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Abstract

To date, many active learning techniques have been de-
veloped for acquiring labels when training data is lim-
ited. However, an important aspect of the problem has
often been neglected or just mentioned in passing: the
curse of dimensionality. Yet, the curse of dimensionality
poses even greater challenges in the case of limited data,
which is precisely the setup for active learning. Reduc-
ing the dimensions is not a trivial task, however, as the
correct number of dimensions depends on a number of
factors including the training data size, the number of
classes, the discriminative power of the features, and the
underlying classification model. Moreover, active learn-
ing is typically applied in an iterative manner where
the number of labels is smaller in the earlier iterations
compared to the later ones. We propose an adaptive
dimensionality reduction technique that determines the
appropriate number of dimensions for each active learn-
ing iteration, utilizing the labeled and unlabeled data
effectively to learn more accurate models. Extensive
experiments comparing various approaches and param-
eter settings show that the proposed method improves
performance drastically on three real-world text classi-
fication tasks.
Keywords: active learning; dimensionality reduction;
regularization; classification.

1 Introduction

In many domains of interest, we often have access to
ample amount of unlabeled data whereas the labeled
data is either limited or non-existent. Such domains
include text classification, speech recognition, person
identification in video, and image classification on the
web. We can ask domain experts to label some of
the instances to build better predictive models, but
annotating text, transcribing speech, and identifying
persons take time and effort.

Active learning carefully chooses which instances
to label in order to build powerful predictive models
with minimal supervision [19]. To date, many query
strategies (techniques that determine which instances’
labels should be acquired) have been proposed, such
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as uncertainty sampling [12], query-by-committee [20],
and empirical risk minimization [16]. These techniques
and many others are typically applied iteratively, where
a model is learned with the existing labels and new
instances are chosen to be labeled to refine and improve
that model.

An important aspect of the problem, however, has
often been largely ignored. The query strategies are of-
ten used with common classifiers such as Naive Bayes,
logistic regression, and SVM. These classifiers are not
specifically designed for active learning; they often re-
quire ample labeled data. When the number of features
is large and the training data is limited, it is difficult to
get reliable estimates on the model parameters, which
is referred as the curse of dimensionality [2]. This is
especially problematic for active learning where limited
supervision is not the exception but the norm. This
problem is exacerbated by the fact that new instances
are chosen to be labeled based on the current model
that was trained with limited supervision. When the
learned model is far from accurate (and it can poten-
tially be worse than random when the parameters are
estimated incorrectly), then the whole active learning
process can be adversely affected.

We can build more accurate, stable, and reliable
models at each iteration of the labeling process if
we can intelligently reduce the dimensions, i.e., pick
the correct features and the correct number of them.
However, this is not a trivial task, as the correct
number of features depends on a number of factors
including the discriminative power of the features, the
number of classes, the size of the training data, and
the underlying classification model. Additionally, the
number of dimensions has to be determined dynamically
as new labels arrive at each iteration of the active
learning process.

We propose a novel and dynamic dimensionality re-
duction (DDR) technique that determines which features
and how many of them to include at each iteration.
When applied, DDR improves the underlying model dras-
tically, as presented in Figure 1. Without changing the
querying strategy, which is random for this figure, the
application of DDR improves the AUC from 0.66 to 0.81;
an absolute increase of 0.15 (or a relative improvement
of 23%). Given that various active querying strategies



Figure 1: The effect of dynamic dimensionality reduc-
tion (DDR) on active learning. DDR improves performance
significantly.

can improve only a few AUC points, this improvement
obtained even without an active querying strategy is
quite significant.

The rest of the paper is organized as follows.
We provide background information on active learning
and regularization for feature selection in Section 2.
Section 3 introduces and provides details on DDR. We
discuss several baselines in Section 4 and evaluate
DDR and the baselines on three real-world datasets in
Section 5. We then discuss related work in Section 6
and conclude in Section 7.

2 Background

In this section, we first discuss active learning and then
discuss regularization as a means for feature selection.

2.1 Active Learning In many practical applica-
tions, it is easy to collect unlabeled data but labeling
them costs time and money. Examples include anno-
tating scientific papers with their topics, transcribing
recorded speech, and recognizing hand written text. Ac-
tive learning [19] carefully chooses which instances to
label to build powerful predictive models with minimal
supervision.

Active learning is typically performed iteratively
where a model is learned with the existing labeled
data and new instances are carefully chosen to refine

Algorithm 1: The generic active learning algo-
rithm.

Input:
B – Budget, U – Pool of unlabeled instances, n
– Batch size for labels, M – Base learner
Output:
L – Labeled examples

1 while |L| < B
2 S ← pickInstances(U ,L,M, n)
3 Label instances in S
4 U ← U \ S
5 L ← L ∪ S
6 Update model M by utilizing the new labels

and improve that model. The generic active learning
procedure is given in Algorithm 1. In the pool-based
setup [19], the active learner is given a “pool” of
unlabeled examples (U) and a budget (B) to spend on
labeling instances. The active learner iteratively picks
instances to label from the pool, an oracle provides the
labels for them, they are added to the labeled set (L),
and the underlying model (M) is updated with the new
information.

The heart of the algorithm lies in step 2 where the
choice of which instances to pick is made. Uncertainty
sampling [12] picks instances on which the model M
is most uncertain, where uncertainty can be measured
using the predicted probability distribution and how
close the instances are to the decision boundary. In
query-by-committee [20], the model M consists of a
committee of classifiers and the instances on which the
committee members disagree the most are chosen to
be labeled. In expected risk minimization [16], the
instances which, if labeled, would reduce the expected
empirical risk on a hold-out unlabeled set are chosen to
be labeled.

In this paper, we do not propose a new query strat-
egy; rather, we address the problem that the size of
the labeled set L is so small, especially in the early it-
erations, that learning an accurate model at step 6 is
rather challenging. The high dimensionality of the data
only exacerbates this problem. This problem has im-
portant consequences for at least two reasons. First,
in a real-world setting where the model is currently de-
ployed and used in practice while still being constantly
refined through active learning, the model correctness
matters. Second, most active learning strategies choose
their queries based on the current model; if the current
model is far from accurate, the initial steps of active
learning are used to make the model more reasonably
accurate. When the model is trained through a dynamic



dimensionality reduction, however, it is possible to train
reasonably accurate models with even severely limited
training data. We modify the main active learning al-
gorithm (Algorithm 1) so that the dimensionality of the
instances can be reduced dynamically in a way that the
model M can be learned more effectively at step 6. The
reason that the dimensionality reduction needs to be
dynamic is that the size of the labeled set L increases
at each iteration; thus, the number of dimensions also
needs to be adjusted accordingly.

2.2 Regularization for Feature Selection With
the increased number of dimensions and the limited
training data, the parameters for the underlying model
cannot be estimated reliably, a problem referred as the
curse of dimensionality [2]. In the active learning setup,
the scarcity of the labels is not an exception but the
norm, and thus the curse of dimensionality is a natural
problem. A closely related problem is overfitting, where,
instead of the general trends in the data and the true
probability distribution, the details and the noise are
captured by the model. Though high dimensionality is
not the only cause, it is a big contributor of overfitting.

There are numerous ways to deal with the curse of
dimensionality and overfitting. Feature selection tech-
niques aim directly at reducing the dimensions by choos-
ing a subset of the features. For example, filter based
methods employ a criteria such as information gain to
select the most informative features [5]. Wrapper meth-
ods search for the best subset of features for a given
classifier and dataset [10]. An important question that
needs to be answered in feature selection is how many
features and which ones to choose. The correct num-
ber of dimensions depends on many factors including
the discriminative powers of the features, the number
of classes, the size of the training data, and the under-
lying learning algorithm.

A promising approach to taking these factors jointly
into account is to use learners that directly incorporate
feature selection into their optimization criteria. These
learners balance how much the model fits the data (X )
and how complex the model is. Model complexity is
measured as the model size, which is closely related to
the number of features. Optimization for such models
is typically formulated as follows:

(2.1)
argmax

w
(modelF it(X ;w)− C ×modelComplexity(w))

where w is the parameter vector being optimized and C
is a parameter that balances the fit and the complexity.

An alternative but equivalent formulation is to
minimize the sum of the loss and model complexity:

(2.2)

argmin
w

(C × loss(X ;w) + modelComplexity(w))

where the loss can be the log-loss, 0/1 loss, etc.
Examples of such models include L2-regularization

where L2-norm, ‖w‖22, L1-regularization where L1-
norm, ‖w‖1, and decision trees where the size of the
tree is used as the measure of model complexity. L2-
regularized logistic regression with logistic loss, for ex-
ample, solves the following problem:

(2.3)

argmin
w

C ×
N∑
i=1

log(1 + e−y
(i)wT x(i)

) +

K∑
j=1

w2
j


where, x(i) is the ith instance and y(i) is its label,
N is the number of instances in the data, and K is
the number of features. L1-regularization is defined
similarly:

(2.4)

argmin
w

C ×
N∑
i=1

log(1 + e−y
(i)wT x(i)

) +

K∑
j=1

|wj |


Because L2 penalizes large weights more, whereas

L1 penalizes all weights equally, L1 tends to lead to
sparser solutions, where a number of the weights is zero,
essentially performing an implicit feature selection [21].
It has been shown that, in fact, L1-regularization is
more robust to irrelevant features than L2 is and thus it
is an effective feature selector [14]. This property makes
L1-regularization a promising candidate for dealing with
the curse of the dimensionality. More importantly, it
jointly optimizes feature selection and model learning,
and thus is able to take the discriminative power of the
features and the difficulty of the learning problem into
account and it selects features as long as they improve
the model fit without adding too much into the model
complexity.

However, there are a few problems with this ap-
proach. The biggest problem is that L1-regularization
essentially performs a supervised feature selection:
which features to include is decided based on the labeled
data. For example, L1-regularized logistic regression
chooses features that optimize Equation (2.4), which is
computed over the labeled instances. To achieve the
optimal solution, it suffices to find a handful of features
that can minimize the logistic loss. This would be OK
and in fact desirable only if we had enough labels, which
is precisely the problem for active learning.



The second problem, which is related to the first,
is that the total loss, a sum over individual loses over
the training instances, can be decreased only at the
expense of model complexity and when the size of the
training data is small, the model complexity can grow
only so much. This forces L1-regularization to choose
a handful of features. The curse of dimensionality can
play a detrimental role here: with a high number of
features and only limited number of labels, it is quite
possible for otherwise useless features to look useful just
by chance. When the L1-regularization chooses those
seemingly useful features, the learned model cannot be
expected to generalize well to unseen data.

Finally, and this is a problem for most methods,
is that the complexity parameter C needs to be tuned
to find the correct balance between the model fit and
complexity. This is typically done through a separate
validation data. However, because the labels are scarce
in active learning, having a separate validation data is
not very practical. Fortunately though, as we show later
in the experiments, the complexity parameter does not
play a huge role on the final results.

Next, we propose a technique that can utilize both
L2 and L1-regularization simultaneously, that can make
use of both labeled and unlabeled data, and that does
not need a separate validation data to determine the
appropriate number of features.

3 Dynamic Dimensionality Reduction (DDR)

We propose a dynamic dimensionality reduction tech-
nique that addresses these three issues and more.
In a nutshell, we first pre-process the data (both
labeled and unlabeled data together) using princi-
pal component analysis (PCA). Second, instead of us-
ing L1-regularization on all the features, we use L2-
regularization on only a carefully selected small sub-
set of the features. Finally, we determine the number
of dimensions by analyzing the objective value of L1-
regularization. We next explain these in detail.

In pool-based active learning, we have access to a
large set of unlabeled instances U in addition to the
limited training data L. If we perform dimensionality
reduction using only L, we are in essence ignoring the
feature distribution in the unlabeled instances. If we can
utilize the information from the unlabeled instances, we
can hope to eliminate some of the noisy features if they
are not well represented in the unlabeled data.

To this end, we first pre-process both the labeled
and unlabeled data together using PCA. Pre-processing
the data with PCA does not only help to deal with
noisy features, but it also creates “super” features that
are linear combinations of the original features. The
“super” features that correspond to large eigenvalues

are expected to be more informative than any of their
single constituents. With the rare features downgraded,
and the introduction of the super features, now L1

has a better chance on selecting the correct features
that will help generalize to unseen data. Moreover,
a handful of features now can be enough to learn the
correct model, because the super features can capture
a big portion of the variance in the data. As we
later show in the experiment section, L1-regularized
logistic regression on a dataset pre-processed through
PCA performs significantly better than using L1 on the
original representation of the data.

To address the second problem (i.e., that L1-
regularization is forced to choose a handful of features
and due to high dimensionality and limited labels, oth-
erwise useless features can seem useful just by chance),
we utilize the fact that the features with the largest
eigenvalues capture the most variance in the data that
has been preprocessed using PCA. Rather than leav-
ing feature selection to L1-regularization which has the
chance element in it due to limited number of labels,
we pick the features with the largest eigenvalues and
use L2-regularization on this subset. L2-regularization,
unlike L1-regularization, does not over-invest in any
feature; rather, it distributes the weights on all fea-
tures, where the (seemingly) useful features receive high
weight values but not extreme values, and (seemingly)
useless features receive low weight values but not zero.

Finally, to determine the correct number of dimen-
sions in the absence of validation data, we analyze the
objective values achieved using Equations 2.3 and 2.4.
We can potentially find the appropriate number of di-
mensions by starting with an empty set of features
and adding features as long as the benefit of adding
them (model fit) outweighs the cost (model complex-
ity). That is, we can select the number of features that
leads to the best objective value. However, adding more
features will never cause an inferior objective value for
a convex optimization problem that can be solved opti-
mally; with more features, the optimization procedure
has more freedom to achieve a better objective value.

To assess the benefit versus cost of adding a feature,
we take a similar but slightly different approach. We
start with an empty set of features and iteratively
add k features to our set and train an L2-regularized
model (Equation (2.3)). We stop adding features when
the increase in the model complexity measured using
L1-norm does not justify the decrease in the logistic
loss. Learning the weights using L2-regularization and
using L1-objective value to determine when to stop
adding new features has the benefit of determining when
L2-regularization starts achieving a better objective
value by simply distributing the weights across various



Figure 2: The L1-objective value (Equation (2.4)) and
AUC of an L2-regularized logistic regression correlate
highly.

features without improving the model fit as much.
To illustrate this phenomenon on a simple toy

example, consider the following example. We currently
have one single feature in our domain and its weight,
learned using L2-regularization, is w. Now, consider
adding an identical feature into the domain. Simply
setting the weights to w/2 for both features does not
change the model fit but the L2-norm is now w2/4 +
w2/4 = w2/2 compared to the initial value w2; L2-
regularization was able to improve the L2-norm simply
by distributing the weights equally, without improving
the model fit at all. The L1-norm, on the other hand,
does not change.

To illustrate this empirically, we show in Fig-
ure 2 how AUC and the L1-objective value of an L2-
regularized logistic regression (we call this the DDR cri-
teria) change as we add more features. As can be seen
from this figure, both the DDR criteria and AUC improve
first and then deteriorate again as we add more features.
More importantly, they start deteriorating at the same
number of features. As we show later in the experiment
section, training an L2-logistic regression but determin-
ing the appropriate number of features by inspecting the
L1-objective value provides drastic improvements over
several baselines.

The Dynamic Dimensionality Reduction (DDR) algo-
rithm works as follows. We first pre-process L∪U using

PCA before the step 1 of the Algorithm 1 and sort the
constructed features in decreasing order of how much
variance they capture. Then, we search for the best
number of dimensions using the DDR criteria (the L1 ob-
jective value computed using the weights learned by an
L2-regularized model). To make the search more prac-
tical, rather than starting with an empty set and adding
one feature at a time, we search in increments of k fea-
tures. Additionally, rather than starting with an empty
set of features at each iteration of active learning, we
start from where we left off in the previous iteration; this
works because the labeled set grows at each iteration
and more labels can benefit from more dimensions. The
querying strategy (step 2) and model updating (step 6)
are done using the reduced dimensions.

4 Baselines

The most obvious baselines are the L1-regularized and
the L2-regularized models on the original representation
of the data (ORI-L1, ORI-L2) and on the PCA represen-
tation of the data (PCA-L1, PCA-L2). These baselines
do not utilize any dimensionality reduction beyond what
PCA and regularization offer. In addition to these base-
lines, we define two more baselines that utilize PCA and
work on a subset of the features.

4.1 Expected Error Reduction (EE) This tech-
nique is inspired by the active learning method of Roy
and McCallum [16]. They proposed estimating the util-
ity of labeling another instance by estimating how much
it is expected to reduce the error on unseen data. Sim-
ilar to that method, we also define an expected error
reduction (EE) technique that calculates the utility of
adding a set of features as how much the added features
are expected to reduce the error on the unseen data.
First, we define the expected error:
(4.5)

EE(U ;M) =
1

|U|

|U|∑
i=1

(
1−max

yj

P (Y i = yj | xi;M)

)
Very much like DDR, EE also first pre-processes the data
using PCA and sorts the features in the decreasing order
of how much variance they capture. EE then searches
for the subset of features that leads to the minimum
expected error on the unlabeled data (Equation (4.5)).
Similar to DDR, it searches for the best subset in in-
crements of k and starts from where it left off in the
previous active learning iteration.

Even though this technique seems promising, be-
cause we are directly optimizing the expected error on
unseen data, it has a serious limitation for feature selec-
tion. The problem is that adding more features tends
to make the underlying model more and more confident



in its predictions (incorrectly so); thus, this technique
ends up adding most of the features. In the experiments
section, we present results on both how well EE does as
well as how many features it picks compared to the other
techniques.

The next dimensionality reduction technique is a
simple approach that will serve as a baseline as well as
a sanity check.

4.2 Incremental Method (INCR) In this technique,
we first pre-process the data using PCA and sort the
features in the decreasing order of how much variance
they capture. Then, starting with where it left off in the
previous active learning iteration (0 in the beginning
of the first iteration), it adds exactly and only k
features. That is, the number of features at the ith

iteration of active learning is i × k. We call this the
incremental method (INCR). The reason why this is a
reasonable method and a sanity check is that it adjusts
the dimensionality based on the training data size and
it adds the features in the order of their eigenvalues.

5 Experimental Evaluation

In this section, we first describe the datasets (the num-
ber of classes, features, etc.) we used in our experi-
mental evaluation. Then, we describe the methodol-
ogy we used to evaluate different techniques, followed
by i) an analysis of the effect of the complexity pa-
rameter C in Equation (2.4), ii) comparison of L1 and
L2-regularized logistic regressions on the original data
(ORI-L1, ORI-L2), iii) how PCA effects the results of L1

(PCA-L1) and L2 (PCA-L2), iv) how well DDR performs
compared to PCA-L1, EE and INCR, and finally v) how
the parameter k affects the results of DDR, EE, and INCR.

The dimensionality reduction techniques we dis-
cussed are largely orthogonal to the active learning tech-
niques; they can be combined with many. In this pa-
per, we present results on combining dimensionality re-
duction with two query strategies: random sampling,
a common baseline for active learning, and uncertainty
sampling [12], a simple yet popular query strategy that
selects which instances to query based on how much
the underlying model is uncertain on them. We next
describe the datasets.

5.1 Datasets We experimented with three datasets
that had relatively high dimensionality. The first
two datasets, CiteSeer and Cora, are available at
http://www.cs.umd.edu/projects/linqs/projects/lbc/.
The CiteSeer dataset consists of 3312 scientific pub-
lications classified into one of six classes. Each
publication in the dataset is described by a binary
valued feature vector indicating the absence/presence

of the corresponding word from the dictionary. The
dictionary consists of 3703 unique words. The Cora
dataset consists of 2708 scientific publications classified
into one of seven classes. Each publication in the
dataset is represented by 1433 unique words. The
third dataset is the Nova dataset that was used for
the active learning workshop and challenge co-located
with AISTATS 2010. The dataset, available at
http://www.causality.inf.ethz.ch/al data/NOVA.html.
It consists of 19,466 documents extracted from 20-
Newsgroup dataset. It is a binary classification problem
where each document is classified as politics and reli-
gion or other. The documents are again represented as
0/1-valued word vector indicating the absence/presence
of the corresponding word from the dictionary. The
dictionary consists of 16,969 unique words.

5.2 Methodology We present results on both ran-
dom sampling and uncertainty sampling. We labeled
10 instances at each iteration (i.e., n = 10 in Algo-
rithm 1) and searched for the best feature set in in-
crements of 10 (i.e., k = 10). We also experimented
with k = 10, 20, and 30, and we present those results as
well. We present the learning curves, where the x-axis
represents the number of labeled instances, and y-axis
represents the performance. We used Area Under the
ROC curve (AUC) as our performance measure.

We stopped labeling instances when one of the
methods reached within 2% of the maximum achievable
when trained using all the data. This criteria corre-
sponded to having a budget, B, of 200 for Nova and
CiteSeer, and 400 for the Cora dataset.

For determining which n instances to label in the
case of uncertainty sampling, we followed [17] and
used the uncertainty measures as weights and sampled
the instances probabilistically in proportion to their
weights.

We performed 10-fold cross validation, each time
nine folds were used as the pool, U , and the remaining
fold was used as the test set. For each fold, we repeated
the experiments 10 times. Thus, we report the averages
over 100 AUC scores for each point on the learning
curve. We used Weka’s [9] implementation of PCA for
our experiments. We performed PCA only on the pool,
not looking at the test data at all. This required running
PCA 10 times for each dataset. Because PCA was fairly
slow for the Nova dataset (it had 17K features), we
removed any words that appeared in fewer than 100
documents (i.e. 0.5% of all documents) before applying
PCA. For L1 and L2-regularized logistic regression, we
used the LibLinear package [7]. We used the default
parameter settings for LibLinear.



Figure 3: The effect of the complexity parameter
C on the performance of the L1-regularized logistic
regression. The default parameter in the LibLinear
package, C = 1, works fairly well.

Figure 4: Comparison of ORI-L1 and ORI-L2 on the
original representation of the data on the CiteSeer
dataset. ORI-L1 performs considerably worse than
ORI-L2.

Figure 5: The effect of pre-processing both the unla-
beled and labeled data through PCA. PCA-L1 performed
significantly better than other techniques. ORI-L2

and PCA-L2 has exactly the same performance as L2-
regularized logistic regression is rotation invariant.

5.3 Results We first present the effect of the com-
plexity parameter C on the performance of L1-
regularized logistic regression. The default parameter
in the LibLinear implementation is C = 1. We exper-
imented with various values and present the results in
Figure 3.1

As these results suggest and as expected, the com-
plexity parameter C affects the performance of L1-
regularized logistic regression. An obvious strategy is to
use a high C value in the earlier iterations and decrease
it as the number of labels increases. However, which
value to use in the first iteration and how much to de-
crease it at each iteration is not easy to answer and it
requires access to a separate validation data. Nonethe-
less, the default parameter C = 1 works fairly well. In
the remainder of the experiments, we use this value.

We next present how well L1-regularized logistic
regression performs compared to the L2 counterpart on
the original representation of the data; we denote these
as ORI-L1 and ORI-L2 respectively. The results for the
CiteSeer dataset are presented in Figure 4.

We see that, even though ORI-L1 performs feature
selection implicitly, it performs considerably worse than

1In this figure and the remaining figures, we focus on the region
of interest, by zooming in and scaling the axes accordingly.



(a) (b) (c)

Figure 6: Comparing various dimensionality reduction techniques combined with random sampling. DDR has the
best performance, followed by PCA-L1.

(a) (b) (c)

Figure 7: Comparing various dimensionality reduction techniques combined with uncertainty sampling. DDR has
the best performance, followed by PCA-L1.

ORI-L2. Possible reasons include that i) there are not
enough labels for L1 to determine the correct features
to choose, ii) L1 is forced to select only a handful
of features to optimize Equation (2.4), and iii) small
number of features (i.e., words) are not discriminative
enough to learn the correct model.

We next show how applying PCA affects the results
of L1 and L2-regularization. We apply PCA to the
data but do not perform any feature selection in this
case; that is, we include all the features that have been
created by PCA. We add two more learning curves to our
plot, corresponding to using L1 and L2 regularization
on the PCA transformed data (PCA-L1 and PCA-L2

respectively). Figure 5 shows the results.
We see that pre-processing both the labeled and

unlabeled data through PCA increased the performance
of L1-regularized logistic regression significantly. We
believe that the unlabeled data provided essential in-
formation to the learning process through PCA. First, it
reduced the possibility of choosing a noisy feature, as
rare features are downgraded by PCA. Second, PCA con-
structed “super” features that are linear combinations
of multiple features; such features are likely to be more
powerful than any of its constituents. The performance
of L2-regularized logistic regression did not change at
all because it is rotational invariant [14].

We finally discuss how DDR compares to the above
methods. The results for both CiteSeer and the other
two datasets, Cora and Nova, are shown in Figure 6. DDR
outperforms all other methods including PCA-L1. The



Table 1: Significance tests comparing DDR and PCA-L1.

Random Uncertainty
W T L W T L

Cora 40 0 0 37 3 0
CiteSeer 20 0 0 20 0 0
Nova 20 0 0 17 3 0

performance differences are especially pronounced in
the earlier iterations when the training data is severely
limited. This result shows the power and promise of
combining the benefits of L1 and L2-regularization.

In summary, pre-processing the data through PCA

boosted the performance of L1-regularized logistic re-
gression significantly. Applying DDR provided the best
results. With these improvements, random sampling
has become a much more competitive baseline for ac-
tive learning.

These dimensionality reduction and feature selec-
tion techniques are not limited to random sampling;
they are largely orthogonal to the specific active learn-
ing technique used. As a proof of concept, we show
the results of applying dynamic dimensionality reduc-
tion to uncertainty sampling in Figure 7. We observe
similar trends in Figure 7, where DDR performs the best,
and it is followed by PCA-L1.

We performed statistical significance tests using t-
test at each iteration of the learning, with a significance
threshold of 0.05. We summarize the results using Win,
Tie, Loss tables. If DDR is statistically significantly
better, then it is counted as a win, if it is statistically
significantly worse, it is counted as a loss, and otherwise,
it is counted as a tie. We present the results comparing
DDR and PCA-L1 in Table 1. DDR significantly wins an
overwhelming majority of the time and never loses to
PCA-L1.

Finally, perhaps less obvious but an important
observation is that the set of labeled instances at a
given iteration is same for all methods (ORI-L2, ORI-L1,
PCA-L2, PCA-L1, and DDR) in random sampling. Thus,
the AUC differences at any iteration are not due to
differences in the training data. Rather, the differences
occur based on how the same labeled instances are
utilized by different techniques. We cannot, however,
make the same claims for uncertainty sampling, where
the next batch of labels are dependent on the underlying
model.

5.4 Comparisons of DDR, EE, and INCR In this
section, we present how DDR performs compared to the
two alternative techniques we described earlier, EE and

Table 2: Significance tests comparing DDR and INCR.

Random Uncertainty
W T L W T L

Cora 39 1 0 39 1 0
CiteSeer 17 3 0 15 4 1
Nova 19 1 0 10 10 0

Table 3: Significance tests comparing DDR and EE.

Random Uncertainty
W T L W T L

Cora 40 0 0 35 5 0
CiteSeer 20 0 0 20 0 0
Nova 20 0 0 13 7 0

INCR. We present results for both random sampling
(Figure 8) and uncertainty sampling (Figure 9).

These figures show that DDR outperforms both EE

and INCR. The differences are statistically significant
for the most of the iterations as the significance tests
presented in Tables 2 and 3 show. For k = 10, the
simple INCR method outperforms the EE method for all
cases, with the exception of uncertainty sampling on the
Cora dataset.

5.4.1 Sensitivity to k Like DDR, the INCR and EE

methods also utilize the parameter k; INCR adds k
features at each iteration, whereas EE searches for
the best number of features in increments of k. We
experimented with three different values of k, k =
10, 20, and 30. We presented the results for k = 10
in the previous section and here we present the AUC
results for k = 30. The purpose of these experiments
is to shed some light on how many features DDR and EE

use as well as how robust DDR and EE are to the choice
of parameter k.

Figure 10 show that the gap between DDR and the
other two methods increased with a higher value of k. In
other words, comparing Figure 10 with Figure 8, we see
that DDR’s performance did not change much, whereas
the performance of EE and INCR dropped significantly.
Moreover, INCR’s performance dropped more than EE’s
performance; when k = 10, INCR was a better method
in general, and when k = 30, EE outperforms INCR on
both CiteSeer and Cora. We do not show the results for
uncertainty sampling due to space limitations but the
trends are very similar.

We finally investigate how many features each
method uses at each iteration. We do not show the



(a) (b) (c)

Figure 8: Comparing DDR, INCR, and EE on random sampling using k = 10.

(a) (b) (c)

Figure 9: Comparing DDR, INCR, and EE on uncertainty sampling using k = 10.

(a) (b) (c)

Figure 10: Comparing DDR, INCR, and EE on random sampling using k = 30.



(a) (b) (c)

Figure 11: The number of features selected by DDR vs. EE. EE tends to over select features, whereas DDR is largely
independent of k.

results for INCR to simplify the graphs and because it is
easy to calculate how many features INCR uses (it uses
i ∗ k features at the ith iteration.) As the results in Fig-
ure 11 show, EE tends to pick a lot more features than
DDR does. DDR on the other hand is largely independent
of k.

5.5 Summary of Results

• DDR is the best performing dimensionality reduction
technique compared to several baselines.

• EE is unreliable; it tends to over select features as
more features tend to make the underlying model
overly confident.

• PCA-L1 is a fairly reasonable and simple alternative
to DDR.

• L1-regularization should be avoided when the train-
ing data is severely limited.

6 Related Work

Lewis and Gale [12] mention the importance of feature
selection for robust probability estimation but they do
not discuss how to determine the right number of fea-
tures to use. Bilgic et al. [4] use PCA to reduce dimen-
sionality as a pre-processing step; however, they do not
optimize the number of features to use; rather, they use
a fixed number of features throughout all iterations. We
are not aware of any other work that discusses feature
selection in the context of active learning.

Ng [14] discusses using L1 and L2 regularizations
in the case of many irrelevant features and proves
that sample complexity of L1-regularized logistic regres-
sion grows only logarithmically in the number of irrel-
evant features whereas the sample complexity of L2-

regularized logistic regression grows linearly. L1 reg-
ularization has also been used increasingly in learning
the model structure for relational graphical models, for
e.g. [11, 18].

Most feature selection techniques such as filtering
based on information theoretic measures [5] or wrapper
methods [10] can potentially be used for dimensional-
ity reduction for active learning. However, these are
supervised techniques and often there is not enough
supervision in the active learning setup. Instead, we
use an unsupervised technique, Principal Component
Analysis, first to project the data into a new dimen-
sion and then select the top components as guided by
L1-regularization.

Active feature selection [3, 13, 22] is also a related
area, but there the focus is on determining which feature
values to acquire in cases where feature values are
missing and acquiring their values has an associated cost
(such as running costly laboratory experiments).

Finally, an alternative (and possibly complemen-
tary) approach to automated feature selection is to ask
the user for feedback on features [1, 6, 8, 15]. In this
line of work, users are asked about how discriminative
features are, or asked to provide, possibly imprecise,
constraints between the features and labels.

7 Conclusion

We presented an effective and dynamic dimensionality
reduction technique, DDR, that combined the benefits of
L1, and L2-regularization. The experimental validation
showed that application of dynamic dimensionality re-
duction drastically improved the performance of active
learning techniques. The techniques we described in this
paper are largely orthogonal to the underlying active
learning algorithms and can be combined with many.



Yet, they improved random sampling so much that it
is now a fairly competitive baseline for active learning.
We hope that our work raises awareness of the curse of
the dimensionality problem in active learning and sheds
some light on how to deal with it effectively.
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