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ABSTRACT
Information diffusion, viral marketing, and collective classi-
fication all attempt to model and exploit the relationships
in a network to make inferences about the labels of nodes.
A variety of techniques have been introduced and methods
that combine attribute information and neighboring label
information have been shown to be effective for collective
labeling of the nodes in a network. However, in part because
of the correlation between node labels that the techniques
exploit, it is easy to find cases in which, once a misclassifica-
tion is made, incorrect information propagates throughout
the network. This problem can be mitigated if the system is
allowed to judiciously acquire the labels for a small number
of nodes. Unfortunately, under relatively general assump-
tions, determining the optimal set of labels to acquire is
intractable. Here we propose an acquisition method that
learns the cases when a given collective classification algo-
rithm makes mistakes, and suggests acquisitions to correct
those mistakes. We empirically show on both real and syn-
thetic datasets that this method significantly outperforms
a greedy approximate inference approach, a viral market-
ing approach, and approaches based on network structural
measures such as node degree and network clustering. In ad-
dition to significantly improving accuracy with just a small
amount of labeled data, our method is tractable on large
networks.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-

sifier design and evaluation

General Terms
Algorithms
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1. INTRODUCTION
Information diffusion, viral marketing, and collective clas-

sification all attempt to exploit relationships in a network
to reason and make inferences about the nodes in the net-
work. The common intuition is that knowing (or inferring)
something about the label of a particular node can tell us
something useful about the other nodes in the network. For
instance, the labels of the linked nodes tend to be corre-
lated (not necessarily a positive correlation) for many do-
mains; hence, finding the correct label of a node is useful
for not only that particular node, but it also has an im-
pact on the predictions that are made about the rest of the
network. Thus, it has been shown that methods such as col-
lective classification, i.e., classifying the nodes of a network
simultaneously, can significantly outperform the traditional
independent labeling approaches [2, 7, 13, 15, 24, 26].

However, sometimes, the advantage of exploiting the rela-
tionships can become a disadvantage. An incorrect predic-
tion about a particular node (due to an approximate infer-
ence procedure, noise in the data, model limitations, etc.)
can propagate in the network and lead to incorrect predic-
tions about other nodes. For example, consider a simple
binary classification problem where an island of nodes that
should be labeled with the positive label are surrounded with
a sea of negatively labeled nodes. The island may be flooded
with the labels of the neighboring nodes in the sea; this can
happen for example when the model prefers intra-class in-
teractions over inter-class interactions and achieves this ob-
jective by flooding the island nodes with the labels of the
nodes in the sea.

This problem can be alleviated if the collective inference
algorithm is allowed to judiciously acquire labels for a small
set of nodes in the network. Depending on the applica-
tion, labels can be acquired by asking users to rate specific
items, a company can provide free samples to a small set
of customers and customers’ viral networking or purchasing
behavior can be observed, or laboratory experiments can
be performed to determine protein functions, etc. However,
as we show later, determining the optimal set of labels to
acquire is intractable under relatively general assumptions.
Therefore, we are forced to resort to approximate and heuris-
tic techniques to get practical solutions.

In this paper, we describe three polynomial-time label ac-
quisition strategies. The first and most obvious approach
is based on approximating the objective function (which we
define formally in Section 2) and greedily acquiring the la-
bel that provides the highest improvement in the objective
value. The second approach is a direct application of a viral



marketing model. The third approach is a simple yet effec-
tive acquisition method that learns the cases when a given
collective classification model makes mistakes, finds islands
of nodes that the collective model is likely to misclassify, and
suggests acquisitions to correct these potential mistakes.

We compare these three methods to one another and also
to acquisition strategies that are based on network struc-
tural measures such as node degree and network clustering.
We empirically show that the third method we propose sig-
nificantly outperforms all of the other methods on both real
and synthetic datasets.

The label acquisition problem has received ample atten-
tion within the context of active learning [3, 16, 27]. There
are two main differences between the scenario we address
and the active learning scenario. First, active learning has
traditionally been concerned with flat data; here, we are
interested in network data. The second and the biggest dif-
ference is that we assume that we have available an already
trained model of the domain, and thus the learning has been
done offline, but we have the option to acquire labels to
seed the classification during inference. This is the setting
Rattigan et al. [22] introduced and referred to as “active in-
ference.” They looked at the relational network classifier,
introduced by Macskassy and Provost [14] in which there
are no node attributes; only labels are propagated. Here,
we build on this, and look at networks in which the nodes
have attribute information and compare to the structural
strategy that they introduced.

Our contributions in this paper are:

• We empirically show that the most obvious method
does not perform well in practice.

• We show a mapping between the viral marketing prob-
lem and the label acquisition problem.

• We propose an acquisition method that learns when
a given collective classification model makes mistakes
and suggests acquisitions to correct possible mistakes.

• We empirically show that this method outperforms all
other methods.

We next formulate the label acquisition problem and state
the objective function in Section 2. Then, we explain the
three approaches in Sections 3, 4, and 5. We then show ex-
perimental results on both synthetic and real datasets (Sec-
tion 6). We finally discuss related work (Section 7) and
future work (Section 8) and then conclude (Section 9).

2. PROBLEM FORMULATION
In this section, we review the collective classification prob-

lem and define the objective function for label acquisition
for collective classification. In this problem, we assume that
our data is represented as a graph with nodes and edges,
G = (V, E). Each node Vi ∈ V is described by an attribute
vector Xi and a class label Yi pair, Vi = 〈Xi, Yi〉. The Xi

is a vector of individual attributes 〈Xi1, Xi2, . . . , Xip〉 and
the domain of Yi is {y1, y2, . . . , ym}. Each edge Eij ∈ E
describes some sort of relationship between its endpoints,
Eij = 〈Vi, Vj〉.

Examples include: 1) social networks, where the nodes are
people, the attributes include demographic information such
as age and income and the edges are friendships: we may

be interested in labeling the people that are likely to par-
take in some behavior (e.g., smoking, IV drug use) or have
some disease (e.g., a sexually transmitted disease, obesity),
2) citation networks, where the nodes are publications, the
attributes include some content information and the edges
are the citations, and we may be interested in finding sem-
inal papers or categorizing the topics of the papers, and 3)
biological networks, where the nodes are proteins, attributes
include annotations, edges represent interactions, and we
may be interested in inferring protein function.

2.1 Collective Classification
Often in graph data, the labels of nodes are correlated

(though not necessarily positively correlated). For exam-
ple, friends tend to have similar smoking behaviors, papers
are likely to share the same topic of the papers that they
cite, proteins are likely to have complementary functions.
Collective classification is the term used for simultaneously
predicting the labels Y of V in the graph G, where Y denotes
the set of labels of all of the nodes, Y = {Y1, Y2, . . . , Yn} .

In general, the label of a node can be influenced by its
own attributes and the labels and attributes of other nodes
in the graph. There are many collective classification mod-
els proposed to date that make different modeling assump-
tions about these dependencies. For instance, Neville and
Jensen [19], Lu and Getoor [13], Macskassy and Provost [15],
and McDowell et al. [18] make use of local models, such as
Naive Bayes, Logistic Regression, etc., as a function of the
local attributes Xi and aggregation of the neighbor labels.
Chakrabarti et al. [2] considered using the local attributes
of the neighboring nodes and showed that it in fact hurts
the overall performance. Taskar et al. [26] fit a Markov ran-
dom field, where the labels and attributes are the random
variables. For the purposes of this paper, we take this latter
approach and describe it formally.

Let Ni denote the labels of the neighboring nodes of Vi,
Ni = {Yj |〈Vi, Vj〉 ∈ E}. We make the common Markovian
assumption that Yi is directly influenced only by Xi and
Ni. Given the values of Ni, Yi is independent of Y \Ni and
is independent of X \ {Xi}, where X denotes the set of all
attribute vectors in the graph, X = {X1, X2, . . . , Xn}. The
joint probability of P (Y|X ) is then given by:

P (Y|X ) =
1

Z

∏

Yi∈Y

φ(Yi,Ni)φ(Yi, Xi)

where φ are compatibility functions, and Z is the partition
function. Note that these compatibility functions, as we
defined them, can be 3 or more dimensional. One simplifying
assumption is to assume a pairwise MRF [26]. Then,

P (Y|X ) =
1

Z

∏

Yi∈Y

(

p
∏

j=1

φ(Yi, Xij)

)





∏

Yj∈Ni

φ(Yi, Yj)





We do not discuss the details of defining the potential func-
tions. The interested reader can find more details in [26].

We also assume that we are given a training graph Gtr(Vtr, Etr)
where all of the labels are known. We train our collective
model, CM , using this training graph. Given the test graph
G, a trained model CM , and assuming the values of the at-
tribute vectors X are known, our goal is to correctly predict
Y. We assume we are given a cost for misclassifying a node;



when we classify a node as yk whereas the correct assignment
is yl, we incur a cost of ckl. The expected misclassification
cost (EMC) for one node is then given by:

EMC(Yi|X = x, CM) = min
yk

∑

yl 6=yk

P (Yi = yl|X = x, CM)×ckl

We are trying to find the joint assignment to the Y that
minimizes the total expected misclassification cost,

∑

Yi∈Y

EMC(Yi|X = x, CM).

2.2 Label Acquisition
As mentioned in the introduction, we are interested in

settings where we are able to ask for the labels for some of
the nodes. More formally, we consider the case where we
can acquire the values for a subset of the labels A ⊆ Y. The
total misclassification cost then changes as follows:

∑

Yi∈Y\A

EMC(Yi|X = x,A, CM)

However, we do not know the values ofA before we acquire
them. Thus, we take an expectation over possible the values.

∑

Yi∈Y\A

∑

a

P (A = a)EMC(Yi|X = x,A = a, CM)

Of course, acquiring the value of a label is costly. Let
the cost of acquiring value of the label Yi be Ci. Extending

it to sets, C(A) =
∑

Yi∈A

Ci. Then, the total cost we incur,

and thus the objective function is the sum of the expected
misclassification cost and the acquisition cost:

L(A) =
∑

Yi∈Y\A

∑

a

P (A = a)EMC(Yi|X = x,A = a, CM)

+C(A)

Given a spending budget B, the label acquisition problem
is then to find the optimal subset

A∗ = argmin
A⊆Y,C(A)≤B

L(A)

minimizing the sum of expected misclassification cost and
acquisition cost.

The computational complexity of finding the optimal A∗

depends on two main factors. The first is the computational
complexity of computing and updating the conditional prob-
abilities P (Yi|X = x,A = a) for the expected misclassifica-
tion computations. The second factor is how the search
space of A∗ is factored when a specific Yi is acquired. Un-
less very restrictive assumptions about the structure of the
underlying collective model are made, such as linear depen-
dence on the neighborhood and attributes, the problem is
at least NPPP-complete [10], and this is the case for our
model CM .

Since finding the optimal solution to the label acquisition
problem is intractable in a general setting, we must resort to
approximate techniques. In the next sections, we describe
three such techniques. The first is a greedy strategy based

on approximate inference. The second is based on an anal-
ogy to viral marketing. The third is a simple yet effective
and intuitive approach based on learning how to correct the
mistakes. We also compare to simple strategies based on
structural properties of the network.

3. APPROXIMATE INFERENCE AND
GREEDY ACQUISITION (AIGA)

There are two reasons why finding the optimal solution is
intractable: 1) exact probability computation is intractable
in general, and 2) unless the probability space for A∗ can
be factored, one needs to consider all possible acquisition
subsets A ⊆ Y, which is exponential in the size of Y.

The first technique we propose, approximate inference and
greedy acquisition (AIGA), is the most obvious approach.
Instead of computing the exact probabilities when calcu-
lating the expected misclassification costs, we approximate
them. For instance, when the underlying model is an undi-
rected graphical model, such as Markov random field, there
are many approximate inference techniques we can make use
of, such as loopy belief propagation [28], variational meth-
ods [8], Gibbs sampling [5], etc. If the underlying model is
a collection of local conditional models, then one can use
iterative approaches to compute the probabilities [19, 13].

Moreover, instead of considering all possible subsets of
Y, we take a greedy selection approach, where we consider
each label independently and greedily acquire the label that
minimizes the objective L(A).

Let the valueaiga(Yi) be defined as the reduction in the
objective function when the value of Yi is acquired:

valueaiga(Yi) , L(A ∪ {Yi})− L(A).

The overall label acquisition problem is then solved by us-
ing approximate inference to find the label Yi that has the
maximum value(Yi) and whose inclusion in the acquisition
set is not going to cause us to exceed the budget, acquire
the value for it, and repeat the process until the budget is
exhausted (Algorithm 1). Note that the value calculation
at step 7 is essentially an expected value of information cal-
culation [6] and it requires running the inference procedure
for each possible label.

Algorithm 1: Approximate inference and greedy acqui-
sition (AIGA) algorithm.

Input: G – the test graph, CM – the learned collective
model, cij – misclassification costs, Ci – the
acquisition costs, B – the budget

Output: A – the set of acquisitions
A ← ∅1

while C(A) < B do2

Ymax ← nil3

maxV alue← −∞4

for Yi ∈ Y \ A do5

if valueaiga(Yi) > maxV alue ∧C(A∪ {Yi}) ≤ B6

then
maxV alue← valueaiga(Yi)7

Ymax ← Yi8

A ← A∪ {Ymax}9

The success of this method depends on a number of things.
First, the accuracy of this method depends heavily on the



precision of the estimated probability values. If the probabil-
ity estimates are not well-calibrated, then the expected mis-
classification costs will be incorrect [29], making the valueaiga

calculations meaningless. Second, the time this acquisition
method takes to run depends on the time complexity of the
approximate inference technique; we need to calculate the
valueaiga of each label, which requires running the inference
algorithm once for each node and once for each possible value
of the label. Thus, when the number of nodes and the num-
ber of possible labels are high, and if the inference technique
is expensive, this acquisition method can be very slow.

4. VIRAL MARKETING ACQUISITION (VMA)
Another, simpler, approach to label acquisition is based

on an analogy to viral marketing [9, 23]. In the viral mar-
keting setting, we have customers that are potential buy-
ers of a product and the customers have relationships be-
tween each other, such as family, friendship, co-worker, etc.
When a customer buys a product, the customer advertises it
(by word of mouth) to his or her neighbors in the network.
Through marketing, we can (hopefully) increase the chance
that a customer will buy a product by marketing to the right
set of customers. Thus, similar to the label acquisition prob-
lem, there is then a question of to which subset of customers
we should market, in the hope that these customers will like
the product, buy it, and recommend it to their neighbors,
who will hopefully buy and recommend it in turn.

The analogous mapping to label acquisition for collective
classification is as follows. There are nodes (customers) that
we need to classify and we have the choice to acquire the la-
bels for (market to) some of them. Our task is to choose an
initial set of labels to acquire so that the number of correctly
classified nodes (the customers who buy the product) in the
end is maximized. This implicitly assumes that the misclas-
sification costs cij are symmetric and equal; i.e., cij = cji

for all i, j.
There are many viral marketing approaches that differ in

the formulation of the problem, the assumptions that they
make, and the solutions that they offer [9, 23]. Reviewing
these work and discussing the differences is beyond the scope
of this paper. Our viral marketing formulation is based on
one of the recent formulations, the formulation of Richard-
son & Domingos [23], that has an exact solution. We next
describe the details of the formulation and the mapping.

For the viral marketing formulation, for each node Vi,
we introduce a new indicator variable Ti, which indicates
whether Yi is predicted correctly. Whether a prediction is
correct depends on the informativeness of the attributes Xi,
whether its neighbors Ni are correctly classified, and which
labels are acquired, A. Following [23] we make the assump-
tion that this probability is a linear combination of a local
probability and a relational probability as follows:

P (Ti|Ni, Xi,A) , βiPl(Ti|Xi,A) + (1− βi)Pr(Ti|Ni,A)

where βi denotes how much an instance depends on its local
attributes versus its neighbors, where the local probability
Pl is defined as:

Pl(Ti|Xi,A) ,

{

1 if Yi ∈ A
max

yk

P (Yi = yk|Xi) otherwise

and the relational probability Pr is a linear combination of
the statuses of the neighbors:

Pr(Ti|Ni,A) =
1

|Ni|

∑

Yj∈Ni

Tj .

The probability P (Yi = yk|Xi) can be computed by learning
a classifier on the train graph Gtr.

The objective now is to make acquisitions so as to maxi-
mize the total probability of correctly classifying the nodes
in the network. To find out which labels will be the most
valuable ones, we calculate two intuitive measures. The first
one measures how much a unit change in Pl(Ti|Xi,A) will
affect the network:

∆(Yi) ,
∑

Vj∈V

∂P (Tj = 1|Xj ,A)

∂Pl(Ti|Xi,A)

The second one measures how much an instance’s probabil-
ity of correct classification is increased when we acquire the
label for it:

∆P (Yi) = βi (Pl(Ti|Xi,A ∪ Yi)− Pl(Ti|Xi,A))

Then, the effect that acquiring a label Yi will have in the
network, i.e., the value of a label is just a product of the
two.

valuevma(Yi) = ∆(Yi)∆P (Yi)

We omit some of the details about how to derive these equa-
tions. The interested reader can refer to [23].

The acquisition strategy is then as follows. First compute
the valuevma of each label, and then iteratively acquire the
label with the highest value until the budget is exhausted
(Algorithm 2). Note that because this particular viral mar-
keting model has an exact solution, the values for the labels
need not be recomputed at each step.

Algorithm 2: Viral marketing based acquisition (VMA)
algorithm. Assumes uniform costs for the labels, and
assumes the misclassification costs are symmetric.

Input: G – the test graph, Ci – the acquisition costs
(assumed uniform), B – the budget

Output: A – the set of acquisitions
A ← ∅1

while C(A) < B do2

Ymax ← nil3

maxV alue← −∞4

for Yi ∈ Y \ A do5

if valuevma(Yi) > maxV alue ∧C(A∪ {Yi}) ≤ B6

then
maxV alue← valuevma(Yi)7

Ymax ← Yi8

A ← A∪ {Ymax}9

With these assumptions, our formulation is same as that
of [23] with only one subtle difference. In the viral market-
ing domain, when a person is marketed a product, there is
still a non-zero probability for that person not buying the
product. In label acquisition, however, we assume that we
can acquire labels with perfect information; that is, there is
no uncertainty about a node’s label after we acquire it.



5. REFLECT AND CORRECT (RAC)
The next method that we introduce is based on a simple

intuition: The set of instances that the collective classifi-
cation model misclassifies tend to be clustered together be-
cause misclassifying one instance makes it very likely that its
neighbors will be misclassified as well (propagation of incor-
rect information). Thus, there are islands (or peninsulas) of
misclassification in the graph – sets of connected nodes that
are misclassified. If we can find these islands of misclassifi-
cation, then we can potentially trigger correct classification
of those islands by acquiring labels for a few of the nodes in
these islands. The question is then how to find the islands
of misclassification.

We first focus on finding out when a prediction for a par-
ticular node is correct. We again associate a random variable
Ti with each Vi ∈ V, denoting whether the prediction for Yi

was indeed correct. But, this time, instead of using the mod-
eling we did in the viral marketing approach, we construct
some features that are possible indicators of whether a node
is misclassified, and we learn a classifier on these features
to model the dependence of Ti on the constructed features.
To perform the learning phase, we use the label information
of the training graph Gtr, and predictions of the collective
model CM on the training graph. We next describe the
features we constructed for this task.

We construct three simple features, one local, one rela-
tional, and one global. Intuitively, the local feature captures
how much the attributes disagree with the classification de-
cisions of the collective model CM . The relational feature
captures how likely it is that the neighbors of an instance are
also misclassified. Lastly, the global feature captures how
different the posterior distribution of the classes is from the
expected prior distribution. We next explain these features
in detail and provide mathematical definitions for them.

The local feature measures how far the prediction of CM

is from the truth according to the attributes. Assume that
we predict Yi = yj using CM . Then, the local feature for
node Vi is defined as:

lfi , 1− P (Yi = yj |Xi)

Again, we can compute P (Yi = yj |Xi) by learning a local
classifier on the nodes of the train graph Gtr. The intuition
behind the local feature lf is that if the attributes of a node
disagree with the prediction based on CM , then it is a signal
for a possible misclassification. The local feature is a mea-
sure of the strength of the disagreement between the local
classifier and the collective model.

The relational feature captures how likely that a node’s
neighbors are also misclassified. The intuition is that if a
node’s neighbors are misclassified, then the node itself is
probably misclassified as well (because the model is a collec-
tive model). There are different possibilities for defining the
relational feature; for instance, it can be defined as a recur-
sive function of Ti, and then it can be computed iteratively.
We take the simplest approach and define it as the average
of the local features, lfj , of the neighbors of the node Vi.

rfi ,
1

|Ni|

∑

Yj∈Ni

lfj

Lastly, the global feature captures the difference between
our prior belief about the class distributions and the poste-
rior distribution that we get based on the predictions. For

example, based on our prior belief, if we expect to classify
20% of the nodes with label yj , but CM predicts 60% of the
nodes as label yj , then some of the nodes that are classified
as yj are probably misclassified.

Let the prior distribution of the class yj be denoted by
Prior(yj) and let the posterior distribution based on the
predictions of CM be denoted by Posterior(yj). The Prior(yj)
can be estimated from the training graph Gtr. Then, we de-
fine the global feature for the node Vi that is predicted as
yj as follows:

gfi ,
Posterior(yj)− Prior(yj)

1− Prior(yj)

Having constructed these three features, we learn a clas-
sifier for P (Ti|lfi, rfi, gfi). The training data for this clas-
sifier comes from the training graph Gtr and the predictions
of CM on this training graph. We used logistic regression
but any vector based classifier will work. Next, we define
the value of a particular acquisition.

valuerac(Yi) = δ(P (Ti = 0|lfi, rfi, gfi) > 0.5)+
∑

Yj∈Ni

δ(P (Tj = 0|lfj , rfj , gfj) > 0.5)

where δ(predicate) = 1 if the predicate is true, 0 other-
wise. The value of acquiring the label Yi is the number
of nodes that are misclassified in the neighborhood of this
label, including itself, that can potentially be corrected by
this acquisition. Our acquisition method is then to greedily
acquire the labels that have the highest value, until the bud-
get is exhausted (Algorithm 3). We again assume symmetric
misclassification costs and uniform acquisition costs.

Algorithm 3: Reflect and Correct (RAC) based acqui-
sition algorithm. Assumes uniform costs for the labels,
and assumes the misclassification costs are symmetric.

Input: G – the test graph, Ci – the acquisition costs
(assumed uniform), B – the budget

Output: A – the set of acquisitions
A ← ∅1

while C(A) < B do2

Ymax ← nil3

maxV alue← −∞4

for Yi ∈ Y \ A do5

if valuerac(Yi) > maxV alue ∧ C(A ∪ {Yi}) ≤ B6

then
maxV alue← valuerac(Yi)7

Ymax ← Yi8

A ← A∪ {Ymax}9

Update the predictions on Y \ A using the acquired10

value of Ymax and CM .
Update the constructed features based on the new11

predictions.

We next describe the experimental setup and results on
some synthetic and real datasets.

6. EXPERIMENTS
We compared the three methods, AIGA, VMA, and RAC,

two methods that are based on network structural mea-
sures, a random (RND) acquisition method, no acquisition
(NONE), and perfect information PI, and we report accu-
racies on both real and synthetic datasets.



The first of the acquisition methods based on network
structure is degree acquisition, (DEG); it first ranks the
nodes according to their degree in the graph and then ac-
quires labels until the budget is exhausted. The second
method, K-Mediods clustering (KM), first clusters the net-
work into a prespecified number of clusters and then acquires
the labels for the centers of the clusters. Rattigan et al. [22]
showed that KM outperformed other structural methods,
such as betweenness, degree, closeness, etc.

The accuracies corresponding to no acquisition, NONE,
were useful in two ways. When this method performs poorly,
it is a good indicator for possible “floods” in a graph. We are
also able to see how much the acquisitions helped. The per-
fect information PI accuracies, on the other hand, are useful
to compare how close the acquisition methods are to the op-
timal solution. Recall that finding the optimal solution is
intractable; thus, we computed PI accuracies by letting the
collective classifier look at the labels of the neighbors of a
node when it is making a decision about the node. Note that
PI accuracy can still be suboptimal because PI is evaluated
on Y whereas the acquisition methods are evaluated on Y\A.
A can potentially include the noisy labels on which even the
Bayes Optimal classifier can make mistakes.

To be able to compare all these methods, we assumed uni-
form acquisition costs and symmetric misclassification costs.
Thus, the budget B determined how many labels we can ac-
quire and we used accuracies to compare the methods with
each other. For both synthetic and real datasets, we used
a pairwise Markov random field [26] as our collective model
CM and used loopy belief propagation [28] for the inference.
As a local model, LM , of the attributes, we used Naive
Bayes, and we used Logistic Regression for RAC. We used
Naive Bayes for the local attributes because that matched
the generative model for the synthetic data. Naive Bayes
also performed comparably well with logistic regression on
the real data. We used logistic regression for RAC because
the features were numeric and logistic regression was able to
handle them better than Naive Bayes with Gaussians.

6.1 Experiments on Synthetic Data
We generated synthetic data using the forest-fire graph

generation model [12]. The forest fire model is shown to
exhibit many real-world phenomenon such as power law de-
gree distribution, small world effect, and shrinking diame-
ters. However, the forest-fire method, like most random net-
work generators, does not generate labels and attributes for
the nodes. In order to label the nodes, we used the method
that Rattigan et al. [22] described, and after generating the
labels for the nodes, we generated attributes for each node
using a Naive Bayes model.

For our evaluation, for each training graph, we learned
our collective, local, and RAC models, and then generated
five test graphs and compared the acquisition methods on
the test graphs, varying the number of labels acquired. We
repeated this procedure five times. We report average accu-
racies over the 25 test graphs.

6.1.1 Repeatability
Following Rattigan et al. [22], we used a forward burning

probability of 0.4 and a backward burning probability of
0.2. We labeled each node with one of 5 possible labels and
generated 20 binary attributes using a simple Naive Bayes
generation model; 4 attributes - indexed by the class - were

Figure 1: Accuracy comparison for graphs of 100
nodes. All methods significantly outperform the
random acquisition. AIGA does worse than other
acquisition methods. There are not significant dif-
ferences between VMA, DEG, and KM. RAC out-
performs all methods, and the differences are statis-
tically significant starting with 20% acquisition.

generated with a probability of success of 0.65 for the correct
label and 16 attributes were generated with a probability of
success of 0.4 for the other labels. We varied the number of
nodes for different experiments and we report those numbers
in the respective results sections. We used β = 0.5 for the
VMA approach, following [23].

6.1.2 Results
Even though the AIGA method is a polynomial-time al-

gorithm, each single acquisition decision requires running
inference for each node and for each possible value of its la-
bel. Thus, it is impractical to run AIGA on large graphs.
We begin by comparing all the methods including AIGA on
small graphs, graphs of 100 nodes, and then compare the
remaining methods on larger graphs of 2000 nodes.

For each experiment, we first report the average degree,
assortativity [20], how well the local model LM does on
average, and the average perfect information PI accuracies.

The first set of graphs of 100 nodes had an average degree
of 3.36 and an assortativity of 0.62. LM had an average
accuracy of 0.62, NONE had an average accuracy of 0.28,
and average PI accuracy was 0.80. These large differences
between NONE and LM and NONE and PI are a good in-
dication of “flooding.” The big difference between LM and
PI also shows that collective classification has the potential
to improve dramatically over flat classification. We varied
the percentage of labels acquired from 5% to 30% with 5%
increments. We show the accuracy comparisons for the ac-
quisition methods in Figure 1.

There are four important results to observe from Figure 1.
The first one is that label acquisition can alleviate flooding
and that the choice of which nodes to label does matter
because all informed methods outperformed the random ac-
quisition significantly at all levels of acquisition.

Second, all other informed acquisition methods outper-



Figure 2: Accuracy comparison for graphs of 2000
nodes and high assortativity. RAC significantly out-
performs all other methods at all percentages. The
differences between RAC and the closest runner-up
is sometimes 10% i.e., 200 nodes. The differences
between VMA, DEG, and KM are not statistically
significant.

formed the AIGA method significantly. This is surprising at
first, because one would expect the AIGA method to per-
form the best. However, recall that the inference technique is
loopy belief propagation, which is an approximate method of
probability computation, and it is known to produce subop-
timal results when there are many short cycles in the graph.
Given the assortativity of the data, we see that beliefs about
the nodes’ labels reinforce each other iteratively, and thus
most of the probability distributions for the nodes’ labels
are spike distributions that spike at value 1 for one label
value and at 0 for the other values. Because the probabili-
ties are extreme, the valueaiga computations for labels were
not very discriminative.

The third observation is that KM did not perform better
than the DEG method. This is in contrast to the results
that Rattigan et al. [22] observed. There are at least three
possible explanations for DEG performing equally well, or
sometimes better than KM. The first reason is that we use
attributes in our setup whereas in their setup only node
labels were used. The second reason is our collective model
is a pairwise MRF whereas they used a relational neighbor
classifier [14]. And a third reason may be that the DEG
heuristic is breaking cycles and thus allowing the loopy belief
propagation to converge to the correct distribution.

The final observation is that the RAC method outper-
formed all the other methods at all levels of acquisition.
The differences between RAC and AIGA and RAC and KM
are statistically significant at all percentages. The differ-
ence between RAC and VMA and RAC and DEG became
statistically significant at percentage 20% and remained sig-
nificant thereafter.

We next compare the acquisition methods except AIGA
on much larger graphs, graphs of 2000 nodes. We varied the
level of assortativity to compare the methods at different
settings. We first discuss results for high assortativity.

Figure 3: Accuracy comparison for graphs with low
assortativity. We observe similar trends with the
previous experiments. The only difference is that
the accuracy gaps are not as big anymore, because
nodes have a lesser impact on their neighbors due
to lower assortativity.

The average degree for highly assortative graphs was 3.83
and the mean assortativity was 0.80. LM had an average
accuracy of 0.51 and PI accuracy as 0.93. We varied the
percentage of labels acquired from 1% to 5% with 1% in-
crements, and we also show comparison at 10% to show the
longer term trends. We show the accuracy comparisons for
the acquisition methods in Figure 2.

We observe similar trends with the experiments on the
larger graphs, only at a finer detail. Flooding is a problem
that needs to be dealt with and RAC outperforms all other
methods significantly at all percentages. The difference be-
tween RAC and the closest runner-ups are sometimes as high
as 10% (i.e., 200 more nodes are labeled correctly by RAC),
and the difference between RAC and random acquisition is
sometimes as high as 20%. As for VMA and DEG, there
is not a clear winner. Both approaches outperform KM ini-
tially, but KM catches up, and even outperforms them when
we acquire 10% of the labels, though the differences are not
statistically significant at p = 0.05.

It is important to note that the forest fire model generates
graphs with power-law degree distributions. That is, while
there are some high degree nodes, there are not that many
high degree nodes in graph. Thus, after a certain number
of labels are acquired by the DEG method, the labels corre-
sponding to the high degree nodes will already be acquired,
and DEG will be choosing any regular node. When that
happens, KM becomes a more intelligent method.

We finally present results on graphs with lower assortativ-
ity. The average degree was 3.78 and the mean assortativity
was 0.61. LM had an average accuracy of 0.51 and PI accu-
racy as 0.85. We show the accuracy comparisons in Figure 3.

We again observe similar trends; the only difference is that
the improvement over random acquisition is not quite as pro-
nounced because acquiring a label for a node does not affect
its neighbors as much anymore due to lower assortativity.



Figure 4: Accuracy comparison for the Cora dataset.
The RAC method performed significantly better the
other methods, a difference of up to 18% compared
to the closest runner-up. The differences between
the other methods were not statistically significant.

6.2 Experiments on Real Data
We experimented on two real publication datasets that

are publicly available, the Cora dataset [17] and the Cite-
Seer dataset [4]. The Cora dataset contains a 2708 machine
learning papers that are divided into 7 classes, while Cite-
Seer dataset has 3312 documents that are divided into 6
classes.

Our evaluation methodology is slightly different from the
general practice. In real life scenarios, we usually have much
smaller labeled data compared to the unlabeled data. This
difference in the proportion makes the interactions between
the unlabeled nodes more common than the interactions be-
tween the labeled and unlabeled nodes. To mimic these two
observations, we adopted the following evaluation strategy.

We divided each dataset into three disjoint splits and re-
peatedly trained on one split and tested on the remaining
two (in contrast to training on two splits and testing on
the other). Additionally, we did not make use of the edges
between the labeled nodes and the unlabeled ones during
inference.

Because of these changes in the evaluation strategy, which
we believe results in a more realistic evaluation, the accura-
cies corresponding to NONE are very low compared to the
numbers reported in the literature. The primary reason is
that the test graph is more amenable to flooding now, be-
cause it is large and there are no interactions between the
test graph and the training graph. However, the PI accu-
racies are close to the previously reported numbers [24].

We first present results on the Cora dataset. The Cora
splits had an average degree of 3.32 and mean assortativity
of 0.79, which is relatively high. This lead to a noticeable dif-
ference between the LM performance and PI performance,
which were 0.61 and 0.77 respectively. The accuracy com-
parisons for the Cora dataset are presented in Figure 4.

We observed similar trends in Cora to the ones we ob-
served in the synthetic datasets. RAC performed signifi-

Figure 5: Accuracy comparison for the CiteSeer
dataset. RAC outperformed all other methods sig-
nificantly. The differences between the other meth-
ods were not statistically significant.

cantly better than other methods, achieving up to 18% ac-
curacy difference over the closest runner-up, which is the
DEG method. The DEG method outperformed both VMA
and KM but the differences were not statistically significant.
Interestingly, VMA started with a low accuracy compared
to others but improved more steeply.

We finally present results on the CiteSeer dataset. The
splits had an average degree of 2.71 and a mean assortativ-
ity of 0.68, which was lower compared to that of Cora, thus
the difference between LM and PI was not as large; LM

performance was 0.57 and PI performance was 0.61. How-
ever, even with lower assortativity, we observed the “island
effect,” the accuracies without any acquisition was consider-
ably low (Figure 5). For this dataset, we observed exactly
the same trends we had for the Cora dataset.

We ran some preliminary experiments using Iterative Clas-
sification Algorithm [13] instead of a pairwise MRF as the
underlying collective model and observed similar results. We
omit the results due to space limitations.

7. RELATED WORK
Substantial research has been done on the area of active

learning [3, 27, 16]. While active learning is related to label
acquisition during inference, the aim for active learning is
to acquire labels to learn a good model. We are instead
acquiring labels during inference.

Another related area is viral (or targeted) marketing [9,
11, 21, 23], where a subset of customers need to be selected
for targeted advertisement so as to maximize the product
sales. We showed how viral marketing is related to label
acquisition and used Richardson & Domingos’s model [23]
to compare against. Other models could very well be used
and compared against; one of the reasons we chose [23] is
the fact that the exact solution was tractable.

The work in feature-value acquisition during testing [1, 25]
is very related to the label acquisition problem; however, the
focus has been on acquiring feature values, not labels, and
also they considered acquisition for non-graph data.



The most related work is that of Rattigan et al. [22]. As
far as we know, they are the first to publish directly on label
acquisition during inference. They compared different acqui-
sition methods based on network structural measures, such
as degree and betweenness, and they suggested a method
based on clustering the network and empirically showed that
the clustering method performed the best. They assumed
that the nodes did not have any attributes, thus their method
did not require any training data. We made different as-
sumptions about the data, that is, the nodes had attributes
and we had some training data available. We implemented
their method and compared with it.

Finally, cautious inference [18, 19] can be used to alleviate
the problem of propagation of incorrect information. We
explored using cautious inference, and it helped when the
islands of misclassifications were small, but it did not solve
the problem when the majority of the network was flooded
with a small number of labels.

8. LIMITATIONS AND FUTURE WORK
One of the limitations of the RAC method is that it is

based on the assumptions that the misclassification costs are
symmetric and the acquisition costs are uniform. The second
assumption can be lifted by making use of the probabilities
that the RAC classifier produces about whether a node is
misclassified. However, lifting the first assumption requires
further research.

The RAC method can very well be applied to the viral
marketing domain. RAC can be trained on some labeled
data and can be used to find out “islands of non-buyers,” as
we used it to find islands of misclassification. Then, targeted
advertisement can be done to those islands.

9. CONCLUSIONS
We formulated the problem of label acquisition during in-

ference and discussed why it is an important and hard prob-
lem. We described three informed methods and compared
them to two methods that are based on network structural
measures. The first method that we described is the most
straightforward one and is based on approximate inference
and greedy acquisition. We showed that it does not perform
well in practice. We described another method that is a di-
rect application of viral marketing to label acquisition. This
method performed equally well with the network structural
methods. Finally, we proposed a method that is based on
learning when a collective model makes mistakes and sug-
gests acquisitions to correct those mistakes. We empirically
showed that this method significantly outperformed all other
methods on both real and synthetic datasets.
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spread of influence through a social network. In KDD, 2003.

[10] A. Krause and C. Guestrin. Optimal nonmyopic value of
information in graphical models - efficient algorithms and
theoretical limits. In IJCAI, 2005.

[11] J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. ACM Transactions on the
Web, 1(1):5, 2007.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters. ACM
TKDD, 1(1):177–187, 2007.

[13] Q. Lu and L. Getoor. Link based classification. In ICML,
2003.

[14] S. Macskassy and F. Provost. A simple relational classifier.
In Workshop on Multi-Relational Data Mining in
conj. with KDD (MRDM), 2003.

[15] S. Macskassy and F. Provost. Classification in networked
data: A toolkit and a univariate case study. Journal of
Machine Learning Research, 8:935–983, 2007.

[16] A. McCallum and K. Nigam. Employing em and pool-based
active learning for text classification. In ICML, 1998.

[17] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore.
Automating the construction of internet portals with
machine learning. Inf. Retrieval, 3(2):127–163, 2000.

[18] L. McDowell, K. M. Gupta, and D. W. Aha. Cautious
inference in collective classification. In AAAI, 2007.

[19] J. Neville and D. Jensen. Iterative classification in
relational data. In SRL Workshop in AAAI, 2000.

[20] M. E. J. Newman. Mixing patterns in networks. Physical
Review E, 67(2):026126, Feb 2003.

[21] F. Provost, P. Melville, and M. Saar-Tsechansky. Data
acquisition and cost-effective predictive modeling: targeting
offers for electronic commerce. In Proc. of Int. Conf. on
Electronic Commerce, 2007.

[22] M. Rattigan, M. Maier, and D. Jensen. Exploiting network
structure for active inference in collective classification. In
ICDM Workshop on Mining Graphs and Complex
Structures (MGCS), 2007.

[23] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD, 2002.

[24] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher,
and T. Eliassi-Rad. Collective classification in network
data. Technical Report CS-TR-4905, University of
Maryland, College Park, 2008.

[25] V. S. Sheng and C. X. Ling. Feature value acquisition in
testing: a sequential batch test algorithm. In ICML, 2006.

[26] B. Taskar, P. Abbeel, and D. Koller. Discriminative
probabilistic models for relational data. In UAI, 2002.

[27] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. Journal of
Machine Learning Research, 2:45–66, 2002.

[28] J. Yedidia, W.T.Freeman, and Y. Weiss. Generalized belief
propagation. In NIPS, 2000.

[29] B. Zadrozny and C. Elkan. Learning and making decisions
when costs and probabilities are both unknown. In KDD,
2001.


