
Combining Collective Classification and Link Prediction

Mustafa Bilgic, Galileo Mark Namata, Lise Getoor
Dept. of Computer Science

Univ. of Maryland
College Park, MD 20742

{mbilgic, namatag, getoor}@cs.umd.edu

Abstract

The problems of object classification (labeling the nodes
of a graph) and link prediction (predicting the links in
a graph) have been largely studied independently. Com-
monly, object classification is performed assuming a com-
plete set of known links and link prediction is done assum-
ing a fully observed set of node attributes. In most real
world domains, however, attributes and links are often miss-
ing or incorrect. Object classification is not provided with
all the links relevant to correct classification and link pre-
diction is not provided all the labels needed for accurate
link prediction. In this paper, we propose an approach that
addresses these two problems by interleaving object clas-
sification and link prediction in a collective algorithm. We
investigate empirically the conditions under which an inte-
grated approach to object classification and link prediction
improves performance, and find that performance improves
over a wide range of network types, and algorithm settings.

1. Introduction

Many real world domains are relational, consisting of
objects linked to each other in a variety of ways. Previ-
ous studies have shown that analyzing these domains using
the link information can significantly improve performance
in various data mining tasks. This is especially true for the
tasks of object classification (node labeling) and link pre-
diction (predicting the existence of an edge). Object clas-
sification can be improved by exploiting the homophilic or
heterophilic bias of many real world relationships. Simi-
larly, the class labels of two objects can be very informative
for determining whether those objects are linked.

To date, much of the research either considers object
classification and link prediction as two independent tasks
Collective object classification is done assuming that all the
links are known and link prediction is done with the as-
sumption object classes are set. In real world collections,

however, this is rarely the case. Real world collections usu-
ally have a number of missing and incorrect labels and links.
Other approaches construct a complex joint probabilistic
model, capable of handling missing values, but in which
inference is often intractable.

In this paper, we take the middle road. We propose a
simple yet general approach for combining object classifi-
cation and link prediction. We propose an algorithm called
Iterative Collective Classification and Link Prediction (IC-
CLP) that integrates collective object classification and link
prediction by effectively passing up-to-date information be-
tween the algorithms. We experimentally show on many
different network types that applying ICCLP improves per-
formance over running collective classification and link pre-
diction independently.

We begin by describing a simple motivating example in
Section 2. Next we discus some of the relevant work in col-
lective object classification and link prediction in Section 3.
In Section 4, we discuss our approach of iteratively per-
forming collective object classification and link prediction.
We discuss a novel synthetic data generator in Section 5 and
use that data to evaluate our approach over a number of pa-
rameters. We then conclude in Section 6.

2. Motivation

Consider an example where we are given a partial friend-
ship network consisting of known smokers, known non-
smokers and individuals whose smoking status is unknown.
Given such a network, two natural problems arise. First,
for the set individuals with unknown smoking status, pre-
dict whether or not they are smokers (object classification).
Next, given attributes of the individuals and a set of known
friendship links in the network, predict friendship links that
may be currently unobserved but present in the network
(link prediction).

An initial approach to these two problems may involve
only observed attributes of each individual such as their age,
gender and occupation. Various classifiers may be applied



to predict the smoking status of the individuals based on
these attributes. Similarly, attributes of individuals may be
compared to see which pairs of individuals maybe friends.
Classifying the individuals and predicting the links inde-
pendently, however, does not take advantage of the fact that
smoking has a major social component to it. In a friendship
network, two friends are likely to be either both smokers or
non-smokers. Likewise, in predicting friendship links we
can use the fact that smokers are more likely to be friends
with other smokers.

The problem, however, is that, as is common in real
world data, we are given only a partial friendship network;
we usually do not know all the links and the smoking sta-
tus of all the individuals. For the classification problem, we
may not know all the relevant friendships of a given indi-
vidual needed to make an accurate decision. We may incor-
rectly classify an individual as a non-smoker by just looking
at his individual attributes, if we ignore (or do not know) the
fact that most of his friends are smokers. Conversely, when
predicting friendship links, we might be missing valuable
information if we do not take into consideration an individ-
uals’ likely smoking status.

3. Related Work

3.1 Collective Object Classification

Collective object classification is the task of inferring the
class labels of a network of objects simultaneously. The
underlying assumption in collective object classification is
that the relationships between objects carry important infor-
mation for classifying the objects. There has been a large
amount of research in collective object classification; we
discuss a few of the related research in this section but this
list is not exhaustive.

Collective object classification algorithms build models
for the local and the relational attributes of an object and
then use some inference procedure to collectively classify
the objects [7]. Techniques can differ in both the models
and the inference methods used. Chakrabarti et al. [1] use
naı̈ve Bayes models for the local attributes of the object and
the class labels of the related objects and relaxation label-
ing for the inference [12]. Neville and Jensen [9] also use a
naı̈ve Bayes model for the attributes, but they use iterative
classification for inference. Lu and Getoor [5] use Logistic
Regression as a model and iterative classification for infer-
ence but they explore a set of aggregates that can be used for
the class labels of the related objects. Taskar et al. [15] use
relational Markov networks as a model and then use loopy
belief propagation for the inference [8]. And, finally, Mac-
skassy and Provost [6] propose a baseline where they use
only the class labels of objects for classification; they infer

the class label of an object by taking a weighted average of
the potentially inferred class labels of the related objects.

3.2 Link Prediction

Link prediction is the problem of identifying whether a
link exists between two objects. The link problem has been
more formally defined as both the identification of unob-
served links in a current network or as a time series prob-
lem where the task is to predict which links will be present
in the network at a time t+1 given the state of a network at
time t. In both cases, link prediction is treated as a binary
classification problem over the set of all possible links. Link
prediction is difficult since it involves a large class skew in
the number of positive and negative cases. Often, negative
cases are quadratic in the number of objects while the num-
ber of positive cases may only be linear. Despite this issue,
there have been a number of successful applications of link
prediction in a variety of domains using a number of differ-
ent attributes and approaches. Liben-Nowell and Kleinberg
[4] look at link prediction specifically for social networks
and apply a series of predictors using only structural prop-
erties of the network. Popescul and Ungar [10] predict new
links in a bibliographic dataset by generating and search-
ing a space of relational features to learn potential predic-
tors. Sarrukai [13] proposed a Markov Chain approach as
an adaptive and generative way to do link prediction in web
sequence modeling while Kashima and Abe [3] use only
topological features of the network structures and propose a
probabilistic network evolution model over a biological net-
work data set. Yu et al. [17] use stochastic relational models
and apply it to a user-movie preference link prediction task.

There have been approaches that perform classification
and some form of link prediction jointly [2, 16, 11]. One
of the major difference between our approach (ICCLP) and
these approaches is that ICCLP is a very simple mechanism
for which you can plug-in almost any collective classifica-
tion and link prediction algorithms. Moreover, due to its
simplicity, it is comparably straightforward to analyze the
interaction between object classification and link predic-
tion. Lastly, to understand whether the complexity of the
other approaches add any performance improvement, IC-
CLP can be used as a baseline.

4. Collective Object Classification and Link
Prediction

Collective object classification and link prediction can
benefit from object attributes and from the links between
those objects. In most real world scenarios, however, many
attributes and links are often missing or incorrect, adversely
impacting the performance of both collective object clas-
sification and link prediction. We propose to address this



by iteratively performing both collective object classifica-
tion and link prediction so that each task can infer infor-
mation to improve the other. Generally, for example, this
means that collective object classification should make use
of the object and link information it currently has. Any
information it infers should then be provided to link pre-
diction. Consequently, any link prediction tasks that uses
the affected, previously unknown, node attributes should be
able to improve its performance. Similarly, link prediction
should use the object and link information it currently has
and predict previously unknown links for the objects. The
addition of new links should improve the performance of
collective object classification for all cases where the newly
created links change the relational or structural attributes
used by the classification.

We propose a general algorithm outlined in Algorithm 1
for combining collective classification and link prediction
iteratively. The inputs to the algorithm are a training graph
Gtr(Vtr, Etr), a test graph, Gte(Vte, Ete), an algorithm for
collective object classification, CCAlg, and a link predic-
tion algorithm LPAlg. The output is the modified test
graph, G

′
te, with the vertices labeled and the edge set, E

′
te,

containing all, known and predicted, links. We assume that
the train graph Gtr is fully labeled and for the labeled nodes,
all the links are known (they either exists or do not exists).
The advantage of this formulation is that we can plug in
any collective object classification and any link prediction
algorithm described in the literature.

Algorithm 1 Iterative Collective Classification and Link
Prediction
Input: Gtr(Vtr , Etr), Gte(Vte, Ete), CCAlg, LPAlg
Output: G

′
te(Vte, E

′
te) where Vte labeled and E

′
te modi-

fied with link prediction
1: Train CCAlg and LPAlg on Gtr

2: for i = 1 to maxiteration do
3: Gte ← Perform CCAlg on Gte

4: Gte ← Perform LPAlg on Gte

5: end for

There are a number of factors to consider when passing
information between collective object classification and link
prediction. First, there is an issue of whether or not to pass
the information as a hard or soft assignment. Depending on
the algorithm used for each task, there may be information
about the probability or confidence of the assignment that
may be useful in the collective setting.

A second factor to consider is how much information
should be exchanged. One option is to exchange all in-
formation, for example the full distribution over the labels,
between tasks. Link prediction, might in turn, provide a dis-
tribution over all links it has predicted back to object classi-
fication. An alternative option is to only exchange the most

likely assignments from each process, or some other aggre-
gate over the labels/links. The idea here is that rather than
sending all information, including assignments with a low
confidence level that may adversely impact the performance
of the other, only pass information which we believe to be
true past a given confidence threshold.

Another factor to consider is when and how frequently
information should be exchanged between the two tasks. A
first option is to only pass information after a full assign-
ment is made using either collective object classification or
link prediction. Since all assignments in collective object
classification and link prediction can benefit from assign-
ments in the other, however, it may be beneficial to only do
each task partially and only exchange information for what
is inferred with high confidence at that point. There is a risk
however, specially in collective object classification where
there maybe multiple intermediate assignments over many
iterations, of propagating incorrect information that a com-
plete pass would have corrected.

For the purposes of this paper, we use a variant of the
iterative classification algorithm [5] for collective classifi-
cation, (shown in Algorithm 2), and use logistic regression
for link prediction.

Algorithm 2 Iterative Classification Algorithm
1: for each Yi ∈ Y do
2: Set yi ← argmaxyP (y|OA(Yi)))
3: end for
4: for i = 1 to M do
5: for each Yi ∈ Y do
6: Store yi ← argmaxyP (y|OA(Yi), NA(Yi))
7: end for
8: end for

For collective object classification, given Yi ∈ Y , the set
of objects whose label yi we are trying to assign, the al-
gorithm first assigns the most likely label y given only the
object attributes of Yi, denoted as OA(Yi). After this initial
“bootstrapping” phase is complete, we iteratively relabel all
the objects with the most likely y given both the object at-
tributes of Yi and the neighborhood attributes of Yi, denoted
as NA(Yi), given the current state of labels. This step is re-
peated M times. In order to calculate the most likely y in
both the “bootstrap” and iterative phase, we implemented
logistic regression. We also use logistic regression as our
link prediction algorithm. We run each method to comple-
tion at each step and pass hard assignments between the two
methods.

For attributes, in collective object classification we used
the object attributes generated by our synthetic generator,
as well as the label counts of the nodes neighborhood. For
example, if we set the synthetic data generator to generate
a single binary object attribute and to have two classes, A



and B, a sample feature vector 〈0, 4, 5〉 means the binary
attribute is 0, this object has 4 neighbors labeled A and 5
neighbors labeled B. For link prediction, we use only two
features. The first is a binary value that is set to “1” when
the two end nodes of the link have the same value and “-1”
if they do not. The second feature is the cosine similarity of
the group attributes generated by the synthetic data genera-
tor for the two objects of the possible link.

5. Evaluation

In this section, we present experimental results of our ap-
proach. We begin by describing a novel synthetic data gen-
erator designed to allow evaluation of parameters relevant
to both collective object classification and link prediction.
We then describe the algorithms we used in our experiments
and discuss the performance of our approach over a number
of different parameters.

5.1. Synthetic Data Generator

The general paradigm for our synthetic data generation
process is that we first generate a set of attributes for a node,
link the nodes based on these attributes, and then generate a
second set of attributes for the nodes based on their linkage
(Algorithm 3). To achieve this, we have two hidden vari-
ables, one group and one class. We first randomly sample
a group for a node and then generate attributes based on
this group (lines 1–6). We call these attributes the group
attributes for the node. The attribute generation is done by
sampling from a binomial distribution whose probability of
success is dependent on the group value and number of trials
is equal to the number of attributes [14]. There is a noise pa-
rameter which controls how much noise is introduced into
this process. After the group attributes are generated, we
link the nodes whose group attribute similarities are above
a given threshold (lines 7–15). Again, depending on a noise
parameter, the status of link may occasionally be flipped
(from existing to non-existing or vice versa).

The next step in the process is to sample a class for a
node (lines 16–20). Initially, the class labels are unassigned.
At each step, we pick an unassigned node to sample a class,
and we sample the class label for it by looking at the known
class labels of its neighbors. We introduce correlations be-
tween class labels of linked nodes by sampling class labels
based on a probability that is a function of class labels of
the neighbor nodes. After sampling a class label for a node,
we sample attributes for the node, which we call the class
attributes, using the same process described above.

A real world scenario that this data generation might ex-
plain is as follows: People can often be categorized into
groups (hidden group) based on their interests (group at-
tributes). People who have similar interests become friends

(the linking process). Once two persons become friends,
they develop similar attitudes (class label), which present it-
self with some more observable attributes (class attributes).

Algorithm 3 Synthetic data generation algorithm.
Input: numNodes, numGroups, numClasses,

simThreshold
Output: G

1: for i = 1 to numNodes do
2: Create a node v
3: Sample a group g
4: v.ga← generate group attributes conditioning on g
5: Add v to G
6: end for
7: for i = 1 to numNodes do
8: vi = ith node in G
9: for j = i to numNodes do

10: vj = jth node in G
11: if sim(vi.ga, vj .ga) ≥ simThreshold then
12: connect vi and vj in G
13: end if
14: end for
15: end for
16: for i = 1 to numNodes do
17: vi = ith node in G
18: Sample a class c for vi conditioning on the class la-

bels of the neighbors of vi

19: v.ca← generate class attributes conditioning on c
20: end for

Using this data generator, we can change many proper-
ties of the underlying graph. For instance, we can vary the
link density of the graph by changing the similarity thresh-
old. Similarly, by using different conditioning methods for
sampling a class, we can vary the level of homophily. We
can also introduce noise to the data at different steps of the
algorithm. For instance, we can introduce noise for both
group and class attributes, and for the generated links. We
will test the robustness of our iterative collective object clas-
sification and link prediction algorithm by varying these set-
tings.

5.2. Experiments

To evaluate our ICCLP algorithm, we compared it to col-
lective object classification (CC) algorithms that were ei-
ther given all link information or no link information, and
to link prediction (LP) algorithms that were either given
all the labels or none of the labels. ICCLP, on the other
hand, was not given any label or link information in the test
graph; it was given only the group attributes and the class at-
tributes. We also tested robustness of ICCLP over different
network types by exploring four parameters: the amount of



homophily, the amount of noise in the class attribute distri-
bution, the amount of noise in link generation, and the link
density of the graphs. Overall, our hypothesis was that IC-
CLP algorithm would perform better than collective object
classification without any links and would do comparably
well with collective object classification given all the link
information. We had the same hypothesis for the link pre-
diction component of the ICCLP given none or all links.

We use accuracy as the performance metric for collective
object classification and F1 for link prediction. We chose
F1 over accuracy for link prediction because of the huge
class skew. All results are averaged over ten runs and are
presented in Tables 1, 2, 3, and 4.

In most of the results, ICCLP-CC performed signifi-
cantly better than collective object classification without
links (i.e. flat classification). Remember that ICCLP was
not given any links to start with. Furthermore, ICCLP-CC
performed comparably well with collective classification
with all links; the differences between the two is not sta-
tistically significant, confirming our hypothesis. However,
even though ICCLP-LP performed better than link predic-
tion without any labels, the differences were not as signifi-
cant. We think that the class label information may not be
as informative as we initially expected for our data.

Task Homophily
low medium high

CC w/o Links 0.79± 0.03 0.81± 0.02 0.81± 0.02
ICCLP-CC 0.83± 0.04 0.89± 0.05 0.9± 0.05

CC w/ Links 0.85± 0.05 0.91± 0.06 0.92± 0.05
LP w/o Labels 0.44± 0.01 0.44± 0.01 0.44± 0.01

ICCLP-LP 0.46± 0.02 0.46± 0.02 0.46± 0.02
LP w/ Labels 0.46± 0.02 0.46± 0.02 0.46± 0.02

Table 1. ICCLP-CC outperforms flat classifi-
cation and is comparable with CC with all
links. ICCLP-LP outperforms LP without la-
bels in all three cases, but the differences are
not very significant.

With the first parameter, homophily, we expect that as
the amount of homophily increases in the graph, collective
classification with all labels will increasingly perform bet-
ter than collective object classification without any links.
This result is apparent from our results when we compare
the first and third rows of Table 1. ICCLP-CC does bet-
ter than flat classification in all cases, and does significantly
better for medium and high homophily. Its performance is
also comparable with collective classification with all links
observed. Our hypothesis was that link prediction with
all labels known would perform similarly better in a more

homophilic setting because the class labels would become
more informative for link prediction. However, we did not
observe any difference in link prediction performance over
different homophily values.

The results for the next parameter, class attribute noise, is
presented in (Table 2). We expected a drop in the flat clas-
sification and the difference between ICCLP-CC and flat
classification to increase as we increased the noise. We did
not expect any significant changes in link prediction results
as the links and the link prediction algorithm does not de-
pend on class attribute values directly. As before, ICCLP
performed consistently better than CC and LP without links
and labels and is comparable with the case where links and
labels are given.

Task Class Attribute Noise
low medium high

CC w/o Links 0.9± 0.03 0.81± 0.02 0.64± 0.02
ICCLP-CC 0.95± 0.01 0.89± 0.05 0.8± 0.08

CC w/ Links 0.97± 0.01 0.91± 0.06 0.77± 0.06
LP w/o Labels 0.44± 0.01 0.44± 0.01 0.44± 0.01

ICCLP-LP 0.46± 0.02 0.46± 0.02 0.45± 0.02
LP w/ Labels 0.46± 0.02 0.46± 0.02 0.46± 0.02

Table 2. The difference between ICCLP-CC
and flat classification increased as we in-
creased noise in the class attribute values.

In the next two experiments, we varied the link param-
eters. First, we increased the noise in link generation (Ta-
ble 3). As we expected, the performance for link prediction
decreased. One of the effects this had on ICCLP-CC was
that, even though with low and medium link noise, ICCLP-
CC was performing comparably well with CC with all links,
ICCLP-CC performance degraded when the link noise was
high. The reason for this change is that link prediction is
not able to perform as well anymore, and thus is of less help
to ICCLP-CC.

Finally, we varied the link density of the graphs (Ta-
ble 4). For low density, the link prediction algorithms per-
formed poorly. We found that a large part of the reason
for this poor performance is that given the class skew prob-
lem of link prediction, the logistic regression algorithm did
not have enough positive examples to learn a good model
of the data. Similarly, the number of links was not enough
for collective classification algorithms to perform signifi-
cantly better than flat classification. We find, however, that
as we increased the link density, link prediction algorithms
got better, and at the same time the collective object clas-
sification algorithms performed significantly better than flat
classification.



Task Link Noise
low medium high

CC w/o Links 0.8± 0.03 0.81± 0.02 0.78± 0.03
ICCLP-CC 0.88± 0.04 0.89± 0.05 0.84± 0.04

CC w/ Links 0.87± 0.08 0.91± 0.06 0.89± 0.03
LP w/o Labels 0.52± 0.06 0.44± 0.01 0.38± 0.02

ICCLP-LP 0.53± 0.05 0.46± 0.02 0.39± 0.02
LP w/ Labels 0.53± 0.05 0.46± 0.02 0.39± 0.02

Table 3. Link prediction performance de-
graded as the noise increased leading to a
performance degregation for ICCLP-CC as
well because predicted links are not as useful
anymore.

Task Link Density
low medium high

CC w/o Links 0.78± 0.04 0.81± 0.02 0.79± 0.04
ICCLP-CC 0.79± 0.03 0.89± 0.05 0.88± 0.05

CC w/ Links 0.82± 0.04 0.91± 0.06 0.87± 0.07
LP w/o Labels 0.11± 0.02 0.44± 0.01 0.69± 0.01

ICCLP-LP 0.1± 0.01 0.46± 0.02 0.69± 0.01
LP w/ Labels 0.1± 0.02 0.46± 0.02 0.69± 0.01

Table 4. As link density increases, link pre-
diction algorithms get better, and the collec-
tive object classification algorithms outper-
form flat classification significantly.

6. Conclusions and Future Work

We proposed a simple yet general framework for com-
bining collective object classification and link prediction.
We proposed a novel synthetic data generator and tested
our ICCLP algorithm over a variety of parameters on syn-
thetic data. In these experiments, we trained ICCLP on a
graph whose nodes were observed and whose links were
known, and tested it on a graph whose nodes’ class labels
where unknown and links were completely missing. In al-
most all of the cases, the object classification part of IC-
CLP, despite having no labels or links initially, significantly
outperformed flat classification, and performed comparably
well with collective object classification that was given all
of the test set links. The link prediction part of ICCLP also
performed better than link prediction that did not use the
labels, however, this difference was not statistically signifi-
cant. Because link prediction is a very challenging problem,
this limit in improvement is not surprising. We also tested

ICCLP over variety of parameter settings, and we showed
that ICCLP performance results are robust to different ho-
mophily parameters, attribute noise, link noise, and link
density. These results suggest that, using ICCLP is almost
always preferable to running collective object classification
or link prediction alone. For future work, we are currently
exploring the other variations for combining collective ob-
ject classification and link prediction.

References

[1] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext
categorization using hyperlinks. In ACM SIGMOD Intl. Conf.
on Management of Data, 1998.

[2] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learn-
ing probabilistic models of link structure. Machine Learning,
2003.

[3] H. Kashima and N. Abe. A parameterized probabilistic model
of network evolution for supervised link prediction. In ICDM
Intl. Conf. on Data Mining, 2006.

[4] D. Liben-Nowell and J. Kleinberg. The link prediction prob-
lem for social networks. In Intl. Conf. on Information and
Knowledge Management, 2003.

[5] Q. Lu and L. Getoor. Link-based classification. In Intl. Conf.
on Machine Learning, 2003.

[6] S. A. Macskassy and F. Provost. A simple relational classifier.
In ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining, 2003.

[7] S. A. Macskassy and F. Provost. Classification in networked
data: A toolkit and a univariate case study. Journal of Ma-
chine Learning Research, 2007.

[8] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study. In
Uncertainty in Artificial Intelligence, 1999.

[9] J. Neville and D. Jensen. Iterative classification in relational
data. In AAAI Workshop on Learning Statistical Models from
Relational Data, 2000.

[10] A. Popescul and L. H. Ungar. Statistical relational learning
for link prediction. In IJCAI03 Workshop on Learning Statis-
tical Models from Relational Data, 2003.

[11] M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 2006.

[12] A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by
relaxation operations. IEEE Transactions on Systems, Man
and Cybernetics, 1976.

[13] R. R. Sarukkai. Link prediction and path analysis using
markov chains. In Intl. World Wide Web Conf. on Computer
Networks, 2000.

[14] P. Sen and L. Getoor. Link-based classification. Technical
Report CS-TR-4858, Univ. of Maryland, February 2007.

[15] B. Taskar, A. Pieter, and D. Koller. Discriminative proba-
bilistic models for relational data. In Conf. on Uncertainty in
Artificial Intelligence, 2002.

[16] B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller. Link pre-
diction in relational data. In Advances in Neural Information
Processing Systems, 2004.

[17] K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu. Stochastic rela-
tional models for discriminative link prediction. In Advances
in Neural Information Processing Systems, 2007.


