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Abstract

Labeling nodes in a network is an important problem
that has seen a growing interest. A number of methods
that exploit both local and relational information have
been developed for this task. Acquiring the labels for a
few nodes at inference time can greatly improve the ac-
curacy, however the question of figuring out which node
labels to acquire is challenging. Previous approaches
have been based on simple structural properties. Here,
we present a novel technique, which we refer to as re-
flect and correct, that can learn and predict when the un-
derlying classification system is likely to make mistakes
and it suggests acquisitions to correct those mistakes.

Introduction
Information diffusion, viral marketing, graph-based semi-
supervised learning, and collective classification all attempt
to exploit relationships in a network to reason and make in-
ferences about the labels of the nodes in the network. The
common intuition is that knowing (or inferring) something
about the label of a particular node can tell us something use-
ful about the other nodes’ labels in the network. The labels
of the linked nodes often tend to be correlated (not necessar-
ily a positive correlation) for many domains; hence, finding
the correct label of a node is useful for not only that partic-
ular node, but the inferred label also has an impact on the
predictions that are made about the nodes in the rest of the
network. For example, friends in a social network tend to
have similar interests, scientific papers that cite one another
tend to have similar topics, and interacting proteins tend to
have complementary functions.

It has been shown that methods such as collective clas-
sification, i.e., classifying the nodes of a network simul-
taneously, can significantly outperform content-only clas-
sification methods, which make use of only the attributes
of nodes and ignore the relationships between them (see
(Sen et al. 2008) for an overview). However, sometimes,
the advantage of exploiting the relationships can become
a disadvantage. In addition to the typical errors made by
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content-only classification models (errors due to model lim-
itations, noise in the data, etc.), collective classification
models can also make mistakes by propagating misclassi-
fications in the network. This can sometimes even have a
domino effect leading to misclassification of most of the
nodes in the network. This misclassification of the whole
network (or part of it) can occur for both simple mod-
els such as iterative classification (Lu and Getoor 2003;
Neville and Jensen 2000) and for more complex models that
define a global objective function to be optimized, such as
pairwise Markov random field models (Taskar, Abbeel, and
Koller 2002).

When a prediction system is deployed in a real-life set-
ting, it often has some sort of interaction with its end-users.
These end-users can often provide feedback to the system
and the system can use this feedback to improve on its pre-
dictions. For example, users can rate items for a recom-
mender system, the users interact with the image segmenta-
tion feature of the photo editing softwares, speech recogni-
tion and spam detection systems can be provided examples,
and targeted laboratory experiments can be performed to de-
termine protein functions. However, obtaining feedback is
often costly. The users are willing to provide only very little
feedback before they can see any value in the system and
laboratory experiments can be expensive. Thus, it is imper-
ative to collect feedback for the right entities in the domain.

In our previous work (Bilgic and Getoor 2008)1 and (Bil-
gic and Getoor 2009), we developed novel label acquisi-
tion strategies for collective classification. In this paper, we
summarize two of the approaches. The first and most di-
rect approach is based on approximating the objective func-
tion (which we define formally later) and acquiring the la-
bel that provides the greatest improvement in the objective
value. The second approach, which we refer to as reflect
and correct, is a simple yet effective acquisition method that
learns the cases when a given collective classification model
makes mistakes, finds islands of nodes that the collective
model is likely to misclassify, and suggests acquisitions to
correct these potential mistakes. We compare the acquisi-
tion strategies on the synthetic datasets under varying set-
tings and on real-world datasets, and we empirically show
that the reflect and correct method we propose significantly

1Winner of the ACM SIGKDD’08 Best Student Paper Award.



outperforms other methods.
The label acquisition problem has received ample atten-

tion within the context of active learning (Cohn, Ghahra-
mani, and Jordan 1996). The biggest difference here is that
we assume that we have available an already trained classi-
fication model, and thus the learning has been done offline,
but we have the option to acquire labels to seed the classi-
fication during inference (i.e. the users are interacting with
the model). This is the setting (Rattigan, Maier, and Jensen
2007) introduced and referred to as “active inference.”

Active Inference in the Broader Context of AI
There are a growing number of intelligent applications
which require making classifications for nodes in a net-
work. Examples include product recommendation systems,
credit scoring and fraud detection in financial transaction
networks, spam detection in email and on the web, topic
prediction in hypertext, and influence and community iden-
tification in social networks. When these intelligent systems
are deployed for real-world use, they often have access to
user and expert feedback, albeit it is very limited. Users are
willing to rate few movies to access to good recommenda-
tions, laboratory experiments can be performed to determine
protein functions, user interaction can be utilized to segment
an image in an photo editing software, etc. It is essential to
gather the user and expert feedback for the right decisions
and not waste their effort. A system that requires a tremen-
dous amount of user input and labeled data, is impracticable,
while a system that provides an unacceptable rate of incor-
rect predictions is useless if not harmful. Additionally, for
some domains such as bioinformatics, obtaining expert in-
formation can require costly laboratory experiments. It is
imperative to develop systems that can provide correct pre-
dictions with the least amount of feedback possible. Active
inference looks at the problem of minimizing user interac-
tion cost while maximizing the benefit and performance of
the system.

Problem Formulation
In this problem, we assume that our data is represented as a
graph with nodes and edges, G = (V, E). Each node Vi ∈ V
is described by an attribute vector ~Xi and a class label Yi

pair, Vi = 〈 ~Xi, Yi〉. Each edge Eij ∈ E describes some sort
of relationship between its endpoints,Eij = 〈Vi, Vj〉 andNi

denotes the neighbors of Yi as defined by the edge set E of
the graph.

In collective classification, the label Yi does not depend
on only its attributes ~Xi; rather, it in principle can depend
and influence other labels Yj in the graph and their attributes
~Xj . A typical assumption is the first order Markovian as-
sumption where the label Yi depends only on its own at-
tributes and the labels of its immediate neighbors Ni. How-
ever, this assumption is not necessary, and various structure
learning techniques can be used to learn arbitrary dependen-
cies in the graph.

In the active inference problem, we assume that the under-
lying collective model has already been learned on a training

graph Gtr, and we want to maximize the classification per-
formance on a given test graph G. We assume we are given
a cost for misclassifying a node; when we classify a node as
yk whereas the correct assignment is yl, we incur a cost of
ckl. The expected misclassification cost (EMC) for a node
is then given by:

EMC(Yi|X = x) = min
yk

∑
yl 6=yk

P (Yi = yl|X = x)× ckl

Formally, the objective is, given a budget B, to find the
optimal set A of labels to acquire such that the total cost of
acquisition, C(A), and the expected misclassification cost
EMC over the labels Y given the feature values X is mini-
mized:

L(A) , C(A)+
∑

Yi∈Y\A

∑
a
P (A = a)EMC(Yi|X = x,A = a)

However, determining the optimal set of labels to acquire
is intractable under relatively general assumptions. Krause
and Guestrin (Krause and Guestrin 2005) show that finding
the optimal set is NPPP-hard for discrete polytrees. Given
that we are considering arbitrary networks, such as citation,
friendship, and protein networks, finding the optimal solu-
tion is at least as hard as, if not harder than, considering
discrete polytrees. Therefore, we are forced to resort to ap-
proximate and heuristic techniques to get practical solutions.

Active Inference
We first introduce the most obvious approach which is based
on approximating the value of the objective function and
greedily acquiring the label for the node that provides the
highest expected improvement. Then, we introduce our ap-
proach, which is based on learning and predicting the mis-
classifications of a collective classifier. Both techniques as-
sociate a utility value with each label (or sets of labels) and
makes acquisition decisions based on the utility values.

Approximate Inference and Greedy Acquisition
Finding the optimal set A∗ requires us to consider all possi-
ble subsetsA ⊆ Y , and we need to compute the value of the
objective function L(A) for each candidate set A, which re-
quires us to compute exact probability distributions over Y .
To deal with these inherent obstacles, we first introduce the
most obvious approach: approximate inference and greedy
acquisition (AIGA). In AIGA, instead of considering all can-
didate sets, we consider acquiring one label at a time. That
is, we define the utility of a label to be the amount of im-
provement it provides in the current objective value and we
greedily acquire the label that has the highest utility:

utility(Yi) , L(A ∪ {Yi})− L(A)
In essence, the utility function is computing the expected
value of information for each label (Howard 1966). To ad-
dress the intractability of the exact probability computations,
we resort to approximate inference techniques. With these
two approximations, AIGA iteratively finds the label that has



the highest utility, adds it to the acquisition set, and re-
peats this step until the budget is exhausted. Note that, even
though we make the problem tractable through approximate
inference and greedy selection, we still need to run approxi-
mate inference for each iteration, for each node, and for each
possible value of the label of the node under consideration.
This requirement makes this approach still quite expensive,
especially if the number of nodes is relatively high and the
underlying approximate inference technique is slow. Addi-
tionally, the accuracy of this method depends heavily on the
precision of the estimated probability values. If the probabil-
ity estimates are not well-calibrated, then the expected mis-
classification costs will be incorrect (Zadrozny and Elkan
2001), making the utility values inaccurate.

Reflect and Correct
The method we propose is based on a simple intuition: the
sets of nodes that the collective classification model mis-
classifies tend to be clustered together because misclassify-
ing one node makes it very likely that its neighbors will be
misclassified as well (propagation of incorrect information).
Thus, there are islands (or peninsulas) of misclassification
in the graph – sets of connected nodes that are misclassified.
We call such nodes the flooded nodes. If we can find these
islands of misclassification, then we can potentially trigger
correct classification of those islands by acquiring labels for
a few of the nodes in the islands. The question is then how
to find the islands of misclassification.

We first focus on finding out when a prediction for a par-
ticular node is incorrect. Typically, this is done by analyzing
the probability estimates of the underlying collective model.
However, obtaining reliable probability estimates from a
collective model is known to be an NP-hard problem in gen-
eral. Instead, we propose the problem of finding out whether
a node is misclassified itself as a classification problem. We
associate a random variable Ti with each Yi ∈ Y where Ti

denotes whether the prediction for Yi was indeed incorrect.
We then construct features ~Fi that are possible indicators
of whether a node is misclassified and learn a classifier to
capture the dependence of Ti on ~Fi. The acquisition prob-
lem can then be solved by running the collective inference
on the graph G, predicting which nodes are misclassified,
acquiring a label for a central node among the potentially
flooded ones, and repeating the process until the budget is
exhausted. This process is illustrated in Figure 1. Because
we reflect back on our inference results on the test graph and
try to correct the mistakes by acquiring a label, we call this
method reflect and correct (RAC).

Many different kinds of features can be constructed and
included in ~Fi to be used for predicting whether a node is
misclassified. Some example features we used in our exper-
iments are: i) whether the collective model and a content-
only model disagrees on the label Yi, ii) how likely that the
neighbors of Yi are also misclassified, and iii) the difference
in class distributions in the training set and in the prediction
set. However, our approach is general and different kinds of
features can be constructed and included as well, especially
if there are known domain specific ones. Having constructed

Figure 1: Active inference using the RAC method. We it-
eratively label the nodes using the collective model, pre-
dict which nodes are misclassified, acquire the central node
among the misclassified ones, and repeat the process until
the budget is exhausted. To predict which nodes are mis-
classified, we use a classifier whose input consists of a set
features that are constructed using the content information
of the nodes, information from the neighbors, and global
statistics.

these three features, we learn a classifier for estimating the
distribution P (Ti | ~Fi). To learn this classifier, we need
training data, which requires two pieces of information per
node: the feature vector ~Fi, and the value of Ti. To obtain
this information, we use our collective model and the train-
ing graph Gtr. As a first step, we run collective inference
on Gtr assuming the labels are unknown, to obtain a new
graph where the node labels are now the predicted ones. Let
this new graph be called the prediction graphGpr. Then, we
obtain the values of ~Fi and Ti by comparing the information
in Gtr with the information in Gpr. Having constructed the
training data, we can use any probabilistic classifier to learn
the distribution P (Ti | ~Fi).

The question that remains to be answered is how to define
the utility of label Yi given P (Ti | ~Fi). The most obvi-
ous way is to have utility(Yi) , P (Ti | ~Fi). However,
given that we have a limited budget, we want each of the ac-
quisitions to correct as many misclassifications as possible.
The node that has the highest probability of misclassifica-
tion P (Ti | ~Fi) can be an isolated node in the network; then
acquiring the label for that node might not have a big im-
pact on the predictions for the labels of the rest of the nodes.
Based on these intuitions, we want the utility of a label to
be a function of whether the corresponding node is misclas-
sified, and how many misclassified neighbors it has. More
formally:

utility(Yi) , δ(P (Ti | ~Fi) > σ)×(1+
∑

Yj∈Ni

δ(P (Tj | ~Fj) > σ))

where δ(predicate) = 1 if the predicate is true, 0 oth-
erwise, and σ is the threshold used to decide if a node is
misclassified.



Experiments
We compared the performance of RAC, AIGA, and several
other methods on both synthetic and real-world datasets us-
ing pair-wise Markov Random Fields (MRF) as the under-
lying collective model. The other acquisition methods that
we compared against include an analogy we drew between
active inference and viral marketing (VIR), a competitive
method based on K-Mediods clustering of the graph (KM)
introduced by (Rattigan, Maier, and Jensen 2007), degree
centrality (DEG), and random acquisition (RND). The de-
tails on these methods, the synthetic data generation process,
and more experiments including iterative classification (Lu
and Getoor 2003; Neville and Jensen 2000) as the collective
model can be found in (Bilgic and Getoor 2009). Because
AIGA is a very expensive method to test, we present results
for it only on a small synthetic graph with 200 nodes.

Figure 2(a) shows that AIGA indeed performs worse than
random. This result is surprising at first, as one would ex-
pect AIGA to perform the best, because it is directly based
on approximating the objective function. We think this sur-
prising result is due to at least two factors. The first factor
is that AIGA needs well-calibrated probability estimates and
obtaining them for a collective model is hard. The second
factor could be that it is a greedy approach. RAC on the
other hand significantly outperforms other methods on both
small and large graphs as shown in Figures 2(a) and 2(b).

(a) (b)

Figure 2: (a) Experiments comparing AIGA with other
methods on small size graphs (200 nodes). (b) Experiments
with the rest of the methods on bigger graphs (2000 nodes).

The real-world experiments are based on two publication
datasets, Cora and CiteSeer, where the task is to categorize a
paper into its topic (Sen et al. 2008). Again, the RACmethod
significantly outperforms other methods on both Cora (Fig-
ure 3(a)) and CiteSeer (Figure 3(b)).

Conclusions
In many real-world applications, a collective inference
framework is required to make predictions. These models
are often used to guide a human expert that makes the fi-
nal decisions. Our work on active label acquisition helps
to focus the efforts of the expert on feedback that will have
the highest impact. It also highlights the complex processes
involved in collective classification, and hopefully raises
awareness about the sensitivity of these models to errors, and

(a) (b)

Figure 3: Experiments on the real-world datasets. (a) The
Cora dataset, (b) the CiteSeer dataset.

provides some insight in how one might detect these types
of errors.
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