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Abstract

We address the problem of efficient feature-value acquisi-
tion for classification in domains in which there are varying
costs associated with both feature acquisition and misclassi-
fication. The objective is to minimize the sum of the infor-
mation acquisition cost and misclassification cost. Any de-
cision theoretic strategy tackling this problem needs to com-
pute value of information for sets of features. Having cal-
culated this information, different acquisition strategies are
possible (acquiring one feature at time, acquiring features in
sets, etc.). However, because the value of information cal-
culation for arbitrary subsets of features is computationally
intractable, most traditional approaches have been greedy,
computing values of features one at a time. We make the
problem of value of information calculation tractable in prac-
tice by introducing a novel data structure called the Value of
Information Lattice (VOILA). VOILA exploits dependencies
between missing features and makes sharing of information
value computations between different feature subsets possi-
ble. To the best of our knowledge, performance differences
between greedy acquisition, acquiring features in sets, and a
mixed strategy have not been investigated empirically in the
past, due to inherit intractability of the problem. With the
help of VOILA, we are able to evaluate these strategies on five
real world datasets under various cost assumptions. We show
that VOILA reduces computation time dramatically. We also
show that the mixed strategy outperforms both greedy acqui-
sition and acquisition in sets.

Introduction

Optimal cost-sensitive feature-value acquisition requires a
sequential decision making process, in which a decision
maker can repeatedly acquire information, and, at some
point, makes a decision, based on the acquired information.
At each step in the process, the decision maker must find an
optimal subset of features for acquisition (a set for which the
expected value of information minus the acquisition cost is
maximized). As information is acquired, the expected utility
of unobserved features sets changes, and needs to be recom-
puted.

Because of the inherent exponential complexity of explor-
ing all possible feature acquisition strategies, and the ex-
pense of computing the value of information calculation for
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arbitrary sets, the traditional approaches to the problem have
made a variety of assumptions. The most common assump-
tion is to use a myopic, or greedy, approach, calculating the
value of information for each feature independently and ac-
quiring a single feature at a time (see for example (Gaag &
Wessels 1993)). Other approaches approximate the nonmy-
opic strategy; early examples include (Heckerman, Horvitz,
& Middleton 1993); more recent work includes hardness re-
sults (Krause & Guestrin 2005b), and more sophisticated ap-
proximation algorithms (Krause & Guestrin 2005a).

Within the context of cost-sensitive feature-acquisition for
classification and diagnosis, previous research has focused
on feature-value acquisition during learning, for specific
models such as Naive Bayes (Melville et al. 2005), for learn-
ing a Markov Decision Process which captures the diagnos-
tic policies (Bayer-Zubek 2004), and analyzing the theoreti-
cal aspects of the problem under a PAC learning framework
(Greiner, Grove, & Roth 2002). Other approaches exam-
ine feature value acquisition during testing for Naive Bayes
(Chai et al. 2004) and decision trees (Sheng & Ling 2006).

Here, we propose an approach to cost-sensitive feature-
value acquisition for classification based on graphical mod-
els which enables us to consider nonmyopic feature acquisi-
tion strategies. We propose a data structure, the Value of In-
formation Lattice (VOILA), which is a directed graph where
each node represents a unique subset of the features and each
edge represents a subset relationship between its nodes. As
we have discussed above, the number of potential feature
subsets is exponential. To reduce the number of subsets in
practice, we exploit the dependencies between different fea-
tures. Specifically, we assume that we have a Bayesian net-
work as the model of the domain. This network lets us ig-
nore sets that have irrelevant features in them. For instance,
assume that observing the feature A renders another feature
B irrelevant for the purpose of diagnosis. Then, we do not
need to compute value of information for the set that con-
tains both A and B because it would be equivalent to the
information value of the set that contains only A. By exploit-
ing such relationships, we can reduce the number of subsets
dramatically.

VOILA naturally lets us address the problem of feature
subset acquisition strategies. We propose a mixed strategy
of computation and acquisition. First we find the most bene-
ficial set of features to acquire, and then we acquire one fea-



ture from that set and then repeat. The acquisition made at
each step changes the space of relevant subsets and VOILA
makes tracking these changes efficient.

The rest of the paper is organized as follows. We begin by
defining the problem formally. Next we introduce VOILA
and give a construction algorithm. Then we describe feature
acquisition strategies and show how the VOILA is main-
tained. We present experimental results, and then conclude.

Problem Formulation

We assume our classification task is to predict the value for
a random variable Y , given the values for some subset of
acquired features X

a. We assume that we have a set of n
features X = {X1, . . . , Xn}, and our main task is to find
a strategy for acquiring X

a ⊆ X, given a cost model for
misclassification and feature-value acquisition. We assume
that a probabilistic model over these random variables has
already been learned. For the purposes of this paper, we
assume that we are given a Bayesian network over the vari-
ables X and Y ; however, any probabilistic model which al-
lows us to efficiently answer context-specific conditional in-
dependence queries can be used.

We also assume that we are given a cost model that speci-
fies the cost of feature acquisition and misclassification. For-
mally, we assume that we have a feature acquisition cost
function that given a subset of features, S, and the set of cur-
rently acquired features e, returns a non-negative real num-
ber, Ce(S), and a misclassification cost model which returns
the misclassification cost cij incurred when Y is assigned yi

when the correct assignment is yj . Note that we are assum-
ing a very general feature acquisition cost model and not
assuming symmetric misclassification costs.

Given the probabilistic model and the cost model, the ex-
pected misclassification cost given evidence e is:

EMC(Y | e) = min
yi

∑

yj 6=yi

P (Y = yj | e) × cij (1)

The objective in feature acquisition is to acquire the subset
of features which minimizes the sum of the feature-value
acquisition cost and the misclassification cost. Formally, we
would like to acquire the values for a subset S of X \ E
so that EMC(Y | e,S) + Ce(S) is minimized. However,
because we do not know the values of the variables in S

apriori, we need to average over all possible values. This
is in effect computing the expected value of information for
the set S:

EV Ie(S) = EMC(Y | e)−(
∑

s

P (s | e)EMC(Y | e, s))

(2)
And, now we can defined a locally optimal feature set S:

Definition 1 A feature acquisition set S is locally optimal
with respect to evidence e if it maximizes the difference
EV Ie(S) − Ce(S).

However, as we have discussed in the previous section,
there are an exponential number of subsets S to consider.
Moreover, because of the summation in Eq. (2), the value
of information calculation for a set is impractical if the set
contains large number of features. Finally, even if we can

do all of these computations, as we acquire feature values,
the locally optimal set of features changes. To address these
problems, we introduce a data structure called the value of
information lattice and we describe how it can be used by
a mixed feature acquisition strategy that effectively exploits
the structure in the probabilistic model and the cost model.

Value of Information Lattice (VOILA)

We propose a data structure that we call the Value of In-
formation Lattice (VOILA). VOILA is a data structure that
contains only the potentially relevant feature subsets for ac-
quisition. It allows effective computation sharing and pro-
vides an efficient mechanism for incrementally updating the
search space and feature cost calculations as new evidence
is acquired.

Definition 2 A set S ⊆ X is irreducible with respect to
evidence e iff ∀Xi ∈ S, Xi is not conditionally independent
of Y given e and S \ {Xi}.

Given a Bayesian network over X and Y , it is straightfor-
ward to check this d-separation property (Pearl 1988).

Proposition 1 Let S
′ be a maximal irreducible subset of S

with respect to e. Then, EV Ie(S) = EV Ie(S
′).

Proof: Let S′′ = S \ S
′. If S

′ is a maximal irreducible set,
S
′ ∪ E d-separates Y and S

′′. Otherwise, we could make
S
′ larger by including the non-d-separated element(s) from

S
′′ in S

′. Thus, we have P (Y | e, s) = P (Y | e,S′,S′′) =
P (Y | e,S′). Substitution in Eq. (2) yields the desired prop-
erty.

Note that under the assumption that Ce(S
′) ≤ Ce(S) for

any S
′ ⊆ S, it suffices to consider only the irreducible sets to

find the optimal solution to the feature set acquisition prob-
lem. VOILA is a data structure that contains only the irre-
ducible feature subsets of X (with respect to a particular set
of evidence e). We next define VOILA formally.

Definition 3 A VOILA V is a directed graph in which there
is a node corresponding to each possible irreducible set of
features, and there is a directed edge from a feature set S to
each node which corresponds to a direct (maximal) subset of
S. Other subset relationships in the lattice are then defined
through the directed paths in V .

One important observation is that if there is a directed path
from node S to S

′ in V , then S ⊃ S
′ and hence EV Ie(S) ≥

EV Ie(S
′).

Example 1 Figure 1(a) shows a simple Bayesian network
and its corresponding VOILA, with respect to the empty ev-
idence set, is shown in Figure 1(b). Notice that the VOILA
contains only the irreducible subsets given the Bayesian net-
work with no evidence; for instance, the VOILA does not
contain sets that include both X1 and X2 because X1 d-
separates X2 from Y . We also observe that the number of
irreducible subsets is 9 in contrast to 24 = 16 possible sub-
sets. Moreover, note that the largest subset size is now 3
in contrast to 4. Having smaller feature sets sizes has a
dramatic effect on the value of information calculations. In
fact, these savings can make optimal feature-value acquisi-
tion strategies feasible in practice.
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Figure 1: A simple Bayesian network illustrating depen-
dencies between attributes and the class variable. (b) The
VOILA corresponding to the network.

VOILA Construction

Efficient construction of VOILA is not a straightforward
task. The brute force approach would be to enumerate all
possible subsets of X and for each subset check whether it
is irreducible. However, this brute force approach is clearly
suboptimal.

Dependency Constraints To tackle this problem, we first
define the notion of “dependency constraints.” A depen-
dency constraint for a feature Xi is a constraint on evidence
sets required for a dependency between Xi and Y to exist.
For instance, in our running example, a dependency con-
straint for X2 is ¬X1; in other words, in order for X2 to be
relevant, X1 should not be included in the evidence. Infor-
mally, a dependency constraint for a feature Xi requires that
all Xj on the path from Y to Xi to be unobserved if Xj is not
part of a v-structure; if Xj is part of a v-structure, then ei-
ther Xj or one of its descendants must be observed (we refer
to these latter constraints as positivity constraints). The al-
gorithm for dependency constraint computation for features
is given in Figure 2. The running time of the algorithm is
linear in the number of the edges in the Bayesian network.

A dependency constraint for a set S specifies the con-
straints on the evidence set for S to be irreducible. Irre-
ducibility requires that ∀Xi ∈ S, dependency flows between
Xi and Y , given the rest of the elements in S and any addi-
tional evidence E. Thus, a dependency constraint for S is
the conjunction of the dependency constraints of its mem-
bers. The irreducibility of S can be checked by setting the
elements of S and E to “true” and setting the remaining el-
ements of X to “false” and evaluating the set’s dependency
constraint. In our running example, the dependency con-
straint for the set {X2, X4} is ¬X1 ∧X3. Assuming E = ∅,
when X2 and X4 are set to true and X1 and X3 are set to
false, this constraint evaluates to false and thus this set is not
irreducible. This makes sense because given no evidence,
X4 is independent of Y , so while {X2} is a useful feature

Algorithm DependencyConstraint(Xi, Y )
Input: Xi, Y
Output: dependency constraint for Xi, denoted DC(Xi)
1: DC(Xi)← false
2: for each undirected path pj between Xi and Y do
3: DCj(Xi)← true
4: for each Xk on the path do
5: if Xk does not a cause a v-structure then
6: DCj(Xi)← DCj(Xi) ∧ ¬Xk

7: else
8: DCj(Xi)← DCj(Xi)∧ (Xk ∨Descendants(Xk))
9: end if

10: end for
11: DC(Xi)← DC(Xi) ∨DCj(Xi)
12: end for

Figure 2: Dependency constraint computation for Xi.

set to consider for acquisition, {X2, X4} is not.

Construction Algorithm We now describe constructing
the VOILA using the computed dependency constraints.
VOILA construction proceeds in a bottom up fashion, be-
ginning with the lowest level which initially contains only
the empty set and constructs new irreducible feature sets by
adding features one at a time into the VOILA structure. Fig-
ure 3 gives the details of the algorithm. The algorithm keeps
track of the irreducible feature sets IS, and the set of poten-
tially irreducible feature sets PS. A feature set is potentially
irreducible if it is possible to extend it with additional fea-
tures so that the set becomes irreducible. Note that this is
possible due to the non-monotonic nature of d-separation.
The check can be done efficiently by setting members of S

and E to true, setting literals with positivity constraints that
remain to be processed to true, setting the remaining liter-
als to false, and evaluating the set dependency constraint.
The difference between checking for potential irreducibility
and irreducibility is that we set positively constraint literals
that might be added later to true for the potential irreducibil-
ity whereas we set them to false to check for irreducibility.
When we are done processing feature Xij

, we remove from
PS any potentially irreducible sets that cannot become ir-
reducible because Xij

will not be re-considered. This step
improves the running time of the future steps.

Variable Ordering A good ordering processes features
with literals with positivity constraints in other features’ de-
pendency constraints earlier. That is, for each undirected
path from Y to Xi that includes Xj in a v-structure, a good
ordering puts Xj earlier in the ordering than everything be-
tween Xj and Xi. For instance, in our sample Bayesian
network in Figure 1, we should put X3 earlier than X4 in
the ordering. We refer to an ordering as perfect if it sat-
isfies all the positivity constraints. If a perfect ordering is
used, VOILA construction algorithm never generates a po-
tentially irreducible set. Unfortunately, it is not always pos-
sible to find a perfect ordering. A perfect ordering is not
possible when two features have each other as a positivity
constraint literal in their dependency constraints. This case
occurs only when there is a loop from Y to Y with two or



Algorithm ConstructVOILA(X, Y )
Input: Set of features X and class variable Y .
Output: The VOILA data structure V , given E.
1: Pick an ordering of elements of X = Xi1 , Xi2 , . . . , Xin

2: IS← {∅}; PS← ∅
3: for j = 1 to n do
4: for each S ∈ IS ∪PS do
5: S

′ ← S ∪Xij
,

6: DC(S′)← DC(S) ∧DC(Xij
)

7: if S
′ is irreducible then

8: IS← IS ∪ {S′}
9: Add a node corresponding to S

′ to V
10: else if S

′ is potentially irreducible then
11: PS← PS ∪ {S′}
12: end if
13: end for
14: Remove from PS all sets that are no longer potentially irre-

ducible (because Xij
can no longer be added)

15: end for
16: max = size of largest S in IS; Ll = {S | S ∈ IS and |S| = l}
17: for l = 0 to max− 1 do
18: for each S ∈ Ll do
19: for each S

′ ∈ Ll+1 do
20: if S ⊂ S

′ then
21: Add an edge from S

′ to S to V
22: end if
23: end for
24: end for
25: end for

Figure 3: The VOILA construction algorithm.

more v-structures. A perfect ordering was possible in four
of the five real world datasets that we used.

Analysis of VOILA Construction Algorithm The con-
struction algorithm puts a node in the VOILA only if the
corresponding set is irreducible (lines 7-9). Moreover, by
keeping track of potentially irreducible sets (lines 10-12),
we generate every possible irreducible set that can be gen-
erated. Thus, VOILA contains only and all of the possible
irreducible subsets of X.

The worst-case running time of the algorithm is still expo-
nential in the number of initially unobserved features. The
running time in practice, though, depends on the structure
of the Bayesian network that the VOILA is based upon. We
empirically show in the experimental results section that for
five real world datasets, the number of irreducible subsets is
substantially smaller than the number of possible subsets.

Using VOILA for Feature-value Acquisition

The process of feature-value acquisition is first to find the
locally optimal set of features for acquisition, acquire some
or all features in that set, and repeat the process depending
on what has been observed. To carry out this process, we
need to compute expected value of information for the ir-
reducible sets and also process evidence as it is acquired.
VOILA makes these calculations efficient in practice by ex-
ploiting the structure of the problem space.

Value of Information Calculation VOILA exploits the
subset relationship between different feature sets in order

to avoid value of information computation for some nodes.
First of all, remember that if there is a directed path from
node S1 to S2 in VOILA, then EV Ie(S1) ≥ EV Ie(S2).
Now assume that there is a directed path from Si to Sj and
EV Ie(Si) = EV Ie(Sj). Then, all of the nodes on this path
will also have the same value of information, thus we do not
need to do the computation for those subsets. An algorithm
that makes use of this observation is given in Figure 4.

Algorithm ComputeEVI(V , E)
Input: VOILA V and current evidence E

Output: VOILA updated with correct EV I() values.
1: for all root node(s) S not marked unnecessary do
2: value← EV Ie(S)
3: ub(descendants(S))← value
4: end for
5: for all leaf node(s) S not marked unnecessary do
6: value← EV Ie(S)
7: lb(ancestors(S))← value
8: end for
9: for all node S not marked unnecessary where lb(S) 6= ub(S)

do
10: value← EV Ie(S)
11: lb(ancestors(S))← value
12: ub(descendants(S))← value
13: end for

Figure 4: Efficient EVI computation using VOILA.

In order to share computations between different nodes
of the lattice, we keep lower and upper bounds on the ex-
pected value of information for a node. We found this strat-
egy surprisingly effective experimentally. The lower bound
is determined by the values at the descendants of the node
whereas the upper bound is determined by the values of its
ancestors. First, we initialize these bounds by computing the
value of the information at the boundary of the lattice, i.e. the
root node(s) and the leaf node(s) (lines 1-8). Then, we loop
over the nodes whose upper bounds and lower bounds are
not equal (line 9-13), computing their values and updating
the bounds at their ancestors and descendants. The order in
which to choose the nodes in line 9 so that the number of
sets for which a value is calculated is minimum is still a re-
search question. A possible heuristic is choosing a middle
node on a path between two nodes for which the values have
already been calculated.

Evidence Integration Once the best candidate feature set
is found, the next step is to acquire some or all of the at-
tributes from that set. The VOILA and the costs of some
sets of features might change after the acquisition. An algo-
rithm to handle these changes is given in Figure 5.

The acquired evidence might render some of the previ-
ously irreducible sets to be reducible now. We find such sets
by first finding the features whose dependency constraints
evaluate to false with the cumulative evidence (line 2) and
then marking all sets that contain these features as unnec-
essary (line 4). Moreover, some nodes in the lattice will be
equivalent with the introduction of new evidence. For exam-
ple, once we observe X1 from {X1, X2, X3}, the node that
contains this set will be equivalent to the node that contains



{X2, X3}. We mark the latter node as unnecessary (lines
7-9). Finally, we need to update the costs of sets of features
given the new evidence (lines 10-12).

Algorithm IntegrateEvidence(VOILA, Xi, E)
Input: V , Xi, newly acquired evidence, and E, the current evi-

dence
Output: Update V structure and values
1: for ∀Xj ∈ X \E do
2: DC ′(Xj) ← evaluate DC(Xj) with Xi = true and Xk =

true ∀Xk ∈ E

3: if DC ′(Xj) = false then
4: Mark all S ∈ V s.t. Xj ∈ S as unnecessary
5: end if
6: end for
7: for ∀S′ ∈ V such that ∃S ∈ V s.t. S = S

′ ∪ {Xi} do
8: Mark S

′ as unnecessary
9: end for

10: for ∀S ∈ V such that S is not marked unnecessary do
11: Update Ce,Xi

(S)
12: end for
13: E← E ∪ {Xi}

Figure 5: Incremental evidence integration algorithm.

Using VOILA for Different Strategies We now describe
different feature-acquisition strategies. The strategies vary
depending on their value of information computation (only
for a single feature or for sets of features) and their way
of acquiring features (a single feature or a set of features).
The greedy or myopic strategy computes the expected value
of information for one attribute at a time. It first finds the
locally optimal feature to acquire. If such a feature exists,
then it is acquired and we repeat the process with the re-
maining features; otherwise stop and make a decision. The
greedy strategy does not consider sets, so it does not need
the VOILA. However, this strategy is not guaranteed to make
the optimal decisions. Because the greedy strategy does both
computation and acquisition at the feature level, we refer to
it as the Feature-Feature (FF) strategy.

Another possible strategy is to find the set of features that
is locally optimal and acquire all of the features at once and
make a decision. This strategy can make use of VOILA for
value of information calculations. We initialize VOILA with
the appropriate cost values for the sets. Then, we find the
locally optimum set by making use of the ComputeEvi algo-
rithm described in Figure 4, acquire all of the features from
that set (if any) and make a decision. This strategy makes
the correct decision on average but it is not guaranteed to
make the optimal decision for each instance. Because both
computation and acquisition is done in the set level, we refer
to it as the Set-Set (SS) strategy.

Another possible strategy is a mixed strategy which first
finds the locally optimally set, acquires only the locally op-
timum feature from that set, and repeats the process with
the remaining features. The process stops and makes a de-
cision when the locally optimal set is empty. Implementing
this strategy with VOILA is straightforward. We first ini-
tialize VOILA. Then, we find the locally optimum set using
ComputeEvi algorithm (Figure 4), find the locally optimum

feature from that set by searching the leaves of VOILA and
using the previous EVI computation, acquire that feature,
integrate it as evidence using IntegrateEvidence algorithm
(Figure 5) and repeat the process. Because this strategy does
the computation at the set level but acquisition at the feature
level, we refer to it as the Set-Feature (SF) strategy.

Experimental Results

We ran experiments testing the effectiveness of VOILA
comparing the three different strategies described above. We
ran experiments on the same medical datasets used by Tur-
ney (Turney 1995). We learned a Bayesian network and
constructed the VOILA for each dataset. Table 1 compares
various dimensions of the domains: the number of features,
number of potential subsets and the number of irreducible
subsets given the network. As can be seen, exploiting the in-
dependencies in the Bayesian network decreases the number
of relevant feature sets dramatically and makes value of in-
formation computation for sets feasible in practice for these
datasets.

Dataset # Features # of Possi-
ble Subsets

# of Nodes
in VOILA

Bupa 5 32 26
Heart 13 8,192 990
Hepatitis 19 524,288 18,132
Pima 8 256 139
Thyroid 20 1,048,576 28,806

Table 1: Number of features, potential feature subsets, and
number of VOILA nodes for the five datasets.

Next, we tested how different feature-acquisition strate-
gies perform on these datasets. Following Turney, we used
the same feature costs and varied misclassification costs
from $1 to $10,000. In order to test how effective the three
strategies described above are, we compared them to a strat-
egy that buys all of the information in the Markov blanket
for the class regardless of the feature costs and misclassifi-
cation costs. We refer to this strategy as the Markov Blanket
(MB) strategy.

We calculated the expected misclassification costs and
feature costs for different strategies by first creating the
equivalent decision trees and calculating the probabilities
and the costs using the Bayesian network and the cost model.
We present results showing how well greedy (FF), best sub-
set (SS), and the mixed (SF) strategies perform in compari-
son to MB strategy (Figure 6). We show only results up to
$5,000 because the trends generally stabilize after this point.

One immediate observation is that when the misclassifica-
tion cost is small relative to feature costs, all three strategies
incur a lower cost than the MB strategy simply by acquiring
a small number inexpensive features. Secondly, the FF strat-
egy initially performs better but after some point gets stuck
in local minimum and no matter what the misclassification
cost is, it refuses to acquire additional features. Therefore,
its savings become negative for high misclassification costs
and in this case, the MB strategy is a better strategy than FF.
However, neither the SS nor the SF strategy suffers from lo-
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Figure 6: Total savings achieved by the greedy (FF), best subset (SS), and the mixed (SF) strategies when their costs are
compared to the costs incurred by the Markov blanket (MB) strategy. FF usually gets stuck in local minimum and does in fact
perform worse than MB when the misclassification costs are high compared to feature costs. Both SS and SF always do better
than MB, and SF usually outperforms SS.

cal minimum; that is why they always have non-negative
savings. Finally, the SF strategy outperforms the SS strat-
egy in four of the five datasets and performs equally well in
the fifth; for example in the heart dataset SF saves on aver-
age $100 per instance over SS for higher misclassification
costs. The reason is that SF can change its mind about the
usefulness of a set as it acquires more evidence.

Conclusions

We have introduced a novel data structure called the Value
of Information Lattice. VOILA exploits dependencies be-
tween missing features and makes sharing of information
value computations between different feature subsets possi-
ble. VOILA allows us to compare different feature subset
value of information calculations and feature subset acqui-
sition strategies. We evaluate these strategies on five real
world datasets under various cost assumptions and show that
we are able to reduces computation time dramatically, and
achieve dramatic cost improvements using a mixed compu-
tation and feature acquisition strategy.
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