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Relay Placement

Input: multiset S in a normed space (representing

already deployed sensors). 2D or 3D, can place

relay anywhere.

Output: minimum size multiset Q such that U(∪S)

two connected, where U(P ) is the unit-disk graph

induced by P . Q represents the relay nodes.

The unit-disk graph of a set of points has an edge

between two points if their distance is at most 1

(normalize to 1 the transmission range of sensors).
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First variant: two-edge-connectivity

x y

Required: have between any two nodes two

edge-disjoint paths (as in the figure, for x, y). Idea:

protection against edge failures.
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First variant: two-edge-connectivity

x y

U(S ∪Q) must allow between any two sensors two

edge-disjoint paths (in the figure, for x, y are the

sensors; empty circles are relays).



September 26, 2013 5

First variant: two-edge-connectivity

x y

Same problem (requires proof): U(S ∪Q) must

allow between any two nodes two edge-disjoint

paths (in the figure, for x, y are the sensors).
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Second variant: two-vertex-connectivity

x y

Requirement: have between any two nodes two

internally node disjoint paths (as in the figure, for

x, y). Idea: protection against node failures.
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Second variant: two-vertex-connectivity

x y

U(S ∪Q) must allow between any two sensors two

internally node disjoint paths (in the figure, for x, y

are the sensors; empty circles are relays).
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Second variant: two-vertex-connectivity

x y

Same problem (requires proof): U(S ∪Q) must

allow between any two nodes two internally vertex

disjoint paths (in the figure, for x, y are the sensors).
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LEFT: OPT for two-edge-connectivity. The nodes of

S are black disks, and the relay nodes are empty

circles. RIGHT: an optimum bead solution.

Two-vertex-connectivity (biconnectivity): opt = 2.
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Bead Solutions

Q bead-solution if U(Q ∪ S) contains a

two-edge-connected graph (or biconnected,

respectively) H where each node of Q has degree

exactly two.

To construct a bead solution: get a

two-edge-connected (or biconnected,

respectively) graph H on S; let

w(x, y) = max(0, ⌈||x, y||⌉ − 1), where ||u, v|| is the

distance from u to v. Place w(x, y) relay nodes to

connect x to y for every edge of H .
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Previous results

NP-Hard for simple connectivity. O(k4)

approximation for k-connectivity (polynomial-time

algorithm with output with the number of relays at

most 10k4 times the optimum).

(INFOCOM 2006): algorithm for two-edge

connectivity and algorithm for biconnectivity.

Approximation ratio of at most 2dMST , where dMST

is the maximum degree of a minimum degree

Minimum Spanning Tree in the normed space.

New results: Ratios of dMST for biconnectivity and

2dMST − 1 for two-edge-connectivity respectively.
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Bypass Steiner vertices (parsimony)

Let H be a biconnected planar undirected graph,

and replace every edge by two anti-parallel

directed arcs. Let S be a subset of V (H). Then

there exists a set of arc-disjoint paths Pi of H , all

starting and ending at a vertex of S and without

interior vertices from S, such that, if we replace

each Pi by an arc ei joining the start and end

vertex of Pi, we obtain a biconnected digraph on

S. Non-planar: “fractional outconnected” variant.
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Bypass Steiner vertices (parsimony)

S: black disks; Steiner vertices: circles.
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x

y

Planar graph: black solid edges. S: black disks;

Steiner vertices: circles. Paths Pi: all the arcs. Two

internally vertex disjoint x− y paths: red, blue.
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Related Work

In 2-D space, dMST = 5. In 3-D space, dMST = 13.

MINIMUM STEINER POINTS TREE: given S in the plane,

find minimum Q such that U(S ∪Q) is connected.

Lin and Xue 1999: NP-Hard. Ratio of 5 for bead-MST.

Mandoiu and Zelikovsky (2000): bead-MST, ratio of

4, and dMST − 1 in normed spaces. We use this.

Cheng, Du, Wang, and Xu (2008): randomized 2.5

Arbitrary normed spaces, Nutov and Yaroshevitch

(2009): ⌊(dMST + 1)/2⌋+ 1 + ǫ-approximation.
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Two-edge-connectivity

KKS algorithm: (recall) w(x, y) = max(0, ⌈||x, y||⌉ − 1).

Note: w is not a metric. If w(x, y) > 0, allow parallel

edges of weight w between x and y; otherwise

allow only one edge of weight 0, plus parallel

edges of weight 1, creating multigraph G.

Use Algorithm KV to compute in G a set of edges

A, attempting to minimize w(A) while (V,A) is

two-edge-connected. Replace each edge of

positive weight by new beads (that is, every such

edge has its own distinct beads).

Algorithm KV is a 2-approximation for MINIMUM

WEIGHT SPANNING TWO-EDGE-CONNECTED SUBGRAPH.
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Inside Algorithm KV

Replace each edge xy by two directed arcs xy

and yx, of the same weight, creating a digraph
−→
G .

(bidirected G). Pick in V (G) an arbitrary root r. Use

Weighted Matroid Intersection to compute two

arc-disjoint r-rooted arborescences A and B such

that w(A) + w(B) is minimized.

Output an edge xy if either xy or yx are in A ∪B. It

is known that this output is two-edge-connected.

We construct in
−→
G two arc-disjoint r-arborescences

A and B satisfying w(A) + w(B) ≤ 9opt.
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Algorithm KV analysis idea

We construct in
−→
G two arc-disjoint r-arborescences

A and B satisfying w(A) + w(B) ≤ 9opt.

Use the 4-approximation analysis for the Minimum

Spanning Tree algorithm for MSPT, used twice for

each arborescence. Instead of 4, dMST − 1 in other

normed spaces.

Another “+1” is unavoidable, since we may have

to add two connectivity between to adjacent

sensors.

Next slide shows analysis is tight, assuming

redundant relays are not removed.
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r

v

Left: the optimal previous solution. S is given by the

black nodes. Right: possible output of Algorithm

KV, with the two arborescences given by solid and

dotted arcs, and beads empty or dotted. One arc

of weight w = 1 from r to v is required by one of the

two arborescences.
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Biconnectivity algorithm

Use Algorithm KR to compute in G a set of edges

A, attempting to minimize w(A) while (V,A) is

biconnected. Replace each edge of positive

weight by new beads (that is, every such edge has

its own distinct beads).

Algorithm KR is a 2-approximation for MINIMUM

WEIGHT SPANNING BICONNECTED SUBGRAPH.
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Biconnectivity analysis tight

The nodes of S are black disks. Optimum uses the

relay nodes u and v. If we start Algorithm KR with x

and y as in the figure, ten edges of weight one

would be chosen by the algorithm (precisely, the

arcs passing “around” each of u and v, each arc

needing a bead node). The two arborescences

from Whitty’s Theorem are represented, except for

arcs sx and sy, by dotted and solid arcs,

respectively. Only nine beads by starting with x, y

not U -adjacent. In a larger example, one or two

beads saved still results in a ratio of five.
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Conclusions

Using variants of previously proposed algorithms,

we improved the approximation ratio of

TWO-CONNECTED RELAY PLACEMENT for

biconnectivity from 2dMST to dMST , and for

two-edge-connectivity from 2dMST to 2dMST − 1 .

Euclidean 2-D space: dMST = 5, in 3-D: dMST = 13.

Assuming that no post-processing removes

redundant relay nodes, these ratios are tight.
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