer Academic Publishers, 1993.
14. Holzmann, G. J., The SPIN Model Checker : Primer and Reference Manual, Addison-Wesley

Professional, September 4, 2003.
15. Plath, M. and Ryan, M. D., “A Feature Construct for Promela,” in SPIN’98 – Proceedings of

the 4th SPIN Workshop, November 1998.
16. Plath, M. and Ryan, M. D., “Feature Integration Using a Feature Construct,” Science of

Computer Programming, January 2001.

17. Elrad, T., R.E. Eilman, and A. Bader, Aspect-Oriented Programming. Communications of the
ACM, October, 2001. 44(10).

18. Lennox, J., X. Wu and H. Schulzrinne, “Call Processing Language (CPL): A Language for
User Control of Internet Telephony Services,” IETF RFC 3880, October 2004.

19. Batory, D., J. N. Sarvela and A. Rauschmayer, Scaling Step-Wise Refinement, Proceedings
of International Conference on Software Engineering 2003 (ICSE 2003), Portland, Oregon,
May 2003.

20. Murphy, G.C., R.J. Walker, and L.A. Baniassad, Evaluating Emerging Software
Development Technologies: Lessons Learned from Assessing Aspect-Oriented Programming.
IEEE Transactions on Software Engineering, 1999. 25(4).

21. Filho, F., Rubira, C., Garcia, A., “A Quantitative Study on the Aspectization of Exception
Handling,” Proceedings of ECOOP Workshop on Exception Handling in OO Systems, July,
2005.

22. Lippert, M., and C. V. Lopes, A Study on Exception Detection and Handling Using Aspect-
Oriented Programming, Proceedings of International Conference on Software Engineering,
ICSE 2000.

23. Prehofer, C., An Object Oriented Approach to Feature Interaction, Proceedings of the Feature
Interaction Workshop, 1997, IOS Press.

24. Liu, J., Batory, D. and Nedunuri, S., “Modeling Interactions in Feature Oriented Software
Design,” Proceedings of Feature Interactions in Telecommunications and Software Systems,
VIII, June, 2005.

25. www Consortium, “Voice Browser Activity,” 2005, http://www.w3.org/Voice
26. Wu, X., and Schulzrinne, H.: Handling feature interaction in the language for end system

services, Computer Networks, Volume 51, February, 2007.
27. Bussler, C.: The fractal nature of web services, IEEE Computer, March 2007.
28. http://skype.com
29. Chen, Y.L., Lafortune, S. and Lin, F., “Resolving Feature Interactions Using Modular

Supervisory Control with Priorities,” Proceedings of Feature Interactions in
Telecommunications Systems, 1997, IOS Press, Amsterdam.

30. Samborski, “Stack Service Model,” Gilmore, S., and Ryan, M., editors, Language Constructs
for Describing Features, Springer-Verlag, London Ltd, 2000/2001.

