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Abstract 
High assurance in embedded system software is 

difficult to attain. Verification relies on testing. The 
unreliable and costly testing process is made much 
worse because the software base constantly changes: 
Adding a feature is by changing the code of other 
features, and the programs of the features entangle in 
the same reusable program unit of the programming 
language. For a large class of applications, including 
those requiring exception handling, this entanglement 
problem cannot be solved using existing general 
purpose programming languages. The Feature 
Language Extensions (FLX) is a set of language 
constructs designed to enable the programmer to solve 
the entanglement problem. It provides language 
support for assertion based verification. The 
satisfiability of first order assertions composed of 
variables defined by FLX can be determined without 
iterations of trials and errors. An executable FLX 
program is compiled into a finite state machine even if 
the state variables are unbounded.  

 

1. Introduction 
 

High assurance in embedded system software is 
difficult to attain. Its verification relies on instance by 
instance testing. The costly and unreliable testing 
process is made much worse because the software base 
constantly changes as new features are added. Changing 
code is labor intensive and error prone. When a feature, 
which denotes a functionality of the software, is 
developed by changing the programs of other features, 
the programs of the different features entangle in the 
same reusable program unit (such as a method) of the 
programming language. The entanglement often 
scatters into many program modules. It also makes the 
feature programs difficult to maintain, reuse and adapt 
to different user needs. 

The problem of program entanglement is best 
illustrated with an example. With existing general 
purpose programming languages, the programs of 
normal processing and exception handling features are 
entangled. If a device driver needs to throw a new 
exception, all the programs that directly or transitively 

call the device driver may have to be changed. In larger 
development projects, this often means manually 
reviewing millions of lines of code.  

Java offers a partial solution as it can identify the 
programs that need to be changed if its compiler 
happens to type check the new exception. Most other 
languages offer no help. The programmer either has to 
manually go through a large amount of code, or leaves 
the exception uncaught. Uncaught exceptions will crash 
the application and even the system. It happens often in 
some popular software. But that is not acceptable for 
high assurance software. 

A solution to high assurance software should, 
therefore, enable the programmer to develop the 
programs of a feature without entangling with the 
programs of other features, and to verify his software 
formally based on assertion instead of instance by 
instance testing. These are the design objectives of the 
Feature Language Extensions (FLX). FLX is a set of 
programming language constructs with an 
implementation on Java. The implementation is 
analogous to C++ which added object oriented 
programming language constructs to C. 

In an earlier paper, we showed that the program 
entanglement problem cannot be solved using existing 
general purpose programming languages for a large 
class of applications [17]. A main reason is that these 
languages require the programmer to specify execution 
flows. FLX supports nonprocedural programming that 
does not ask the programmer to specify the execution 
flows of program units. It provides language constructs 
for the programmer to specify a feature and to integrate 
features into feature packages.  

There has been significant advances in the art of 
verifying computer systems. It is becoming routine to 
apply assertion based verifier to hardware design. 
However hardware designs are mainly composed of 
finite state machines and its assertions are Boolean 
formulas (as its variables are binary variables). But in 
software, a state variable may be unbound (such as 
when it is an integer), and one must reason on predicate 
logic asking questions such as whether a link list is 
empty. Verification of software systems is therefore 
much more difficult.  
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Our approach is to use programming language 
design to reduce the complexity. An executable FLX 
program is compiled into a finite state machine with 
relatively small number of states even if the state 
variables used in the program are unbounded. Secondly, 
FLX provides language facilities for the programmer to 
provide semantic input such that determining the 
satisfiability of first order predicate formulas composed 
of variables defined using FLX does not require 
iterations of trials and errors. 

The paper is organized as follows. In section 2, we 
discuss the nature of the program entanglement 
problem and the challenges of applying assertion based 
verification to software. The foundation constructs of 
FLX are overviewed with examples in section 3. The 
language support and algorithm to determine the 
satisfiability of first order formulas written in FLX are 
described in section 4, as well as the fact that an 
executable FLX program is a finite state machine. The 
paper concludes in section 5. 

 
2. Program Entanglement and Verifiability 
 
2.1 Program Entanglement and Feature 
Interaction 
 

The program entanglement problem is related to the 
notion of feature interaction. Two features interact if 
their behavior changes when they are integrated 
together. Features are implemented by computer 
programs, and for the purpose of this paper, the 
behavior of a computer program is manifested in its 
output and the sequence of program statements that gets 
executed for a given input. The term feature interaction 
was first introduced by developers of 
telecommunications systems [13] to describe 
circumstances like when a phone is called, the 
programs of the plain old telephone service (POTS) will 
ring the phone, but if call forwarding is added, the 
combined program will give a ping-ring then forwards 
the call to another phone. The concept is common place 
and not confined to telecommunication software. 

Feature interaction is common in embedded systems. 
Take the Internet TCP protocol [23] as an example. 
Before its congestion control feature is developed, a 
duplicated acknowledgement will prompt its reliable 
data transport feature to retransmit. After congestion 
control is added, the same message may cause the 
sender to retreat to slow start. Applications that desire 
exception handling encounter feature interaction. 
Without exception handling, a program running on 
UNIX will crash when someone hits control-c. When 
exception handling is added, the program does not 
terminate and may even ask “why are you hitting 

control-c?” Call forwarding, congestion control and 
exception handling have been called features, services, 
concerns or aspects interchangeably in the literature. 

Feature interaction and program entanglement is 
related in the following way [17]: If (C1) two features 
interact, (C2) they are executed in the same sequential 
process, and (C3) the implementation programming 
language requires the programmer to specify execution 
flows, then their programs will entangle. If the two 
features do not interact, it is not necessary that their 
programs entangle. In other words, feature interaction is 
a main reason for program entanglement. 

The above conditions imply that the entanglement 
problem cannot be solved by software design alone. 
The programs of TCP are notoriously entangled (e.g. 
see [21]) and have frustrated many efforts to improve 
them. It is not because their programmers lacked skill; 
they could not help it. The entanglement conditions also 
explain why existing general purpose programming 
languages cannot separate normal processing and 
exception handling features. C1 and C2 are often 
dictated by the application such as in the case of TCP 
and in exception handling. Changing C3 is then 
essential in solving the program entanglement problem. 

We call the conditions under which the behavior of 
two interacting features will change their interaction 
conditions. Presently, the programmer must examine 
code line by line to determine when the conditions 
become true and resolves the interaction by changing 
feature code to specify the new behavior. Because the 
features are integrated by changing the code of one 
another, they are not easily separable and are not 
reusable without one another. A solution to the program 
entanglement problem should therefore meet these 
requirements: (R1) The programmer can develop a 
feature independent its interacting features; (R2) There 
is a tool that can identify the interaction conditions 
automatically; (R3) The features can be integrated and 
with their interaction condition resolved without 
requiring changing code; and (R4) The features can be 
reused independent of other features. 

Language facilities such as macros in C and Aspects 
in AspectJ [15] separate the code of different features 
textually but do not meet the above requirements. For 
example, with AspectJ, the programmer in general must 
go through the base code and the code of other Aspects 
to determine where the joint points are. Often, they 
need to change code to make the join points apparent. 
Some had argued that separating code this way is 
detrimental [1]. Empirical studies conducted over the 
years (e.g. [21] and [11]) have shown that aspect 
oriented programming (AOP) have not meaningfully 
improved programmer productivity even though some 
have shown that it can significantly reduce the number 
of lines of code to be written (e.g. [18]). 
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Recently, Service Oriented Architecture (SOA) 
proposes to organize each service as a process. These 
processes interact by requesting and providing services 
to one another [5]. SOA thus relaxes the entanglement 
condition C2. But it is not clear that it will lead to 
adding new services without requiring changes in other 
services. An analysis given in [6] showed that service 
invocations in such a system exhibit a fractal structure 
(a condition that may lead the system to become chaotic) 
with significant complexity and performance 
implications. 

FLX relaxes C3 and supports nonprocedural 
programming. A program unit in FLX consists of a 
condition part and a program body. The program body 
gets executed when its corresponding condition part 
becomes true. The programmer does not specify the 
execution order of the program units. A feature is 
composed of a set of program units. With FLX, the 
programmer develops a feature following a model 
instead of the code of other features. FLX provides a 
tool to detect interaction conditions among features. 
Features are integrated in a feature package and have 
their interaction resolved without requiring changing 
code. Features and feature packages are reusable as 
different combinations of them may be integrated and 
have their interactions resolved differently to meet 
different user needs. 

 
2.2 Automatic Formal Software Verification 
 

Advances in the model checking (e.g. see [8]) 
technology and in satisfiability (SAT) solvers of 
Boolean formulas (e.g. see [20]) are mainly responsible 
for the practical application of assertion based 
verification of hardware designs. A model checker 
systematically and exhaustively explores the state space 
of a concurrent system to check for violation of 
formally specified assertions. A SAT solver determines 
whether there is a satisfying assignment to the variables 
of a logical formula. Efficient SAT solvers can greatly 
(exponentially) improve the efficiency of model 
checkers [19]. 

But software verification continues to rely on testing. 
As discussed earlier, a condition variable in software 
may be unbounded and one must reason on predicates 
of complex data structures. Consequently, earlier results 
in assertion based software verification apply only to an 
abstraction of the actual software. The abstraction is 
done manually, translating complex software into a 
simple model expressed in the input language of the 
verification tool. The abstraction itself is a source of 
error and can rarely keep up with changes in the actual 
software. 

More recently, a number of research groups 
developed model checking tools and applied them 

directly to real software programs. They have taken 
different approaches. Bandera [10] and SLAM [2] 
automate program abstraction using program slicing 
and predicate abstraction techniques respectively. Java 
PathFinder [26] translates a Java program to the input 
language of the pioneering model checker SPIN [14]. 
VeriSoft[12], and CMC [21]) are highly optimized 
model checkers that integrates with the software to be 
verified. SLAM is now a commercial product. CMC 
reported to have verified software subsystems with tens 
of thousands of lines of code. But all of them also 
reported significant limitations. For example, CMC 
reported verification of an implementation of TCP but 
not the properties of some of its most complex features 
such as congestion control. 

The root cause of the limitation is the state explosion 
problem: the exponential increase in the state space that 
the model checker must explore as the number of state 
variables in a program and their value set increase. The 
problem is becoming a limiting factor even for 
hardware verifiers as the complexity of hardware 
circuits grow. But it is much harder in software. 
Existing model checkers for software are highly 
optimized and some of their effort to compress the state 
space are heroic (e.g. see [21]). It will not be sufficient 
just to keep on improving model checking algorithms. 

FLX uses programming language design to reduce 
the state space: an executable FLX program is a finite 
state machine; the number of states is proportional to 
the number of program units in the program. This result 
will be described in Section 4. 

Another approach to increase the capability of model 
checkers for software verification is to incorporate an 
efficient SAT solver. This SAT solver must be capable 
of handling first order predicate logic. 

The first order SAT solver of FLX plays additional 
important roles besides its usage in verification. It 
identifies interaction conditions and participates in code 
generation. Its performance is, therefore, critically 
important and it must analyze first order formulas 
coming directly from FLX programs.  

The problem of determining the satisfiability of first 
order predicate formulas is in general undecidable [9]. 
Most first order SAT solvers, including ours, therefore 
work on a decidable subset of first order formulas. The 
main difficulty for first order SAT solver is due to the 
fact that the values of the variables in a first order 
formula have large ranges and may even be unbounded. 
Recent results on first order SAT solver take two basic 
approaches: instance method or predicate abstraction.  

The basic ideas for instance methods is to first 
assign  some values to the variables of a first order 
formula transforming it to a propositional formula, and 
then use a Boolean SAT algorithm to determine 
whether the now instantiated formula is satisfiable. 
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This is basically a trials and errors procedure to search 
for a satisfying assignment. Although many trials can 
be conducted in parallel and the searching is systematic, 
the search space (a Cartesian product of the values of 
the variables) is huge for nontrivial formulas. To reduce 
the search space, the search algorithms of partial 
instantiation methods may branch on partially 
instantiated formulas (e.g. [3]). Plaisted and his 
colleagues devised a number of methods that allow the 
user to provide guidance on the instantiation of the 
variables (e.g. [22]). 

There are four general steps in the predicate 
abstraction method. The first step is to transform the 
first order formula α to its conjunctive normal form 
(CNF). In step two, syntactically identical predicates in 
α are replaced by a Boolean variable, obtaining a 
propositional formula B(α). Step three uses a Boolean 
SAT solver to determine whether B(α) is satisfiable. If 
it is not, α is not satisfiable. If it is, the satisfiable 
condition γ obtained from the Boolean SAT solver is 
used to test whether α is satisfiable. If it is, α is 
satisfiable. If not, then we go to stepwise refinement of 
setting B(α) = B(α) Λ¬γ and return to step three. 
SLAM uses this method to obtain a Boolean abstraction 
of the program under analysis before model checking. 

Both partial instantiation and predicate abstraction 
methods require iterations of solving NP complete 
problems. In the worst cases, the number of iterations 
can be exponential to the number of literals1 in the first 
order formula being analyzed. 

FLX provides language constructs and rules for the 
programmer to provide semantic guidance to its first 
order SAT solver. The semantic guidance is a decision 
procedure (instead of variable instantiation as proposed 
in [22]). While the complexity of the FLX first order 
SAT solver is still NP complete, it does not require 
iterations of trials and errors. The basic algorithm of the 
FLX SAT solver is described in section 4. 

 
3. The Foundation Constructs of FLX 
 

A FLX program unit consists of a condition part and 
a program body part. The program body gets executed 
when its corresponding condition part becomes true. 
FLX is event driven: the evaluation of program unit 
condition parts is triggered by events, as the primary 
input of many embedded system applications are 
random and short-lived events such as in 
telecommunication systems, sensor networks and in the 
kernel of operating systems. 

                                                             
1 A literal is either an atom or its negation in a logical formula. 
In a first order formula, an atom is either a Boolean variable 
or a predicate. 

A FLX feature contains a set of program units that 
perform the functionality of a feature. A feature is 
developed according to a model, which defines the 
condition space and the basic functionality of the 
application. The condition space is specified in a 
domain statement. The basic functionality is specified 
in a feature called an anchor feature. Features designed 
according to an anchor feature can be considered as an 
extension or enhancement of the anchor feature. 

Features are integrated in a feature package without 
requiring modification. The programmer may package 
different combinations of features in a feature package, 
or he may change the way the integration works in 
different feature packages to meet different user needs. 
For example, he may choose to use different Retry 
features on platforms equipped with different 
redundancy. 

We will use programs from a telephony system 
implemented using FLX to illustrate the usage of the 
basic FLX constructs. 

Each phone object in the telephony system is 
associated with two feature packages: one for digit 
collection and analysis (allowing for features like speed 
calling), and the other for call processing (allowing for 
features like call forwarding). Different phone objects 
can have different sets of features in their feature 
packages. 

The domain statement of the call processing feature 
package declares the domain variable state and a set of 
events that will be used in the condition part of a 
program unit. A domain variable is of a domain data 
type which must contain public predicate methods 
and/or Boolean members. It is extended from a Java 
class with the addition of a combination function, 
needed to support the first order SAT solver of FLX. 
The domain variable state is declared to be of the 
domain data type Denum which is extended from the 
Java enum class. It has values like IDLE, RINGING, 
TALKING and so on. In the digit analysis feature 
packages, we use condition variables with data type 
extended from Java Integer which is unbounded. FLX 
is not limited to defining finite state machines. The 
domain statement for the call processing features is 
shown in Figure 1. 

The domain statement in Figure 1 also declares a set 
of resources that the features using this domain 
statement will operate on. When a feature package that 
uses the domain statement is instantiated, the references 
to the resources, in this case the phone fone and router 
rt, are passed to the feature package. The domain 
variable state is initialized in the domain statement. 
Space is allocated to it when the feature package is 
instantiated. Events are instantiated in feature programs 
when they are needed.  
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The anchor feature POTS is given in Figure 2 

showing only two of its program units: MakeCall 
applies dial tone when the user picks up the phone; 
ReceiveCall responds to a TerminationRequest event 
by updating the state of the call to RINGING and 
telling the calling party of that fact.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The condition part of a program unit is composed of 

a condition statement and an event statement. The 
condition statement is a first order formula composed of 
public Boolean members and predicates of domain 
variables. We do not support the existential and 
universal quantifiers explicitly. When the programmer 
has the need to say something like “there exists some 
elements”, we ask him to write a predicate method non-
empty( ) instead. The event statement specifies a list of 
events. Each event may be attached with a qualification 
which is a first order formula on data carried in the 
event. We further require that a domain variable is not a 
function of other domain variables. The FLX compiler 

checks that the condition statement of at least one 
program unit in the anchor feature is true given the 
initial value of the domain variables. 

A compiled anchor feature or feature package is 
executable. It is instantiated similar to an object but its 
program units are usually not called like the methods of 
an object. We call an instantiated anchor feature or 
feature package a feature object. The FLX compiler 
generates a number of standard methods for each 
feature object. One of them is the method 
SendEvent(e). The method is called by other programs 
(it is also possible for itself) to send the event e to the 
feature object. 

The feature DoNotDisturb is shown in Figure 3. Its 
program unit SayBusy returns a busy event whenever 
the phone receives a TerminationRequest event. A 
feature by itself is not executable. It needs to be 
integrated with its anchor feature in a feature package. 

It can be shown that if the conjunction of the 
condition parts of two program units is satisfiable, the 
two program units interact. When the satisfiable 
condition, which is the interaction condition, becomes 
true, either program units may get executed. The 
programmer is required to remove, or resolve, the 
ambiguity. Two features interact if some of their 
program units interact. The first order SAT solver of 
FLX detects interaction conditions. 

 
 
 
 
 
 
 
 
 
 

 
Figure 4 shows the code of the feature package 

QuietPhone integrating the features POTS and 
DoNotDisturb. The two features interact in all their 
program units triggered by the TerminationRequest 
message. The interaction is resolved by the 
priorityPrecedence statement with the following 
semantics: when an interaction condition becomes true, 
the program unit belonging to the feature with the 
highest precedence in the list will get executed. A more 
in depth discussion of using precedence lists to resolve 
interaction is given in [7]. 

When the phone that uses QuietPhone receives the 
TerminationRequest message, only the program unit 
SayBusy of DoNotDisturb will be executed. But when 
the phone receives an OffHook event and the phone is 

 anchor feature Pots { 
     domain BasicTelephony; 
      
MakeCall { 

condition: state.equals(State.IDLE); 
event: Offhook; { 

fone.applyDialTone(); 
state = State.DIALING; 

  } 
} 

ReceiveCall { 
condition: state.equals (State.IDLE); 
event: TerminationRequest e; { 

 Ringing r = new Ringing (e.FromPID); 
 rt.sendEvent (r); 

state = State.RINGING; 
  } 

} 
} 
} 

Figure 2. A Portion of the FLX POTS code 

feature DoNotDisturb { 
domain BasicTelephony; 
anchor POTS; 
 
SayBusy { 
condition: all; 
event: TerminationRequest e; { 

Busy b = new Busy(e.FromPID); 
rt.sendEvent (b); 

     } 
 } 
} 

Figure 3. The feature DoNotDisturb 

domain BasicTelephony {  
   variables: 

DTenum State {DIALING, OUTPULSING, 
   BUSY, AUDIBLE,TALKING, 

                  RINGING, DISCONNECT,IDLE};  
 State state= State.IDLE; //initial value  

events: 
TerminationRequest; 

  Busy; 
  Ringing; 
  Answer; 
  Disconnect; 
  Onhook; 
  Offhook; 
  Digits; 
  TimeOut; 

resources: 
  Phone fone; 
  Router rt; 
} 

Figure 1 The Domain Statement for Call Processing 
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idle, then the MakeCall program unit of POTS gets 
invoked and the user can make phone calls. 

 
 
 
 
 

 
 

This simple example shows that the two interacting 
features can be integrated together without changing 
each other’s code. The feature resolution facilities 
provided by FLX are general. Besides using precedence 
lists, the programmer can use program units to resolve 
interaction for any specific condition. More complex 
examples of using FLX are given in [17], including 
those that uses the exception handling and inheritance 
constructs of FLX. 

 
4. FLX Support for direct verification 
 
4.1 FLX support for first order SAT solver 
 

Determining the satisfiability of a first order formula 
in general is not decidable [9]. First order formulas 
from the condition parts of FLX program units are 
quantifier free and do not contain functional symbols. 
Determining the satisfiability of first order formulas 
with these properties is decidable [4] and similarly 
assumed by many other algorithms. Importantly, the 
variables of first order formulas from FLX programs 
are defined by abstract data types and the 
interpretations of their predicates are well understood 
by the programmer of the abstract data type. 

Existing first order SAT solver methods use a trials 
and errors approach to search for a satisfying 
assignment. We avoid that by taking advantage of the 
knowledge of the programmer. We ask the programmer 
to associate a combination function class for each 
domain data type. The combination function takes a list 
of literals of the domain data type as argument, and 
returns whether the conjunction of the literals is 
satisfiable. The decision procedure for the combination 
function is typically well understood. For example, for 
the data type integer, the conjunction of a set of its 
predicates (greater than, equal to etc.) should establish a 
partial ordering of the variables. If not (e.g. if we have a 
> b AND b > a), the conjunction of the set of predicates 
is not satisfiable. We have not come across a Java class 
that we cannot readily come up with a decision 
procedure for its combination function. 

Figure 5 shows the declaration of the combination 
function class for strict partial order predicates [24]. 
The combination function class is given a name 

(StrictPartialOrder). The list of predicates, namely 
largerThan and lessThan, that the combination 
function can handle, are given after the keyword 
combines. The combination function class contains 
exactly one method and the list of literals is passed to it 
as a set of strings.  

 
 
 
 
 
 
 
A combination function can be associated with 

different domain data types. For example, the 
combination function for strict partial order predicates 
can be associated with a domain data type that defines a 
node in a PERT chart used in a project management 
application, or with one that defines a node in the 
syntax tree of a compiler. Figure 6 shows the 
declaration of a domain data type (a node in a PERT 
chart). It is simply a Java class with an addition 
declaration of its association to a combination function. 
The association is indicated with the keyword uses. 

 
 
 
 
 
 

 
We are now in position to describe the basic 

algorithm of the FLX first order SAT solver. Given a 
first order formula from the condition part of a program 
unit, we first derive its disjunctive normal form (DNF). 
Each clause of the DNF is a conjunction of literals 
whose variables belong to different domain data types. 
Taking advantage of the associative property of the 
conjunction operator, we partition each clause into 
subgroups. Each subgroup contains only literals whose 
variables belong to the same domain data type. We then 
use the combination function of the domain data type to 
determine whether the subgroup is satisfiable. The 
clause is satisfiable if each subgroup is satisfiable. The 
formula is satisfiable if any clause of the DNF is 
satisfiable. When this algorithm is used to identify 
interaction conditions, the algorithm goes through all 
the clauses in the DNF to see whether they are 
satisfiable. 

The above procedure is NP-Complete because 
deriving the DNF is NP-Complete. But once the DNF is 
derived, the algorithm requires no iterations of trials 
and errors. The algorithm was first described in [16], 
but this is the first time that it is reported. The 

feature package QuietPhone { 
domain: BasicTelephony; 
features: DoNotDisturb, POTS; 
 

priorityPrecedence (DoNotDisturb, POTS); 
} 

Figure 4. The QuietPhone feature package 
Public combinationFunction StrictPartialOrder  

combines {largerThan, lessThan} { 
   Public static Boolean combinationFunc 
 (HashSet <string> group) { 
 .......  //code 
   } 
} 

Figure 5. The declaration of a combination function 

Public class PERTNode uses StrictPartialOrder 
{ 

.... // Data structure here 
public boolean largerThan (NodeInPERT v){ } 
public Boolean lessThan (NodeInPERT v) { } 
....   // Other methods 

} 

Figure 6 The declaration of a domain data type 
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implementation is described in [25] together with 
several extensions including a modified algorithm to 
treat predicates that may contain variables of different 
types. There is also a more extensive discussion on 
related work. 

 
4.2 An executable FLX program is a finite state 
machine 
 

The domain variables and events declared in the 
domain statement define the state space of the 
application which can be unbounded as we allow the 
programmer to use unbounded domain data types, such 
as integers. But one can always discern a finite state 
machine from an executable FLX program.  

The initial state is given by the initial values of the 
domain variables in the domain statement. An 
executable anchor feature or feature package contains 
finite number of program units. The condition part of 
each program unit defines a state space which is a 
subset of the state space defined in the domain 
statement. The state space of a program unit may have 
nonempty intersection with the state space of other 
program units if they interact. The first order SAT 
solver identifies these intersections. For the purpose of 
analyzing the executable FLX programs, we can count 
each of the nonempty intersections and their 
complements as distinct states. Hence, we have a finite 
number of states. State transition of the finite state 
machine is triggered by events. A program unit may 
update the value of some domain variables. If that 
happens, the next state is defined by change in values of 
the domain variables. 

The nonempty intersections are the interaction 
conditions among program units and they are resolved 
either by another program unit or by a precedence list in 
the feature package. If we lump all intersections 
covered by a precedence list as one state, the number of 
states of the finite state machine is roughly equal to the 
number of program units in the feature package and its 
features plus the number of precedence lists in the 
feature package.  

 
5. Conclusions 
 

FLX has two design objectives: (1) to enable the 
development of interacting features as separate and 
reusable program modules, and (2) to facilitate 
assertion based verification of programs written in FLX. 
FLX meets the requirements for objective (1). For 
objective (2), we have developed a first order SAT 
solver and the FLX compiler generates a finite state 
machine from an executable FLX program.  

About forty different features and feature packages 
were written in FLX for the telephony system described 
earlier. These features and feature packages were 
mainly developed as test cases for the compiler. A 
feature is typically developed and integrated with other 
features in a few days to a couple of weeks, a 
significant improvement compared to the author’s 
experience from the industry.  

We attribute the observed improvement to the fact 
that using FLX, one is able to focus on one feature at a 
time. While writing the programs for, say, call waiting, 
the programmer does not need to be concerned with 
designing hooks for three way calling and other features. 
Integration of features does not require going through 
and changing code. Interaction conditions are 
automatically detected and most are resolved by 
precedence lists. Interaction resolution is done in a 
single program module (a feature package) instead of 
scattering into many program modules.  

The generated code of a FLX program looks a lot 
like how one may write the program in Java. We 
therefore suggest that the performance of FLX 
programs will be comparable to those written in Java. 
The FLX code written for the prototype is several times 
less than its generated code. This is partly due to the 
nonprocedural nature of the language and partly due to 
short hands, such as the keywords all, supported by the 
language. Consider the DoNotDisturb feature given in 
Figure 3. Its code will have to be duplicated many times 
if the feature is written in a procedural language. 

We started to use FLX to produce useful code. 
Recently, we used it to develop the essential features of 
a call center built on top of the voice over IP platform, 
Skype. We are in the process of using FLX to rewrite 
the scheduler of the Linux kernel, and have started the 
development of an assertion based verifier for programs 
written in FLX. 

A research version of the FLX compiler, example 
code, FAQ and other documents are available for 
download at http://www.openflx.org. 
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