
ABSTRACT

Title of dissertation: COST-SENSITIVE
INFORMATION ACQUISITION
IN STRUCTURED DOMAINS

Mustafa Bilgic, Doctor of Philosophy, 2010

Dissertation directed by: Professor Lise Getoor
Department of Computer Science

Many real-world prediction tasks require collecting information about the do-

main entities to achieve better predictive performance. Collecting the additional

information is often a costly process (money, time, risk, etc.) that involves acquiring

the features describing the entities and annotating the entities with target concepts

and labels. For example, document collections need to be manually annotated for

document classification and lab tests need to be ordered for medical diagnosis. An-

notating the whole document collection and ordering all possible lab tests might

be infeasible due to limited resources or may prove unnecessary. Thus, we need

to be selective about which entity we annotate and which features we acquire. In

this thesis, I explore effective and efficient ways of choosing the right information

to acquire under limited resources. Specifically, I develop and empirically evaluate

algorithms for feature and label acquisition in structured domains.

For the problem of feature acquisition, we are given entities with missing

features and the task is to classify them with minimum misclassification cost. The

likelihood of misclassification can be reduced by acquiring features but acquiring

features incurs costs as well. The objective is to acquire the right set of features

that balance acquisition cost and misclassification cost. Because finding the opti-

mal solution is intractable in general, most previous approaches have been greedy.

However, greedy approaches often get stuck in local minima and cannot naturally

address the practical scenario where more than one feature needs to be acquired.

I introduce a technique that can reduce the space of possible sets of features to

consider for acquisition by exploiting the conditional independence properties in the

underlying probability distribution.

For the problem of label acquisition, I consider two real-world scenarios. In

the first one, we are given a previously trained model and a budget determining

how many labels we can acquire, and the objective is to determine the right set of

labels to acquire so that the accuracy on the remaining ones is maximized. In this

setup, the entities appear in a network and acquiring the label of an entity helps us

determine the correct labels of the other entities in the network. I describe a system

that can automatically learn and predict on which entities the underlying classifier is

likely to make mistakes and it suggests acquiring the labels of the entities that lie in

a high density potentially-misclassified region. In the second scenario, we are given

a network of entities that are unlabeled and our objective is to learn a classification

model that will have the least future expected error by acquiring minimum number

of labels. I describe an active learning technique that can exploit the relationships

in the network both to select informative entities to label and to learn a collective

classifier that utilizes the label correlations in the network.

COST-SENSITIVE INFORMATION ACQUISITION
IN STRUCTURED DOMAINS

by

Mustafa Bilgic

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Lise Getoor, Chair/Advisor
Professor Min Wu, Dean’s Representative
Professor Hal Daumé III
Professor David Jacobs
Professor Dana Nau

c© Copyright by

Mustafa Bilgic

2010

Acknowledgments

First and foremost I thank my advisor, Lise Getoor, for her guidance on doing

interesting research, writing good papers, presenting to a wide audience, finding a

job, networking, and many other academic and non-academic issues. She has always

been a very good mentor and tutor and I cannot express enough how much I learned

from her.

I thank the LINQS members – Rezarta Islamaj, Indrajit Bhattacharya, Pri-

htviraj Sen, Louis Licamele, Galileo Mark Namata, Elena Zheleva, Hossam Shara,

Walaa Moustafa, and Lilyana Mihalkova, for their mentorship, for very useful dis-

cussions, for the wonderful work atmosphere, and for the invaluable friendship.

I thank all my collaborators, especially David Jacobs, Paul Bennett, Ben

Shneiderman, Lilyana Mihalkova, Louis Licamele, Prithiviraj Sen, Galileo Namata,

and Daozheng Chen, for all the useful and fruitful discussions and insights. I learned

a lot from them and enjoyed working with them.

I sincerely thank my wife, Ayse, for always being there for me, for her patience

and support when I worked on weekends and late nights, for uplifting my spirit when

experiments and ideas failed, and sharing my joy and happiness when things worked,

and for her smiles that made my days. I also thank our little daughter, Zeynep, for

being a powerful source of happiness and stress-reliever.

I thank those who cannot be thanked enough: my parents, Mehmet Bilgic and

Ummugulsum Bilgic, for their never ending encouragement, support, and love.

ii

Table of Contents

1 Introduction 1
1.1 Feature Acquisition During Inference for Non-Relational Data 5
1.2 Label Acquisition During Learning for Relational Data 7
1.3 Label Acquisition During Inference for Relational Data 8
1.4 Outline and Contributions of this Dissertation 9

1.4.1 Feature Acquisition During Inference:
Value of Information Lattice (VOILA) 10

1.4.2 Label Acquisition During Inference:
Reflect and Correct (RAC) . 11

1.4.3 Label Acquisition During Learning:
Active Learning for Networked Data (ALFNET) 12

2 Related Work 14
2.1 Feature Acquisition . 14
2.2 Label Acquisition . 18
2.3 Other Related Areas . 23

3 Feature Acquisition During Inference 25
3.1 Introduction . 25
3.2 Notation and Problem Formulation 28
3.3 Value of Information Lattice (VOILA) 34

3.3.1 Reducing the Space of Possible Sets 35
3.3.2 EV I Computation Sharing . 37

3.3.2.1 Subset Relationships 38
3.3.2.2 Information Pathways at the Underlying Bayesian

Network . 39
3.3.2.3 Incremental Inference 41

3.3.3 Constructing VOILA . 41
3.3.3.1 Construction Algorithm 43
3.3.3.2 Analysis of VOILA Construction Algorithm 44

3.3.4 Using VOILA for Feature-value Acquisition 46
3.4 Experiments . 47

3.4.1 Search Space Reduction . 47
3.4.2 Expected Total Cost Comparisons 48

3.5 Conclusion . 57

4 Label Acquisition During Inference For Relational Data 59
4.1 Introduction . 59
4.2 Problem Formulation . 63

4.2.1 Collective Classification . 64
4.2.1.1 Iterative Classification Algorithm (ICA) 66
4.2.1.2 Pairwise Markov Random Fields (MRF) 67

4.2.2 Label Acquisition . 69

iii

4.3 Active Inference . 71
4.3.1 Approximate Inference and Greedy Acquisition (AIGA) 72
4.3.2 Viral Marketing Acquisition (VMA) 74
4.3.3 Reflect and Correct (RAC) . 77
4.3.4 Generalized Utility-based Active Inference 84

4.4 Experimental Evaluation . 86
4.4.1 Understanding Flooding . 86

4.4.1.1 Synthetic Data Generation 88
4.4.1.2 The Spectrum of Flooding 89

4.4.2 Experiments Comparing Different Active Inference Techniques 92
4.4.2.1 Experiments on Synthetic Networks with 200 Nodes 94
4.4.2.2 Experiments on Synthetic Networks with 2000 Nodes 95
4.4.2.3 Experiments on Real-world Datasets 101

4.5 Summary and Contributions . 104
4.6 Conclusions . 106

5 Label Acquisition During Learning for Relational Data 108
5.1 Introduction . 108
5.2 Background . 111

5.2.1 Collective Classification . 111
5.2.2 Active Learning . 114

5.3 ALFNET . 114
5.4 Semi-supervision and Dimensionality Reduction 119
5.5 Experiments . 120

5.5.1 Data . 120
5.5.2 Methodology . 121
5.5.3 Results . 123

5.5.3.1 Semi-supervision and Dimensionality Reduction . . . 123
5.5.3.2 Active Learning . 125
5.5.3.3 Ablation Studies . 127
5.5.3.4 Disagreement Computation Strategies 129

5.6 Conclusion . 131

6 Conclusions and Future Work 133
6.1 Summary of Contributions . 133
6.2 Future Directions . 135

6.2.1 Complex Cost Structure . 135
6.2.2 Cost-sensitive Large-scale Data Mining 136
6.2.3 Visualization Support . 137
6.2.4 Other Prediction Tasks . 139

6.3 Conclusion . 139

iv

Chapter 1

Introduction

We often need to make decisions and take appropriate actions in a complex

and uncertain world. Doctors need to diagnose illnesses for patients, judges need

to decide whether the suspects are innocent or guilty, banks need to approve or

deny loan applications, cell phones and computers need to recognize speech, and

email clients need to detect spam. In all these examples and more, we strive to

make accurate judgments and draw the conclusions by gathering as much useful

information as possible; doctors order lab tests for their patients, judges analyze

surveillance videos of the crime scenes, banks check the applicants’ credit scores

and income, and electronic devices and email clients are provided examples such as

transcribed speech and email messages with spam flags.

Unfortunately, however, we are generally limited on the type and amount of

information we can gather. Acquiring the necessary information might cost money,

we might need to act quickly and thus cannot wait to gather and process all the

information we like, and sometimes the information we seek might not be available;

lab tests and credit checks cost money while watching a surveillance video, tran-

scribing speech, and tagging emails with spam flags takes time and effort. Due to

these constraints and limitations, we need to find the right balance between making

the optimal judgments and acquiring more information. This requires us to be se-

1

lective about which information we should gather and process so that the acquired

information will let us reach the best conclusion possible; for e.g., performing all

possible lab tests and watching the whole surveillance video might not be possible,

cost-effective, or even necessary.

The artificial intelligence field in general, and the machine learning, decision

making under uncertainty, and planning subfields in particular provide useful ma-

chinery for drawing the right conclusions and information acquisition decisions. In

this thesis, I focus on a simple yet quite common type of judgment called classifi-

cation. In classification, a situation or an entity, which I generically refer to as the

instance, is described by a set of features and the task is to choose one of pre-specified

categorical alternatives as the judgment, which is called the label. For example, a

patient is described by his/her demographic information as well as lab test results,

and one of a set of pre-specified sicknesses is chosen as the patient’s label. Using

this terminology, the judgment that we make about each instance (patient, suspect,

speech, email, etc.) is to predict its label, and we gather as much useful information

(features and labels) as possible to choose the best label.

To formally define and determine the right balance between a “good” clas-

sification and the right choice and amount of information to gather, we need to

determine when a classification is considered “good.” In theory, a classification is

obviously good if it is correct. Thus, conversely, we pay a penalty when the classi-

fication is incorrect, and this penalty is called the misclassification cost. However,

whether a classification is incorrect is typically not known in practice; thus, a prob-

abilistic version, expected misclassification cost, is used instead. Given the right

2

modeling assumptions, the more information is acquired, the less probable a mis-

classification gets. This inverse relationship calls for determining the right trade-off

between higher acquisition costs and lower misclassification costs, a task I refer to

as cost-sensitive information acquisition for classification.

Cost-sensitive information acquisition can be setup in a few different ways

depending on the application and domain. In some cases, we are given both the

information costs and misclassification costs and we would like to keep acquiring

information as long as the expected reduction in misclassification cost outweighs

the cost of the information. In other cases, we are given a budget to spend and

we need to acquire information so as not to exceed that budget. In other cases,

we are given a target classification performance, and we need to acquire as much

information as needed to reach that target performance. The choice of the setup is

often task and application dependent.

Classification typically has two phases, the learning phase and the inference

phase, and what information can be acquired depends on what phase we are in. In

the learning phase, the classifier is presented with example instances whose feature

values and labels are known. The classifier is learned as a mapping from the feature

values to the labels. Examples include patients with their lab test results and the

correct diagnosis, recorded speech with its transcription, and email text with the

correct spam flag. In this phase, we need to acquire both features and labels to be

able to learn the correct classification function for the underlying domain.

The second phase is called the classification or the inference phase. In this

phase, the classification function, which has been trained in the learning phase, is

3

presented with just the feature values and it is expected to determine the correct

labels. In this phase, we definitely want to acquire (some of) the features. Depending

on the domain and application, however, we might also want to acquire the labels

of a few instances. For a non-relational domain where each instance is treated to

be independent of the other instances during inference, the labels of the instances

that are most likely to be predicted incorrectly can be acquired if the classification

is part of a critical decision-making application. In relational domains, on the other

hand, the instances and their labels are related to one another and thus the label of

an instance can be used as a feature for a related instance. For example, recognizing

a word in a given speech segment can benefit from recognizing other words in the

segment; in this case, acquiring the labels of a subset of the words can help for

correct recognition of the remaining ones.

When we take the cross product of different scenarios, i.e., {feature acquisi-

tion, label acquisition}, {during inference, during learning}, and {for non-relational

data, for relational data}, we have eight possibilities. In this thesis, I focus on three

scenarios that I think are the most practical and yet relatively under-researched.

These are, feature acquisition during inference for non-relational data, label acqui-

sition during learning for relational data, and label acquisition during inference for

relational data. Next, I describe these scenarios in more detail.

4

1.1 Feature Acquisition During Inference for Non-Relational Data

In this scenario, we assume we have an already trained classifier and we are

given instances with missing feature values for which we need to determine the

correct labels. We are also given the cost functions for feature acquisitions and

misclassifications. Our task is to devise a policy that specifies which features to

acquire in what order for a given instance and when to stop acquiring information

and determine a label for it. We assume the instances appear in a non-relational

setting, i.e., the acquisition and classification decisions can be made independently

for each instance. A prototypical example of this problem is medical diagnosis,

where a patient visits a doctor and the doctor needs to order lab tests to determine

the correct diagnosis for the patient; the doctor needs to be selective about which

lab tests to order for the patient.

The feature acquisition costs can have various levels of complexity, as discussed

in detail by Turney (2000). In the simplest case, each feature has an independent

cost and the cost of a set of features is just an additive cost. In a more realistic

setup, the features can belong to groups and the first feature to acquire from its

group incurs an overhead cost. For example, features regarding to various blood

measurements can belong to the blood group and the first feature to acquire from

that group incurs the overhead cost of drawing blood from the patient. Similar

group structure is typical in other domains as well, such as car repair, where the

first of the features that require dismantling the engine incurs an overhead cost; once

the engine is dismantled, then it is cheaper to make various measurements. More

5

complex cost structures are also possible, such as the cost of acquiring a feature

depending on the specific values of the previously acquired features. For example,

a treadmill test measuring the stress level of the patient can be risky for patients of

certain age.

As the last example suggests, the costs do not have to be just monetary costs.

Sometimes, the costs can represent risk. In other cases, the patients can have

preferences for or against certain procedures, and the cost in this case represents

inability to accommodate the preference. Finally, the cost can be the wait time

for the lab test results. Because it is nontrivial address all these different types of

costs simultaneously, existing feature acquisition research typically focuses on only

monetary costs.

Under relatively general assumptions, determining the optimal order in which

features should be acquired and when to stop acquisition is intractable. Features

typically interact with the class label in complex ways; the benefit that a set of

features provides can be more than just the sum of the benefits of the individual

features; a single feature might not be useful, but a set of features can be very use-

ful when ordered together. Similarly, the cost structure can complicate devising the

optimal policy; the cost of a feature can change based on what other features are ac-

quired and what the values of the features turn out to be. Thus, finding the optimal

solution typically requires considering all subsets of features as well as all possible

orderings of all possible outcomes. Because of these intractable computations, most

of the previous approaches to feature acquisition have been greedy, considering each

6

feature in isolation (Gaag and Wessels, 1993). More discussion of the related work

on feature-value acquisition is provided in Chapter 2.

1.2 Label Acquisition During Learning for Relational Data

For many domains, the feature descriptions are freely available, however, the

class label of the instances requires costly processing. For example, it is generally

easy to extract documents from the web, speech data can be collected easily, and

email is abundant. But, annotating the emails with the correct spam tag and

transcribing speech is a tedious process that takes time and effort. This is true for

label acquisition during both learning and inference.

The objective for label acquisition in the learning phase is to reduce the label

acquisition cost while learning the correct classification function. The problem is

typically cast as, given a budget determining the number of labels that can be

acquired, determine the right set of labels to acquire so that we learn the best

possible classifier. This problem is called “active learning” in contrast to passive

learning where the training data is assumed to be given. There is ample work on

active learning for cases where the instances are assumed to be independent and

identically distributed (i.i.d.). A few examples include uncertainty sampling (Lewis

and Gale, 1994) where the label of the instance on which the existing model is most

uncertain is acquired, query by committee (Seung et al., 1992) where the label of

the instance on which a committee of classifiers disagrees the most is acquired, and

estimated error reduction (Roy and McCallum, 2001) where the label of the instance

7

that is expected to provide the most reduction in future error (i.e., misclassification)

is acquired. A more comprehensive discussion of the related work on active learning

is provided in Chapter 2.

However, instances often participate in complex relationships in real-world set-

tings. For example, words in a sentence form a sequence, suspects have connections,

and the loan applicants have co-workers. Classification systems that exploit the rela-

tionships between instances have recently been explored under the name “collective

classification” (see Sen et al. (2008) for an overview) and it has been shown that the

classification performance can be significantly improved by using relational infor-

mation. Active learning that takes the relationships between instances into account

is comparatively under-researched. Even though there has been some work done on

active learning for sequence data (Settles and Craven, 2008), active learning tech-

niques that fully exploit the arbitrary structure in relational data are still needed.

In this thesis, I provide a general purpose active learning algorithm that utilizes the

relationships between the instances for both classification and determining which

instances’ labels to query.

1.3 Label Acquisition During Inference for Relational Data

Label acquisition has been largely studied for the learning phase for historical

reasons. Most of the previous learning techniques assumed i.i.d. data; hence, acquir-

ing the label of an instance in the i.i.d. setting in the inference phase is not helpful

for the remaining instances. However, with the recent surge of network data and the

8

collective models that exploit the relationships between instances, the classification

decisions about related instances are now interdependent. Thus, acquiring the label

of an instance at inference time can be very helpful for the remaining instances. For

example, providing the label of word in a sequence can be very helpful for the labels

of the related words. Acquiring the label of an instance at inference time is referred

as “active inference” (Rattigan et al., 2007b) in contrast to “active learning.”

Finding the optimal set of labels to acquire has been proven to be intractable

even for polytrees by Krause and Guestrin (2005a). The complexity of finding

the optimal solution is expected to be harder for networks of arbitrary structure.

Rattigan et al. (2007b) propose to cluster the network into k clusters and acquire

the labels of the centroids of the clusters. In this thesis, I develop an acquisition

technique that can learn and predict when the underlying collective model is likely

to make mistakes and acquires the label of a central instance in a misclassified region

of the network.

1.4 Outline and Contributions of this Dissertation

In this thesis, I develop cost-sensitive information acquisition techniques for

i) feature acquisition during inference, ii) label acquisition during inference (active

inference), and iii) label acquisition during learning (active learning). I developed

three systems and algorithms to tackle these problems. I listed these techniques in

Table 1.1.

9

Table 1.1: The contributions of this thesis.

Feature-value Acquisition Label Acquisition

During Learning – ALFNET

During Inference VOILA RAC

For the feature-value acquisition problem, I developed a data structure called

Value of Information Lattice (VOILA) and the associated algorithms with it, for the

active inference problem, I developed Reflect and Correct (RAC), and for the active

learning problem, I developed Active Learning for Networked Data (ALFNET). Next,

I briefly describe these techniques.

1.4.1 Feature Acquisition During Inference:

Value of Information Lattice (VOILA)

In this setup, we are given an instance to classify and (some of) the feature

values describing the instance are missing but can be acquired at a cost. The objec-

tive is to develop an acquisition policy that minimizes the sum of feature acquisition

cost and misclassification cost. The optimal solution requires us to consider all pos-

sible orderings of all possible values of all possible features, which makes finding

the optimal solution intractable in general. Many of the previous approaches thus

have been greedy, considering one feature at a time. However, due to its shortsight-

edness, greedy cannot estimate the usefulness of combinations of futures and can

prematurely reject acquiring more information.

10

In Chapter 3, I present a technique that makes reasoning with sets of features

tractable in practice. The idea is based on the intuition tat certain features render

other features useless in real-life settings. For example, ordering a more expensive

lab test might render the information that can be obtained from a cheaper one

useless. Similarly, certain lab tests might be useful only if they are ordered in

combination with other lab tests. We infer these relationships from the data by

learning a Bayesian network and posing independence queries to the underlying

probability distribution (Bilgic and Getoor, 2007). The approach that we propose,

which we call Value Of Information Lattice (VOILA), significantly reduced the search

space, made reasoning with sets of features possible, and outperformed the greedy

approaches on several real-world medical datasets. I discuss VOILA in detail in

Chapter 3.

1.4.2 Label Acquisition During Inference:

Reflect and Correct (RAC)

In the problem of label acquisition during inference, we are given a learned

model of the domain and a budget to spend to acquire labels for some of the in-

stances. Our objective is to acquire the labels of the right set of instances so that in

the end, the performance on the remaining ones is maximized (or equivalently, the

misclassification cost on the remaining ones is minimized).

I developed a technique called Reflect and Correct (RAC) that can learn and

predict when the underlying model is likely to make mistakes (Bilgic and Getoor,

11

2008, 2009, 2010). Rather than using the probability estimates of the underlying

model directly as an estimate of misclassification, I treat it as one of the few features

that indicate a possible misclassification. I also construct a few other features that

are possible indicators of misclassification and use these features to learn a classi-

fier that can predict whether a given instance is misclassified. RAC then suggests

acquiring the labels in the region where the most number of misclassifications are

made are. I empirically show that RAC significantly outperforms several competitive

baselines on both synthetic and real datasets. The RAC method is explained in detail

in Chapter 4.

1.4.3 Label Acquisition During Learning:

Active Learning for Networked Data (ALFNET)

In the problem of label acquisition during learning, we are given a set of

instances whose labels are missing and a budget that determines how many instances

we can label. The objective is to acquire the labels for the right set of instances so

that in the end we can learn the best possible model under the given budget. Most

previous methods dealt with i.i.d. data. I developed an active learning technique for

networked data (ALFNET) that can take the relationships in a network into account

for both determining which labels to acquire and classifying related instances (Bilgic

et al., 2010).

ALFNET works as follows. It makes sure that the acquired labels will be a

representative sample of the underlying domain by clustering the network into a

12

small number of groups and distributing the label acquisitions across clusters. To

determine which instances to label in each cluster, ALFNET capitalizes on the dis-

agreement between a classifier that uses the relationships in the network, another

classifier that uses only the local information about each instance, and the majority

label in the cluster. I describe ALFNET in more detail in Chapter 5.

The rest of the thesis is organized as follows: I discuss related work on feature

acquisition and label acquisition in Chapter 2. Then, I discuss our techniques for

feature acquisition during inference, label acquisition during inference, and label

acquisition during learning in Chapters 3, 4, and 5 respectively. Finally, I discuss

future directions and conclude in Chapter 6.

13

Chapter 2

Related Work

In this chapter, I review related work on cost-sensitive feature and label acqui-

sition. I first discuss feature acquisition and then move to label acquisition. Finally,

I discuss other related areas that deal with missing and scarce information.

2.1 Feature Acquisition

In the feature acquisition problem, we are given instances with missing feature

values and the task is to classify these instances. Misclassifying the instances is

costly and the less we know about the instances, the more likely we are to misclassify

them. We are given the option to acquire the values of the missing features, however,

acquiring features is costly as well. The task is to devise an acquisition policy that

can both decide which features to acquire in what order, and when to stop acquisition

and classify the instance. This policy can be best thought of as a decision tree

where each non-leaf node represents a feature acquisition, each edge represents an

observed value of the acquired feature, and each leaf node represents a classification.

The objective is devise the optimal policy that has the minimum combined cost of

acquisition and misclassification.

Decision theoretic value of information calculations provide a principled method-

ology for information gathering in general (Howard, 1966; Lindley, 1956). Influence

14

diagrams, for example, are popular tools for representing decisions and utility func-

tions (Howard and Matheson, 1984). However, because devising the optimal acqui-

sition policy (i.e., constructing the optimal decision tree) is intractable in general,

most of the approaches to feature acquisition has been myopic (Dittmer and Jensen,

1997), greedily acquiring one feature at a time. The greedy approaches typically dif-

fer in i) the problem setup they assume, ii) the way the features are scored, and

iii) the classification model being learned. I review some of the existing work here,

highlighting the differences between different techniques in these three dimensions.

Gaag and Wessels (1993) considers the problem of “evidence” gathering for

diagnosis using a Bayesian Network. In their setup, they gather evidence (i.e.,

observe the values of the variables) until the hypothesis is confirmed or disconfirmed

to a desired extent. They propose an acquisition algorithm that greedily computes

the expected utility of acquiring a feature and chooses the one with the highest

utility. They define the utility as the absolute value of the change in the probability

distribution of the hypothesis being tested.

It is important to note that the distinction between a feature and a label

is fuzzy in joint probabilistic models such as a Bayesian Network. We refer to a

random variable as the label if it represents the class variable to be predicted and

the random variables that help for predicting the label as the features, following the

terminology used in classification. Given this terminology, in a Bayesian Network,

the query variable(s) is the label and the rest are the features; feature acquisition

problem is then deciding which feature variables to observe and include as evidence.

Depending on the application, any of the variables can act as a label or a feature.

15

Núñez (1991) introduces a decision tree algorithm called EG2 that is sensitive

to the feature costs. Rather than splitting the decision tree at a feature that has high

information gain, EG2 chooses a feature that has least “information cost function,”

which is defined as the ratio of a feature’s cost to its discriminative efficiency. EG2 is,

however, is not directly optimized to balance the misclassification cost and feature

acquisition cost; rather it is optimized for 0/1 loss while taking the feature costs

into account. Similarly, Tan (1990) modifies the ID3 algorithm (Quinlan, 1986) to

account for feature costs. Tan considers the domain where a robot needs to sense,

recognize, and act, and the number of features is very large. For the robot to act

efficiently, it needs to trade-off accuracy for efficiency.

Turney (1995) builds a decision tree called ICET (standing for Inexpensive

Classification with Expensive Tests) using a genetic search algorithm (Grefenstette,

1986) and using Núñez (1991)’s criteria to build C4.5 decision trees (Quinlan, 1993).

Unlike Núñez, Turney takes misclassification costs into account (in addition to the

feature costs) to evaluate a given decision tree and looks for a good decision tree

using genetic search algorithms.

Yang et al. (2006) build cost-sensitive decision trees and Naive Bayes classifiers

that take both feature costs and misclassification costs into account. Unlike Núñez

(1991), who scores features based on information gain and cost ratio, Yang et al.

score features based on expected reduction in total cost (i.e., sum of the feature cost

and misclassification cost) on the training data. By doing so, they take feature costs

and misclassification costs into account directly at learning time.

16

Bayer-Zubek (2004) formulate the feature acquisition problem as a Markov

Decision Process and provides both greedy and systematic search algorithms to de-

velop diagnostic policies. Bayer-Zubek takes both feature cost and misclassification

costs into account and automatically finds an acquisition plan that balances the

two costs. She introduces an admissible heuristic for AO* search and describes

regularization techniques to reduce overfitting to the training data.

Saar-Tsechansky et al. (2009) considers active feature acquisition for classifier

induction. Specifically, they are given a training data with missing feature values,

and a cost matrix that defines the cost of acquiring each feature value, they describe

an incremental algorithm that can select the best feature to acquire iteratively to

build a model that is expected to have high future performance. The utility of

acquiring a feature is estimated in terms of expected performance improvement per

unit cost. The two characteristics that make this work different from most of the

previous work is that i) the authors do not assume a fixed budget apriori; rather

they build the model incrementally, ii) each feature can have a different cost for

each instance.

Finally, Greiner et al. (2002) analyze the sample complexity of dynamic pro-

gramming algorithms that performs value iteration to search for the best diagnostic

policies. They analyze the problem of learning the optimal policy, using a variant

of the probably-approximately-correct (PAC) model. They show that the learning

can be achieved efficiently when the active classifier is allowed to perform only (at

most) a constant number of tests and show that learning the optimal policy is often

intractable in more general environments.

17

2.2 Label Acquisition

For the label acquisition problem, we are typically given a budget to spend

on acquiring labels and we need to determine which instances’ labels should be

queried in order to i) learn the best possible classification function (learning phase),

ii) achieve the best performance on the remaining instances (inference phase) while

operating within that budget. Label acquisition during learning is called “active

learning” where the classifier is considered “active” in choosing the training data for

itself, and it is called “active inference” if the labels are acquired during inference.

I review some of the related work on active learning and active inference in this

section.

Active learning is considered in three typical scenarios (Settles, 2009): i) mem-

bership query synthesis, ii) stream-based selective sampling, and iii) pool-based

active learning. In the membership query synthesis setting, the active learner con-

structs a “synthetic” example instance with certain feature values and asks the

oracle for the label of that instance (Angluin, 1988, 2001). In the stream-based se-

lective sampling, the active learner draws an example instance from the actual data

distribution and then the learner decides whether to ask the label for it or discard

it (Cohn, 1996). In the pool-based active learning scenario, a large collection of

unlabeled instances is available, which is also called the pool, and the active learner

requests the label for a member of the pool (Lewis and Gale, 1994). In this chap-

ter, I focus on related work that is most relevant to the approaches that I propose.

Please see (Settles, 2009) for a comprehensive and running survey of active learning.

18

In all three scenarios, the active learner associates a score with the instance to

label and queries the label of the instance with the best score. Techniques typically

differ in how they score an instance. In most of the approaches, the instance that

is expected to reduce the version space (Mitchell, 1982) the most is chosen to be

labeled. However, because exact computation of the version space is nontrivial even

for most simple classifiers, most techniques employ heuristic approaches to score the

instances.

One of the early approaches is query-by-committee, probably first discussed

in the active learning setting by Seung et al. (1992). In the query-by-committee

approach, a committee of classifiers is maintained, and the instance on which the

committee members disagree the most is chosen to be labeled. When the classi-

fiers are chosen from the same hypothesis space, query-by-committee reduces the

version space with each label acquired. Seung et al. (1992) use Gibbs sampling to

sample hypothesis from the model distribution. Abe and Mamitsuka (1998) form

the committee members using the bagging (Breiman, 1996) and boosting (Freund

and Schapire, 1997) techniques. Similarly, Cohn et al. (1994) keep two hypothesis,

the most general one and most specific one, and acquire a label on the region where

these two hypotheses disagree. Finally, Tong and Koller (2001) approximate the

version space for Support Vector Machines (Cortes and Vapnik, 1995) and acquire

the label for the instance that is expected to reduce the version space the most.

Another important and arguably the most commonly used active learning

strategy due to its simplicity is uncertainty sampling (Lewis and Gale, 1994). In

this technique, the classifier is learned on the existing labeled data (a small number

19

of instances can be chosen at random initially), and then the label of the instance

on which the existing classifier is most uncertain is acquired. For probabilistic clas-

sifiers, uncertainty can be measured using entropy (Shannon, 1948) or conditional

error; for margin based approaches, such as Support Vector Machines, uncertainty

can be measured as the distance from the separating hyper-planes (Tong and Koller,

2001).

In addition to query-by-committee and uncertainty sampling, many other im-

portant sampling techniques have also been proposed. Roy and McCallum (2001)

score the instances based on how much they are expected to reduce the expected

future error. Similarly, Settles et al. (2008) score instances based on how much they

are expected to change the model parameters. Cohn et al. (1996) score the instances

based on how much they are expected to reduce the variance (Geman et al., 1992)

and Cohn (1997) scores the instances based on how much they are expected to

reduce the bias.

An important obstacle for active learning is the possibility of acquiring the

labels of outlier and noisy instances. This problem is especially present for tech-

niques that are based on version space reduction, uncertainty sampling, query-by-

committee, and expected model change. One way to tackle this problem is to weight

the scores of each instance by their “representative-ness.” For example, Settles and

Craven (2008) weight the uncertainty score of an instance by its average similarity

to the other instances in the pool. Methods that exploit the cluster structure in the

data also address this problem (Nguyen and Smeulders, 2004; Dasgupta and Hsu,

2008).

20

Most of the approaches described above considered active learning for inde-

pendent and identically distributed (IID) data. There has been growing interest

on cases where the instances form a sequence such as text (Anderson and Moore,

2005; Baldridge and Osborne, 2004; Culotta and McCallum, 2005; Roth and Small,

2006; Scheffer et al., 2002; Settles and Craven, 2008; Settles et al., 2010). Anderson

and Moore (2005) and Scheffer et al. (2002) discuss the framework and algorithms

for active learning of Hidden Markov Models. Baldridge and Osborne (2004) ad-

dress the problem that the data collected using an active learner for a model might

not be ideal to learn another model. Culotta and McCallum (2005) consider the

setup where annotating certain segments of text can be more difficult than others.

Finally, Settles and Craven (2008) evaluate several active learning algorithms for

probabilistic sequence models such as Conditional Random Fields (Lafferty et al.,

2001).

Active learning for networks of arbitrary structure, however, is relatively under-

researched. Zhu et al. (2003) extend the expected future error reduction technique

of Roy and McCallum (2001) to graph data for Gaussian Random Fields. However,

a practical implementation of this technique requires fast incremental training of

the underlying classifier; Zhu et al. show how it can be done for Gaussian Random

Fields, but it is unclear how to extend it to other relational classification models.

Another important setup for label acquisition, in addition to active learning, is

active inference, where a few labels are acquired to help classifying the rest of the in-

stances at inference time. As we have discussed in Chapter 1, active inference makes

the most sense for data and models where the labels of instances are interdependent,

21

so that the acquired labels help for classifying the remaining instances during infer-

ence. Krause and Guestrin (2005a) discuss this problem in the context of value of

information calculations in graphical models. They associate a reward for observing

the value at a node, which is equivalent to acquiring a label, and they show that

reward computations are #P-complete even for discrete polytrees. They also show

that finding the optimal set to acquire in batch mode, where the acquisition deci-

sions are made all at once, is NPPP-complete for discrete polytrees. Finally, they

show that finding the optimal set in a conditional plan, that is the next acquisition

is conditioned on the previous acquisitions, is NPPP-hard for discrete polytrees.

For arbitrary networks, such as citation, friendship, and protein networks, finding

the optimal solution is expected to be at least as hard as, if not harder than, con-

sidering discrete polytrees. In later work, Krause and Guestrin (2005b) show that

the greedy acquisition provides a constant factor (1− 1
e−ε) guarantee for submodular

(Nemhauser et al., 1978) reward functions.

Rattigan et al. (2007a) tackle the active inference problem for networks of

arbitrary structure and proposes a heuristic acquisition scheme, which first clusters

the nodes of the network using a variant of k-means clustering adapted for network

data, and acquires the labels of the centroids of the clusters. They show that the

proposed method outperforms acquisition techniques based on network centrality

measures such as degree, betweenness, and closeness centrality (Freeman, 1979).

22

2.3 Other Related Areas

Troubleshooting:

Troubleshooting address the problem of given a malfunction, find the causes

and execute the necessary repair actions to fix the faulty system (Heckerman et al.,

1995). It is closely related to the problem of feature acquisition. The main differences

can be summarized as follows. In troubleshooting, the system state is given and the

causes need to be found. In feature acquisition, however, the state (label) needs to

be predicted as well as the features need to be acquired. Additionally, in addition

to the pure feature acquisition actions, troubleshooting also has repair actions that

can change the state/label of the system. In feature acquisition, acquiring a feature

is typically assumed not to change the label of an instance.

Imputation:

Imputation is the substitution of missing feature values for instances (Rubin,

1987). Typical imputation techniques include substituting the mean, median, and

mode of the value, which is computed from the observed feature values for other

instances in the domain. It addresses the same problem that feature acquisition

addresses, i.e., missing values; however, feature acquisition considers the possibility

of acquiring the feature at a cost. Additionally, it is expected that imputation might

not be the best solution for domains where feature acquisition is possible, such as

medical domains.

Viral Marketing:

23

Viral marketing looks at the problem of given a social network of customers,

which customers should be targeted for advertisement (or free samples) of a prod-

uct so that the sales of the product in the network is maximized (Richardson and

Domingos, 2002; Kempe et al., 2003; Leskovec et al., 2007a; Provost et al., 2007).

Viral marketing is closely related to active inference in essence; viral marketing aims

at maximizing the number of customers in the “buy” state, whereas active infer-

ence aims at maximizing the number of instances in the “correctly classified” state.

However, there are fundamental differences between the two that warrant specific

techqniues for both. For example, the instances in the viral marketing are typically

either in a binary state or on a continuous scale, whereas in active inference the

instance labels are categorical, and the number of categories can be an arbitrary

number. Moreover, the dynamics of product adaptation in viral marketing versus

label propagation in active inference are likely to be different.

Semi-supervised Learning:

Semi-supervised learning is the name of the technique that uses both labeled

and unlabeled data for learning (Chapelle et al., 2006). The premise behind this

technique is that labeled data is scarce and unlabeled data is abundant. Active

learning also assumes the same setup that labeled data is scarce. Thus, techniques

that combine active learning with semi-supervised learning are expected to be su-

perior (Zhu et al., 2003).

24

Chapter 3

Feature Acquisition During Inference

In this chapter, I discuss feature-value acquisition for classification. Specifi-

cally, I assume that we are given a probabilistic model of the domain and an instance

whose feature values are missing but can be acquired at a cost. I also assume that

there is a misclassification cost in addition to the feature acquisition cost. I discuss

how we can devise a feature acquisition and classification policy that determines

which features to acquire for each instance and when to stop the acquisition and

classify the instance.

3.1 Introduction

We often need to make decisions and take appropriate actions in a complex

and uncertain world. An important subset of decisions can be formulated as a

classification problem, where an instance is described by a set of features and one

of finite categorical options is chosen based on these features. Examples include

medical diagnosis where the patients are described by lab tests and a diagnosis is to

be made about the disease state of the patient, and spam detection where an email

is described by its content and the email client needs to decide whether or not the

email is spam.

25

Much research has been done on how to learn effective and efficient classifiers

assuming that the features describing the entities are fully given. Even though this

complete data assumption might hold on a few domains, such as classifying an email,

the features describing the entities might not be known initially for certain domains

such as medical diagnosis, but the features can be acquired at cost. In addition to

the feature costs, typically misclassifications have costs as well. In this setting, one

is faced with devising a policy that describes which features should be acquired, in

which order, and when to stop and classify the instance.

Devising the optimal policy in general requires considering all possible order-

ings and combinations of the features and their values. To provide some intuition,

some features might be useful only if acquired together, and the cost of acquiring

features can depend on which other features have been acquired. Because devising

the optimal policy is intractable in general, previous work has been greedy (Gaag

and Wessels, 1993; Yang et al., 2006), has approximated value of information calcu-

lations (Heckerman et al., 1993), and has developed heuristic feature scoring tech-

niques (Núñez, 1991; Turney, 1995). Please see Section 2.1 for a more comprehensive

overview of the related work.

The greedy approach, however, has at at least two problems. First, because

it considers each feature in isolation, it cannot accurately forecast the value of

acquiring multiple features together. Thus, it can produce sub-optimal policies.

Second, the greedy strategy assumes that features can be acquired sequentially

and the value of a feature can be observed before acquiring the next one. This

assumption, however, might not be very practical. For example, doctors typically

26

order batches of measurements simultaneously such as blood count, cholesterol level,

etc. For these reasons, we need to be able to reason with sets of features.

Reasoning with sets of features, however, poses tractability challenges. First

of all, the number of subsets is exponential in the size of the feature set. Second,

judging the value of acquiring a set of features requires taking an expectation over

the possible values of the features in the set, which is also exponential in the number

of the features. The good news is that, we do not need to consider all possible subsets

in practice; certain features can render other features useless, while some features

are useful only if acquired together. For example, an X-Ray might render a skin

test useless for diagnosing tuberculosis. Similarly, a chest pain alone might not be

useful for differentiating between cold and a heart disease; it becomes useful only if

it is combined with other features, such as blood test.

In this chapter, we describe a data structure that discovers and exploits these

types of constraints from the underlying probability distribution to reduce the search

space. We propose Value of Information Lattice (VOILA) that reduces the space of all

possible subsets by exploiting the constraints between the features. Additionally,

VOILA makes it possible to share computations between different feature sets to

reduce the computation time.

This chapter is organized as follows. We describe the notation and problem

formulation in Section 3.2. We describe how we can reduce the search space and

share computations using VOILA in Section 3.3. We show experimental results in

Section 3.4 and conclude in Section 3.5.

27

3.2 Notation and Problem Formulation

Our main task is to classify a given instance with missing features and incur

the minimum acquisition and misclassification costs. Let the instance be described

by a set of features X = {X1, X2, . . . , Xn} and let Y be the random variable rep-

resenting its class. We assume that the joint probability distribution P (Y,X) is

given and concern ourselves with feature acquisition during only inference (the con-

ditional distribution P (Y |X) is not appropriate, as most features are assumed to

be unobserved). For the purpose of this chapter, we assume that we are given a

Bayesian network, but any joint probabilistic model that allows us to efficiently

answer conditional independence queries can be used.

In the notation, a bold face letter represents a set of random variables and

non-bold face letter represents a single random variable. For example X represents

the set of features, whereas Xi ∈ X represents a feature in X and Y represents the

class variable. Additionally, a capital letter represents a random variable, and a

lowercase letter represents a particular value of that variable; this applies to both

individual variables and sets of variables. For example, Y represents a variable, and

y represents a particular value that Y can take.

In addition to the probabilistic model, we are also given the cost models that

specify feature acquisition costs and misclassification costs. Formally, we assume

that we have a feature acquisition cost function that given a subset of features,

S, and the set of features whose values are known (evidence) E, returns a non-

negative real number C(S | e), and a misclassification cost model that returns the

28

Figure 3.1: Example configuration with two features X1 and X2 and class vari-
able Y . The table from left to right represent: the joint probability distribution
P (X1, X2, Y), the feature costs, and the misclassification costs.

misclassification cost cij incurred when Y is assigned yi when the correct assignment

is yj. With these cost functions, we can model non-static feature acquisition costs;

that is, the cost of acquiring the feature Xi can depend on what has been acquired

so far and what their values are (e) as well what is acquired in conjunction with

this feature (S\{Xi}). The misclassification cost model does not assume symmetric

costs; we can assign different costs for the false positives and false negatives.

Figure 3.1 shows a simple example configuration with two features, X1 and

X2, and the class variable Y . In this simple example, the joint distribution P (X, Y)

is represented as a table, the feature costs are simple independent costs for X1 and

X2, and the misclassification cost is symmetric where both types of misclassifications

cost the same and correct classification does not cost anything.

A diagnostic policy π is a decision tree whose leaf nodes represent classification

decisions and non-leaf nodes represent feature that need to be acquired. Each path

ps ∈ π represents a sequence of ordered feature values s and a final classification

29

decision. We will often use ps to represent an ordered version of s. When the

order of the variables in s is not important, then we will use either exchangeably.

Typically, the order will be important for computing the feature costs, as the cost

of a feature can depend on the values of previously acquired features, and the order

will not be important for computing probabilities. An example conditional policy

using the example configuration of Figure 3.1 is given in Figure 3.2. Each path

p ∈ π has an associated feature cost and misclassification cost. The feature cost of

a path can be computed as follows:

FC(ps) =
n∑
j=1

C(ps[j] | ps[1 : j])

where ps[j] represents the jth feature in ps and ps[1 : j] represents feature values

1 through j in ps. That is, the cost of acquiring the feature at depth i of the path

depends on the values of the features acquired up until that depth. The expected

misclassification cost of a path is:

EMC(ps) = EMC(s) = min
yi

∑
yj

P (Y = yj | s)× cij (3.1)

The total cost of a path is the sum of the feature costs and the expected misclassi-

fication cost:

TC(ps) = FC(ps) + EMC(ps)

30

Figure 3.2: An example conditional policy with features X1, X2 and class variable
Y . Each non-leaf node represents a feature acquisition, with probability distribution
of the possible values, and the cost of the feature. Each path (e.g., X1 = T,X2 = T)
has an acquisition cost and expected misclassification cost. The policy overall has
an expected total cost ETC, which is the sum of total costs of each path, weighted
by the probability of following that path.

The expected total cost of a policy is then the sum of the total cost of each path,

weighted by the probability of following that path:

ETC(π) =
∑
ps∈π

P (s)TC(ps) (3.2)

31

The objective of feature acquisition during inference is, given the joint prob-

abilistic model and the cost models for acquisition and misclassification, find the

policy that has the minimum expected total cost. However, building the optimal

decision tree is known to be NP-complete (Hyafil and Rivest, 1976). Thus, most re-

search have been greedy choosing the best feature that reduces the misclassification

costs the most and has the lowest cost (e.g., Gaag and Wessels (1993); Dittmer and

Jensen (1997)) or have developed heuristic feature scoring techniques (e.g., Núñez

(1991); Tan (1990)).

In the greedy strategy, each path of the policy is extended with features that

reduce the misclassification cost the most and that have the lowest cost. More

specifically, the path ps is replaced with new paths ps∪x1
i
,ps∪x2

i
, . . . ,ps∪xn

i
where

x1
i , x

2
i , . . . , x

n
i are the values that Xi can take and Xi is the feature that has the

highest benefit. We define the benefit of a feature Xi given a path ps as the reduction

in the total cost of the path when the path is expanded with the possible values of

Xi. More formally,

Benefit(Xi | ps) , TC(ps)−
n∑
j=1

P (xji | s)TC(ps∪xj
i
)

= FC(ps) + EMC(s)−
n∑
j=1

P (xji | s)
(
FC(ps∪xj

i
) + EMC(s ∪ xji)

)
= FC(ps)−

(
n∑
j=1

P (xji | s)FC(ps∪xj
i
)

)
+ EMC(s)−

n∑
j=1

P (xji | s)EMC(s ∪ xji)

= FC(ps)− (FC(ps) + C(Xi | s)) + EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji)

= −C(Xi | s) + EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji)

32

Note that, the last two terms are equivalent to the definition of expected value of

information (Howard, 1966):

EV I(Xi | s) = EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji) (3.3)

Substituting EV I, the definition of benefit becomes very intuitive:

Benefit(Xi | ps) = Benefit(Xi | s) = EV I(Xi | s)− C(Xi | s) (3.4)

With this definition, the greedy strategy iteratively finds the feature that has the

highest positive benefit (value cost difference), acquires it, and stops acquisition

when the benefit of acquiring a feature is non-positive.

We also note that it is straightforward to define EV I and Benefit for a set

S′ of features just like we did for a single feature. The only difference is that the

expectation needs to be taken over all members of the set S′.

EV I(S′ | s) = EMC(s)−
∑
s′

P (s′ | s)EMC(s ∪ s′) (3.5)

and,

Benefit(S′ | s) = EV I(S′ | s)− C(S′ | s) (3.6)

However, there are a few problems with the greedy strategy. First, it is short-

sighted. There exist sets S ⊆ X such that Benefit(S) >
∑
Xi∈S

Benefit(Xi). This is

easier to see, for example, for the XOR function, Y = X1 XOR X2, where X1 and X2

33

alone are not useful but they are determinative together. Due to this relationship,

a greedy policy is not guaranteed to be optimal. Moreover, the greedy policy can

prematurely stop acquisition because no single feature seems to provide positive

benefit.

The second problem with the greedy strategy is that we often need to acquire

a set of features simultaneously. For example, a doctor orders a set of lab tests when

s/he sends the patient to lab, such as blood count, cholesterol level, etc. rather than

ordering a single test, waiting for its result and ordering the next one. However, the

traditional greedy strategy cannot handle reasoning with sets of features.

We would like to be able to reason with sets of features for these two reasons.

Our objective in this chapter is, given an existing potentially empty set of already

observed features E and their observed values e, find the set that has the highest

benefit:

L(X,S | e) , argmax
S⊆X\E

Benefit(S | e) (3.7)

There are two problems with this formulation: first the number of subsets of X \E

is exponential in the size of X \ E, and second, for each set S, we need to take an

expectation over all possible values for all features in the set. We address these two

problems using a data structure which we describe next.

3.3 Value of Information Lattice (VOILA)

VOILA makes reasoning with sets of features tractable by reducing the space of

possible sets and allowing EV I computation sharing between different sets. In this

34

section, we will first explain how we can reduce the space and then explain ways of

computation sharing.

3.3.1 Reducing the Space of Possible Sets

In most domains, there are often complex interactions between the features

and the class label. Contrary to the Naive Bayes assumption, features are often

not conditionally independent given the class label. Some features are useless once

some other features are already acquired. For example a chest X-Ray is typically

more determinative than a skin test for tuberculosis. Similarly, some features are

useless alone unless they are accompanied with other features. For example, a chest

pain alone might be due to a variety of sicknesses; if it is accompanied with high

cholesterol, it could mean a heart disease, whereas if it is combined with fever, it

could mean cold. These types of interactions between the features put constraints

on what the candidate sets could be.

Remember that we have assumed that we already have a joint probabilistic

model over the features and the class variable, P (Y,X). We will find these two types

of feature interactions by asking probabilistic independence queries using P (Y,X).

Specifically, we assumed that we have a Bayesian network that represents P (Y,X)

and Bayesian networks allow us to find these types of interactions through standard

d-separation algorithms.

Definition 1 A set S ⊆ X\E is irreducible with respect to evidence e iff ∀Xi ∈ S,

Xi is not conditionally independent of Y given e and S \ {Xi}.

35

Given a Bayesian network over X and Y , it is straightforward to check this d-

separation property (Pearl, 1988).

Proposition 1 Let S′ be a maximal irreducible subset of S with respect to e. Then,

EV I(S | e) = EV I(S′ | e).

Proof: Let S′′ = S \S′. If S′ is a maximal irreducible set, S′∪E d-separates Y and

S′′. Otherwise, we could make S′ larger by including the non-d-separated element(s)

from S′′ in S′. Thus, we have P (Y | e, s) = P (Y | e,S′,S′′) = P (Y | e,S′).

Substitution in Equations 3.1 and 3.5 yields the desired property.

Note that under the assumption that C(S′ | e) ≤ C(S | e) for any S′ ⊆ S,

it suffices to consider only the irreducible sets to find the optimal solution to the

objective function in Equation (3.7). VOILA is a data structure that contains only

the irreducible feature subsets of X, with respect to a particular set of evidence e.

We next define VOILA formally.

Definition 2 A VOILA V is a directed graph in which there is a node corresponding

to each possible irreducible set of features, and there is a directed edge from a feature

set S to each node which corresponds to a direct (maximal) subset of S. Other subset

relationships in the lattice are then defined through the directed paths in V.

Figure 3.3(a) shows a simple Bayesian network and its corresponding VOILA,

with respect to the empty evidence set, is shown in Figure 3.3(b). Notice that

the VOILA contains only the irreducible subsets given the Bayesian network with

no evidence; for instance, the VOILA does not contain sets that include both X1

36

(a) (b)

Figure 3.3: (a) A simple Bayesian network illustrating dependencies between at-
tributes and the class variable. (b) The VOILA corresponding to the network.

and X2 because X1 d-separates X2 from Y . We also observe that the number of

irreducible subsets is 9 in contrast to 24 = 16 possible subsets. Moreover, note that

the largest subset size is now 3 in contrast to 4. Having smaller feature sets sizes has

a dramatic effect on the value of information calculations. In fact, these savings can

make solving the objective function optimally (Equation (3.7)) feasible in practice.

3.3.2 EV I Computation Sharing

Find the set S that has the highest Benefit (Equation 3.6) requires computing

EV I(S) (Equation 3.5). However, computing EV I(S) requires taking an expecta-

tion over all possible values of the features in S. Moreover, searching the best set

37

among all the irreducible sets requires us to compute EV I for all irreducible sets.

To make such computations tractable in practice, VOILA allows computation shar-

ing between its nodes. In this chapter, we describe three possible ways of sharing

computations between the nodes of VOILA.

3.3.2.1 Subset Relationships

VOILA exploits the subset relationships between different feature sets in order

to avoid computing EV I for some nodes. First of all, if there is a directed path from

node S1 to S2 in VOILA, then S1 ⊃ S2 and thus EV I(S1 | e) ≥ EV I(S2 | e). Now

assume that there is a directed path from Si to Sj and EV I(Si | e) = EV I(Sj | e).

Then, all of the nodes on this path will also have the same EV I, thus we do not

need to do the computation for those subsets. An algorithm that makes use of this

observation is given in Algorithm 3.1.

Algorithm 3.1: Efficient EVI computation using VOILA.

Input: VOILA V and current evidence E
Output: VOILA updated with correct EV I values
for all root node(s) S1

value← EV I(S | e)2

ub(descendants(S))← value3

for all leaf node(s) S4

value← EV I(S | e)5

lb(ancestors(S))← value6

for all node S where lb(S) 6= ub(S)7

value← EV I(S | e)8

lb(ancestors(S))← value9

ub(descendants(S))← value10

38

In order to share computations between different nodes of the lattice, we keep

lower and upper bounds on the EV I of a node. The lower bound is determined by

the values of the descendants of the node whereas the upper bound is determined by

the values of its ancestors. First, we initialize these bounds by computing the value

of the information at the boundary of the lattice, i.e., the root node(s) and the leaf

node(s) (lines 1–6). Then, we loop over the nodes whose upper bounds and lower

bounds are not equal (line 7–10), computing their values and updating the bounds

at their ancestors and descendants. The order in which to choose the nodes in line

7 so that the number of sets for which a value is calculated is minimum is still an

open question. A possible heuristic is choosing a middle node on a path between

two nodes for which the values have already been calculated.

3.3.2.2 Information Pathways at the Underlying Bayesian Network

The second mechanism that VOILA has to share EV I computations is through

the edges of the underlying Bayesian network. We specifically make use of the

following fact:

Proposition 2 For all S1 and S2, if S1 d-separates Y from S2 with respect to e,

then EV I(S1 | e) ≥ EV I(S2 | e).

39

Proof: Consider S12 = S1 ∪ S2. Because of the subset relationship, we know that

EV I(S12 | e) ≥ EV I(S1 | e) and EV I(S12 | e) ≥ EV I(S2 | e).

EV I(S12 | e) = EMC(Y | e)−
∑
s12

P (s12 | e)EMC(Y | e, s12)

= EMC(Y | e)−
∑
s1

∑
s2

P (s1, s2 | e)EMC(Y | e, s1, s2)

= EMC(Y | e)−
∑
s1

∑
s2

P (s1, s2 | e)EMC(Y | e, s1)

= EMC(Y | e)−
∑
s1

P (s1 | e)EMC(Y | e, s1)

= EV I(S1 | e)

≥ EV I(S2 | e)

Corollary: The Markov Blanket of Y is the set that has the highest EVI in our

search space, as it d-separates all of the remaining variables from Y .

These relationships can very well be exploited like we exploited the subset

relationships above. Instead of just using the subset relationships, we can use both

subset and independence relationships. One simple way to make use of Algorithm 3.1

without modification is to add edges between any S1 and S2 where the independence

property holds. An example S1 and S2 according to our toy network in Figure 3.3(a)

would be S1 = {X1} and S2 = {X2}. Thus, we can add a directed edge from X1 to

X2 in our VOILA in Figure 3.3(b) and Algorithm 3.1 will work just fine.

40

3.3.2.3 Incremental Inference

The third and the last mechanism that VOILA uses for computation sharing

is through caching of probabilities at its nodes. For each candidate set S ∈ V, we

need to compute EV I(S | e) which requires computing P (S | e) and EMC(Y |

S, e). If we cache the conditional probabilities at each node of V, then to compute

P (S | e), we find one of its supersets Si = S ∪ {Xi} and then compute P (S | e) =∑
xi
P (S, Xi = xi | e).

Computing EMC(Y | S, e) requires computing P (Y | S, e). To perform this

computation efficiently, we cache the state of the junction tree at each node of

the VOILA. Then, we find a subset, Sj, such that S = Sj ∪ {Xj}. We compute

P (Y | S, e) by integrating the extra evidence to the junction tree at node Sj that is

used to compute P (Y | Sj, e).

3.3.3 Constructing VOILA

Efficient construction of VOILA is not a straightforward task. The brute force

approach would be to enumerate all possible subsets of X \ E and for each subset

check whether it is irreducible. However, this brute force approach is clearly im-

practical. Because the number of nodes in VOILA is expected to be much fewer than

the number of possible subsets of X \ E, if we can be smart about which sets we

consider for inclusion in V, we can construct it more efficiently. That is, instead

of generating all possible candidates and checking whether they are irreducible or

not, we try to generate only irreducible sets. We first introduce the notion of a

41

dependency constraint and then explain how we can use dependency constraints to

efficiently construct VOILA.

Definition 3 A dependency constraint for a feature Xi ∈ S with respect to S and

E is the constraint on S ∪ E required for a dependency between Xi and Y to exist.

For instance, in our running example, a dependency constraint for X2 is ¬X1;

in other words, in order for X2 to be relevant, X1 should not be included in S ∪ E.

Similarly, the dependency constraint for X4 is X3, meaning that X3 must be included

in S∪E. Specifically, a dependency constraint for a feature Xi requires that all Xj on

the path from Y to Xi not to be included in S∪E if Xj is not part of a v-structure;

if Xj is part of a v-structure, then either Xj or one of its descendants must be

included in S∪E (we refer to these latter constraints as positivity constraints). The

algorithm that uses these ideas to compute the dependency constraints for each

feature is given in Algorithm 3.2.

Algorithm 3.2: Dependency constraint computation for Xi.

Input: Xi, Y
Output: Dependency constraint for Xi, denoted DC(Xi)
DC(Xi)← false1

for each undirected path pj between Xi and Y2

DCj(Xi)← true3

for each Xk on the path pj4

if Xk does not a cause a v-structure then5

DCj(Xi)← DCj(Xi) ∧ ¬Xk6

else7

DCj(Xi)← DCj(Xi) ∧ (Xk ∨Descendants(Xk))8

DC(Xi)← DC(Xi) ∨DCj(Xi)9

We use the dependency constraints to check whether a set is irreducible. Be-

cause a set S is irreducible only if a dependency between all of its elements and Y

42

exists, the dependency constraint for the set S is the conjunction of the dependency

constraints of its members. The irreducibility of S can be checked by setting the

elements of S and E to “true” and setting the remaining elements of X to “false”

and evaluating the set’s dependency constraint. In our running example, the de-

pendency constraint for the set {X2, X4} is ¬X1 ∧X3. Assuming E = ∅, when we

set the members of {X2, X4} to true, and set the remaining features, X1 and X3,

to false, ¬X1 ∧X3 then evaluates to false and thus this set is not irreducible. This

makes sense because given no evidence, X4 is independent of Y , so while {X2} is a

useful feature set to consider for acquisition, {X2, X4} is not.

3.3.3.1 Construction Algorithm

We now describe constructing the VOILA using dependency constraints. VOILA

construction proceeds in a bottom up fashion, beginning with the lowest level, which

initially contains only the empty set and constructs new irreducible feature sets by

adding one feature at a time into the VOILA structure. Algorithm 3.3 gives the

details of the algorithm. The algorithm keeps track of the irreducible feature sets

IS, and the set of potentially irreducible feature sets PS. A feature set is potentially

irreducible if it is not irreducible but can be made reducible by adding more features

into it. Note that this is possible due to the non-monotonic nature of d-separation.

The check for potential irreducibility can be done efficiently by setting mem-

bers of S and E to true, setting literals with positivity constraints that remain to

be processed to true, setting the remaining literals to false, and evaluating the set

43

Algorithm 3.3: The VOILA construction algorithm.

Input: Set of features X and class variable Y .
Output: The VOILA data structure V, given E.
Pick an ordering of elements of X = Xi1 , Xi2 , . . . , Xin1

IS← {∅}; PS← ∅2

for j = 1 to n3

for each S ∈ IS ∪PS4

S′ ← S ∪Xij ; DC(S′)← DC(S) ∧DC(Xij)5

if S′ is irreducible then6

IS← IS ∪ {S′}; Add a node corresponding to S′ to V7

else8

if S′ is potentially irreducible then9

PS← PS ∪ {S′}10

Remove from PS all sets that are no longer potentially irreducible11

max = size of largest S in IS; Ll = {S | S ∈ IS and |S| = l}12

for l = 0 to max− 113

for each S ∈ Ll14

for each S′ ∈ Ll+115

if S ⊂ S′ then16

Add an edge from S′ to S to V17

dependency constraint. The difference between checking for potential irreducibility

and irreducibility is that we set positively constraint literals that might be added

later to true for the potential irreducibility whereas we set them to false to check for

irreducibility. When we are done processing feature Xij , we remove from PS any

potentially irreducible set that cannot become irreducible because Xij will not be

re-considered (line 11).

3.3.3.2 Analysis of VOILA Construction Algorithm

The construction algorithm puts a node in the VOILA only if the corresponding

set is irreducible (lines 6 and 7). Moreover, by keeping track of potentially irreducible

44

sets (lines 8–10), we generate every possible irreducible set that can be generated.

Thus, VOILA contains only and all of the possible irreducible subsets of X.

The worst-case running time of the algorithm is still exponential in the num-

ber of initially unobserved features, X \ E, because number of irreducible sets can

potentially be exponential. The running time in practice, though, depends on the

structure of the Bayesian network that the VOILA is based upon and the order-

ing of the variables in line 1. The for loop at line 4 iterates over each irreducible

and potentially irreducible sets that have been generated so far, and the number of

potentially-irreducible sets generated depends on the ordering chosen. The number

of irreducible sets, however, depends on the structure of the underlying Bayesian

network, and we empirically show in the experimental results section that for five

real world datasets, the number of irreducible subsets is substantially smaller than

the number of possible subsets.

A good ordering processes features with literals with positivity constraints

in other features’ dependency constraints earlier. That is, for each undirected path

from Y to Xi that includes Xj in a v-structure, a good ordering puts Xj earlier in the

ordering than everything between Xj and Xi. For instance, in our sample Bayesian

network in Figure 3.3(a), we should consider X3 earlier than X4. We refer to an

ordering as perfect if it satisfies all the positivity constraints. If a perfect ordering

is used, VOILA construction algorithm never generates a potentially irreducible set.

Unfortunately, it is not always possible to find a perfect ordering. A perfect ordering

is not possible when two features have each other as a positivity constraint literal

in their dependency constraints. This case occurs only when there is a path from Y

45

to Y with two or more v-structures. A perfect ordering was possible in four of the

five real world datasets that we used.

3.3.4 Using VOILA for Feature-value Acquisition

VOILA makes searching the space of all possible subsets tractable in practice.

Using this flexibility, it is possible to devise several different acquisition policies. We

describe two policies as example policies in this section.

The first acquisition policy aims to capture the practical setting where more

than one feature is acquired at once. The policy can be constructed using VOILA

as follows. Each path ps of the policy π (which is initially empty) is repeatedly

extended by acquiring the set S′ ∈ V that has the best Benefit(S′ | s, e). The

policy construction ends when no path can be extended, i.e., all candidate sets have

non-positive Benefit values for each path of π.

The second acquisition policy adds a look-ahead capability to the greedy policy.

That is, rather than repeatedly extending each path ps of policy π with the feature

Xi that has the highest Benefit(Xi | s, e), we add a look-ahead capability, and

first find the set S′ ∈ V that has the highest Benefit(S′ | s, e). Then, instead of

acquiring all features in S all at once like we did in the above policy, we find the

feature Xi ∈ S′ that has the highest Benefit(Xi | s, e) and acquire it to extend ps.

46

3.4 Experiments

We experimented with five real-world medical datasets that Turney (1995)

described and used in his paper. These datasets are Bupa Liver Disorders, Heart

Disease, Hepatitis, Pima Indians Diabetes, and Thyroid Disease, which are all avail-

able from the UCI Machine Learning Repository (Frank and Asuncion, 2010). The

datasets had a varying number of features ranging from five to 20. Four out of five

datasets had binary labels, whereas the Thyroid dataset had three labels.

For each dataset, we first learned a Bayesian Network that both provides

the joint probability distribution P (Y,X) and efficiently answers conditional inde-

pendence queries thorough d-separation (Pearl, 1988). We built a VOILA for each

dataset using the learned Bayesian Network. We first present statistics on each

dataset, such as the number of features and number of nodes in the VOILA, and then

compare various acquisition policies.

3.4.1 Search Space Reduction

Table 3.1 shows aggregate statistics about each dataset, describing the num-

ber of features, the number of all possible subsets, the number of subsets in VOILA

and the percent reduction in the search space. As this table shows, the number of

irreducible subsets is substantially less than all possible subsets. For the Thyroid

Disease dataset, for example, the number of possible subsets is over a million, how-

ever the number of irreducible subsets is fewer than thirty thousand. This enormous

47

Table 3.1: Aggregate statistics about each dataset. The number of irreducible
subsets, i.e., the number of nodes in VOILA, is substantially fewer than the number
of all possible subsets.

Dataset Features All Subsets Nodes in VOILA Reduction

Bupa Liver Disorders 5 32 26 19%
Pima Indians Diabetes 8 256 139 46%
Heart Disease 13 8,192 990 88%
Hepatitis 19 524,288 18,132 97%
Thyroid Disease 20 1,048,576 28,806 97%

reduction in the search space makes searching through the possible sets of features

tractable in practice.

3.4.2 Expected Total Cost Comparisons

We compared the expected total costs (Equation 3.2) of four different acqui-

sition policies for each dataset. These policies are as follows:

• No Acquisition: This policy does not acquire any features; it aims to mini-

mize the expected misclassification cost based on the prior probability distri-

bution of the class variable, P (Y).

• Markov Blanket: This policy acquires every useful feature, regardless of the

misclassification costs. The Market Blanket of Y in a Bayesian network is

defined as Y ’s parents, children, and its children’s other parents (Pearl, 1988).

Intuitively, it is the minimal set S ⊆ X such that Y ⊥ (X \ S) | S.

• Greedy: This policy repeatedly expands each path ps of an initially empty

policy π by acquiring the feature Xi that has the highest positive Benefit(Xi |

48

s) (Equation 3.4). The policy construction ends when no path can be extended

with a feature with a positive Benefit value.

• Greedy-LA: This policy adds a look-ahead capability to the Greedy strat-

egy. This policy repeatedly expands each path ps of an initially empty policy

π by first finding the set S′ that has the highest positive Benefit(S′ | s)

(Equation 3.6) and then acquiring the feature Xi ∈ S′ that has the maximum

Benefit(Xi | s) (Equation 3.4). The policy construction ends when no set

with a positive Benefit value can be found for any path of the policy.

The feature costs for each dataset are described in detail by Turney (1995).

In summary, each feature can either have an independent cost, or can belong to a

group of features, where the first feature in that group incurs an additional cost. For

example, the first feature from a group of blood measurements incurs the overhead

cost of drawing blood from the patient. The feature costs are based on the data

from Ontario Ministry of Health (1992).

We observed that most of the features were assigned the same cost. For ex-

ample, four out of five features in the Bupa Liver Disorders dataset, 13 out of 19

features in the Hepatitis dataset, six out of eight features in the Diabetes dataset,

16 out of 20 features in the Thyroid Disease dataset were assigned the same cost.

In addition to the given costs, which we call the real feature costs, we also exper-

imented with randomly generated feature and group costs. For each feature, we

randomly generated a cost between 1 and 100, and for each group we generated a

49

Table 3.2: Example misclassification cost matrix (cij) for the symmetric and asym-
metric misclassification costs. cij are set in way to achieve a prior expected misclas-
sification cost of 1. In the symmetric cost case, choosing the most probable class
leads to EMC = 1, whereas, in the asymmetric cost case, the choosing either class
is indifferent and both leads to the same EMC of 1.

Actual Class Prior Probability Pred. Class Symm. Cost Asymm. Cost

y1 P (y1) = 0.6510
y1 0 0
y2 2.866 2.866

y2 P (y2) = 0.3490
y1 2.866 1.536
y2 0 0

cost between 100 and 200. We repeated the experiments with three different seeds

for each dataset.

The misclassification costs were not defined in (Turney, 1995). One reason

could be that it is easier to define the feature costs, but defining the cost of a mis-

classification can be non-trivial. Instead, Turney (1995) tests different acquisition

strategies using various misclassification costs. We follow a similar technique with

a slight modification. We compare the above acquisition policies under both sym-

metric (cij = cji) and asymmetric misclassification costs. To be able to judge how

the misclassification cost structure affects feature acquisition, we unify the presenta-

tion, and compare different acquisition strategies under the same a priori expected

misclassification costs, as defined in Equation (3.1). Specifically, we compare the

acquisition policies under various a priori EMC that are achieved by varying the

cij accordingly. We show an example misclassification table for an EMC value of

1 in Table 3.2. For the real feature cost case, we varied the EMC between 0 and

2000, and varied it from 0 to 4000 for the synthetic feature cost case.

50

We compare the Greedy, Greedy-LA, and Markov Blanket policies by plotting

how much cost each policy saves with respect to the No Acquisition policy. In the

X axis of the plots, we vary the apriori expected misclassification cost using the

methodology we described above. We plot the savings on the Y axis. For each

dataset, we plot four different cases: the cross product of {symmetric, asymmetric}

misclassification costs, and {real, synthetic} feature costs. It is important to note

that we do not evaluate different acquisition policies on the datasets. Rather, we

compute the expected total cost, ETC, as defined in Equation (3.2), considering all

possible instances, X, and weighting them based on the probability of seeing such

an instance, P (X).

The results for the Liver Disorders, Diabetes, Heart Disease, Hepatitis, and

Thyroid Disease are given in Figures 3.4, 3.5, 3.6, 3.7, and 3.8 respectively. For each

figure, symmetric misclassification cost scenarios are given in subfigures (a) and (c),

whereas the asymmetric misclassification cost scenarios are presented in (b) and (d).

Similarly, the real feature cost scenarios are given in (a) and (b) and the synthetic

feature cost scenarios are presented in (c) and (d). We next summarize the results.

• We found that the Greedy policy often prematurely stops acquisition, per-

forming even worse than the Markov Blanket strategy. This is true for most

of the datasets, regardless of the feature and misclassification cost structures.

The fact that the Greedy strategy can perform worse than Markov Blanket

strategy is really troubling. However, Greedy-LA never performs worse than

Markov Blanket as expected.

51

(a) (b)

(c) (d)

Figure 3.4: Expected Total Cost (ETC) comparisons for the Bupa Liver Disorders
dataset. The apriori class distribution is as follows: P (Y) = [0.4959, 0.5041].

• Greedy-LA strategy never performs worse than any other strategy under any

setting.

• The misclassification cost structure (symmetric or asymmetric) had a consid-

erable affect on how the policies behaved. The differences between symmetric

and asymmetric cases were particularly evident for datasets where the class

distribution was more imbalanced, such as the Diabetes (Figure 3.5), Hepatitis

(Figure 3.7), and the Thyroid Disease (Figure 3.8) datasets. The differences

due to the misclassification cost structure can be summarized as follows:

52

(a) (b)

(c) (d)

Figure 3.5: Expected Total Cost (ETC) comparisons for the Pima Indian Diabetes
dataset. The apriori class distribution is as follows: P (Y) = [0.6510, 0.3490].

– When the class distribution is imbalanced and the misclassification cost

is symmetric, acquiring more information cannot change the classifica-

tion decisions easily due to the class imbalance, thus the features do not

have high EV I values. On the other hand, if the misclassification costs

are asymmetric, features tend to have higher EV I values. Thus, the

Greedy and Greedy-LA strategies start acquiring features earlier in the

X axis for the asymmetric cases compared to their symmetric counter-

parts. For example, for the Thyroid disease dataset, the Greedy strategy

starts acquisition only when the EMC is greater than 600 for real fea-

53

(a) (b)

(c) (d)

Figure 3.6: Expected Total Cost (ETC) comparisons for the Heart Disease dataset.
The apriori class distribution is as follows: P (Y) = [0.5444, 0.4556].

ture costs and symmetric misclassification costs (Figure 3.8(a)); however,

it starts acquiring when the EMC reaches only 100 for the asymmetric

case (Figure 3.8(b)). For the synthetic feature costs, the results are more

dramatic; neither Greedy nor Greedy-LA acquires any features for the

symmetric cost case (Figure 3.8(c)), whereas they start acquisition when

EMC = 200 for the asymmetric case (Figure 3.8(d)).

– In the same realm with the above results, the slope of the savings for

the asymmetric case is much higher for the asymmetric misclassification

costs compared to the symmetric case.

54

(a) (b)

(c) (d)

Figure 3.7: Expected Total Cost (ETC) comparisons for the Hepatitis dataset. The
apriori class distribution is as follows: P (Y) = [0.7908, 0.2092].

– The misclassification cost structure causes differences between the Greedy

and Greedy-LA policies in a few cases. For the Diabetes dataset Greedy

policy performs worse when the misclassification costs are symmetric

(Figures 3.5(a) and 3.5(c)), whereas for the Hepatitis dataset, Greedy

performs worse for the asymmetric misclassification costs (Figures 3.7(b)

and 3.7(d)).

• The Greedy policy sometimes has an erratic, unpredictable, and unreliable

performance as the expected misclassification changes. It possibly hits a local

55

(a) (b)

(c) (d)

Figure 3.8: Expected Total Cost (ETC) comparisons for the Thyroid Disease
dataset. The apriori class distribution is as follows: P (Y) = [0.0244, 0.0507, 0.9249].

minima, gets out of it later, and hits local minima again (Figures 3.6 and

3.8(d)).

We finally present an aggregate summary of the results in Table 3.3. Ta-

ble 3.3 shows how much the Greedy policy and the Greedy-LA policy saves over

the Markov Blanket policy. The results are presented as the average saving over

various intervals, such as [0-500). As this table also shows, the Greedy-LA policy

never loses compared to the Markov Blanket policy, as one would expect. Addi-

tionally, the Greedy-LA policy wins over the Greedy policy for most of the cases,

56

Table 3.3: Savings of Greedy (GR) and Greedy-LA (LA) with respect to the Markov

Blanket policy, averaged over different intervals. An entry is in bold if it is worse
than Greedy-LA, and it is in red if it is worse than Markov Blanket.

Liver Diabetes Heart Hepatitis Thyroid
GR LA GR LA GR LA GR LA GR LA

Real Feature Costs & Symmetric Misclassification Costs

[0-500) 6.77 9.08 15.49 24.27 240.59 243.31 4.19 5.86 28.07 28.07
[500-1000) -18.84 2.70 -18.28 17.06 121.31 144.87 -6.06 3.90 13.90 13.90
[1000-1500) -42.12 2.66 -48.35 17.35 79.07 116.68 -14.32 3.90 13.41 13.41
[1500-2000] -67.59 2.85 -81.43 17.34 -24.98 111.34 -23.40 3.85 13.41 13.41

Real Feature Costs & Asymmetric Misclassification Costs

[0-500) 7.33 9.3 22.74 23.84 245.79 245.79 -9.55 5.84 17.7 17.7
[500-1000) -16.78 2.66 9.85 13.31 131.36 143.3 -47.61 2.57 1.56 1.56
[1000-1500) -38.26 3.04 3.99 11.7 46.20 114.23 -84.79 2.57 1.56 1.56
[1500-2000] -61.88 2.97 -2.54 13.7 -40.96 107.14 -125.69 2.57 1.56 1.56

Synthetic Feature Costs & Symmetric Misclassification Costs

[0-500) 307.39 307.39 418.34 418.34 723.36 723.36 231.93 231.93 298.01 298.01
[500-1000) 160.95 160.95 245.75 288.65 579.25 585.72 63.59 106.54 277.70 277.70
[1000-1500) 60.30 79.76 163.80 224.09 444.42 539.88 96.39 96.39 257.40 257.40
[1500-2000) 31.86 53.97 138.78 163.45 378.43 490.23 88.14 88.14 237.09 237.09
[2000-2500) 10.43 53.01 108.69 163.78 364.03 482.24 79.88 79.88 216.79 216.79
[2500-3000) -14.60 62.66 78.90 164.75 268.00 458.89 71.63 71.63 196.48 196.48
[3000-3500) -39.64 59.96 48.83 172.76 171.91 422.06 63.38 68.67 176.18 176.18
[3500-4000] -67.18 63.68 15.75 172.13 109.91 412.11 54.30 63.66 153.84 153.84

Synthetic Feature Costs & Asymmetric Misclassification Costs

[0-500) 306.19 306.19 441.29 441.29 728.57 728.57 219.04 219.04 276.32 276.32
[500-1000) 156.78 156.78 341.28 341.28 599.02 603.12 88.34 91.53 213.60 213.60
[1000-1500) 66.57 79.79 260.09 261.21 505.80 517.37 -16.86 49.39 162.52 162.52
[1500-2000) 37.47 60.62 201.19 204.31 420.56 519.29 -54.31 61.90 113.82 113.82
[2000-2500) 14.84 55.70 161.24 164.17 320.32 512.75 -64.75 61.90 65.12 68.39
[2500-3000) -9.19 58.85 144.24 151.22 211.26 500.75 -101.93 61.90 28.72 34.73
[3000-3500) -33.22 59.33 132.84 139.54 248.73 400.16 -139.11 61.90 0.78 14.67
[3500-4000] -59.66 63.13 126.43 136.51 206.06 389.32 -180.01 61.90 -18.10 9.50

and it never looses. Finally, Greedy policy prematurely stops acquisition, having

negative savings with respect to the Markov Blanket strategy.

3.5 Conclusion

The typical approach to feature acquisition has been greedy in the past pri-

marily due to the sheer size of the possible subsets of features. We described a

57

general technique that can optimally prune the search space by exploiting the con-

ditional independence relationships between the features and the class variable. We

empirically showed that exploiting the conditional independence relationships can

substantially reduce the number of possible subsets. We also introduced a novel

data structure called Value of Information Lattice (VOILA) that can both efficiently

reduce the search space using the conditional independence relationships and also

can share probabilistic inference computations between different subsets of features.

By using VOILA, we are able to add a look-ahead capability to the greedy acquisi-

tion policy, which would not be practical otherwise. We experimentally show on five

real-world medical datasets that the greedy strategy often stops feature acquisition

prematurely, performing worse than even a policy that acquires all the features.

58

Chapter 4

Label Acquisition During Inference For Relational Data

In this chapter, I discuss label acquisition during inference for relational data.

Specifically, I assume that we are given an already trained classification model of a

relational domain and a budget determining how many labels can be acquired. Our

objective is then to determine the right set of labels to acquire during inference so

that the classification performance on the remaining ones is maximized.

4.1 Introduction

Information diffusion, viral marketing, graph-based semi-supervised learning,

and collective classification all attempt to exploit relationships in a network to reason

and make inferences about the labels of the nodes in the network. The common

intuition is that knowing (or inferring) something about the label of a particular

node can tell us something useful about the other nodes’ labels in the network. For

instance, the labels of the linked nodes often tend to be correlated (not necessarily

a positive correlation) for many domains; hence, finding the correct label of a node

is useful for not only that particular node, but the inferred label also has an impact

on the predictions that are made about the nodes in the rest of the network. Thus,

it has been shown that methods such as collective classification, i.e., classifying

the nodes of a network simultaneously, can significantly outperform content-only

59

classification methods, which make use of only the attributes of nodes and ignore

the relationships between them (Chakrabarti et al., 1998; Neville and Jensen, 2000;

Getoor et al., 2001; Taskar et al., 2002; Lu and Getoor, 2003a; Jensen et al., 2004;

Macskassy and Provost, 2007; Sen et al., 2008). However, sometimes, the advantage

of exploiting the relationships can become a disadvantage. In addition to the typical

errors made by content-only classification models (errors due to model limitations,

noise in the data, etc.), collective classification models can also make mistakes by

propagating misclassifications in the network. This can sometimes even have a

domino effect leading to misclassification of most of the nodes in the network. For

example, consider a simple binary classification problem where an island of nodes

that should be labeled with the positive label are surrounded with a sea of negatively

labeled nodes. The island may be flooded with the labels of the neighboring sea of

negative nodes.

This flooding of the whole network (or part of it) can occur for simple models

such as iterative classification (Lu and Getoor, 2003a; Neville and Jensen, 2000) and

label propagation (Zhu and Ghahramani, 2002). A misclassification can be propa-

gated to the rest of the network, especially if the misclassification is systematic and

common, such as misclassifying nodes as belonging to the majority class. Flooding

can also happen for more complex models that define a global objective function to

be optimized. For example, for pairwise Markov random field models (Taskar et al.,

2002) with parameter values that prefer intra-class interactions over inter-class in-

teractions, the most probable configuration of the labels might be the one where

most of the network is labeled with one class. Or, for a graph mincut formulation

60

(Blum and Chawla, 2001), where we pay a penalty for inter-class interactions, the

best objective value might be achieved by assigning only one label to each connected

component in the graph.

One strategy for avoiding flooding is to have an expert in the loop during

inference, who can guide the inference and constrain the solution space in the right

directions by providing the correct labels for a few nodes. Depending on the appli-

cation, labels can be acquired by asking the expert to rate specific items, a company

can provide free samples to a small set of customers and customers’ viral networking

or purchasing behavior can be observed, or targeted laboratory experiments can be

performed to determine protein functions, etc. However, providing these additional

labels is often costly and we are often limited to operate within a given budget. As

we show later, determining the optimal set of labels to acquire is intractable under

relatively general assumptions. Therefore, we are forced to resort to approximate

and heuristic techniques to get practical solutions.

In this chapter, we describe three polynomial-time label acquisition strategies.

The first and most direct approach is based on approximating the objective function

(which we define formally in Section 4.2) and greedily acquiring the label that pro-

vides the greatest improvement in the objective value. The second approach draws

on an analogy between viral marketing and label acquisition, and translates one of

the existing viral marketing formulations into a label acquisition strategy. The third

approach, which we refer to as reflect and correct, is a simple yet effective acquisi-

tion method that learns the cases when a given collective classification model makes

mistakes, finds islands of nodes that the collective model is likely to misclassify, and

61

suggests acquisitions to correct these potential mistakes (Bilgic and Getoor, 2008,

2009, 2010).

In addition to these three methods, we also experiment with acquisition strate-

gies that are based on network structural measures such as node degree and network

clustering. To compare the different acquisition strategies, we use two representa-

tive collective models: one that consists of a collection of local classifiers, and one

that defines and optimizes a global objective function. Using synthetic datasets,

we analyze the cases when flooding might happen and its degree of severity. We

compare the acquisition strategies on the synthetic datasets under varying settings

and on real-world datasets, and we empirically show that the reflect and correct

method we propose significantly outperforms all of the other methods.

The label acquisition problem has received ample attention within the context

of active learning (Cohn et al., 1996; McCallum and Nigam, 1998; Tong and Koller,

2001). There are two main differences between the scenario we address and the

active learning scenario. First, active learning has traditionally been concerned with

non-relational data; here, we are interested in network data. The second (and the

biggest) difference is that we assume that we have available an already trained model

of the domain, and thus the learning has been done offline, but we have the option to

acquire labels to seed the classification during inference. This is the setting Rattigan

et al. (2007b) introduced and referred to as “active inference.” They looked at the

relational network classifier, introduced by Macskassy and Provost (2003), in which

there are no node attributes; only labels are propagated. Here, we look at networks

62

in which the nodes have attribute information and compare to the structural strategy

that they introduced.

This chapter is organized as follows: we formulate the label acquisition prob-

lem and state the objective function in Section 4.2. Then, we explain the three

approaches in Sections 4.3.1, 4.3.2, and 4.3.3. We then show experimental results

on both synthetic and real datasets in Section 4.4. Finally, we discuss summarize

the contributions in Section 4.5 and then conclude in Section 4.6.

4.2 Problem Formulation

We begin by reviewing the collective classification problem and define the

objective function for label acquisition for collective classification. In this problem,

we assume that our data is represented as a graph with nodes and edges, G = (V,E).

Each node Vi ∈ V is described by an attribute vector ~Xi and a class label Yi pair,

Vi = 〈 ~Xi, Yi〉. ~Xi is a vector of individual attributes 〈Xi1, Xi2, . . . , Xip〉. The domain

of Xij can be either discrete or continuous whereas the domain of the class label Yi

is discrete and denoted as {y1, y2, . . . , ym}. Each edge Eij ∈ E describes some sort

of relationship between its endpoints, Eij = 〈Vi, Vj〉. Examples include:

social networks: Here, the nodes are people, the attributes may include demo-

graphic information such as age and income and the edges are friendships.

The labels indicate categories of people, for example we may be interested in

labeling the people that are likely to partake in some activity (e.g., smoking,

63

IV drug use), have some disease (e.g., tuberculosis, obesity), or exhibit some

behavior (buying a product, spreading a rumor).

citation networks: the nodes are publications, the attributes include content

information and the edges represent citations. The labels may be the topics of

the publications, or an indication of the reputation of the paper, for example

whether the paper is seminal or not.

biological networks: where for example, the nodes represent proteins, attributes

include annotations, and edges represent interactions. In this domain for ex-

ample, we may be interested in inferring protein function.

4.2.1 Collective Classification

In graph data, the labels of neighboring nodes are often correlated (though not

necessarily positively correlated). For example, friends tend to have similar smoking

behaviors, papers are likely to have similar topics to the papers that they cite, and

proteins are likely to have complementary functions. Exploiting these correlations

can significantly improve classification performance over using only the attributes,

~Xi, for the nodes. However, when predicting the label of a node, the labels of the

related instances are also unknown and need to be predicted. Collective classification

is the term used for simultaneously predicting the labels Y of V in the graph G,

where Y denotes the set of labels of all of the nodes, Y = {Y1, Y2, . . . , Yn}. In

general, the label Yi of a node can be influenced by its own attributes ~Xi as well as

the labels Yj and attributes ~Xj of other nodes in the graph.

64

There are many collective classification models proposed to date that make

different modeling assumptions about these dependencies. They can be grouped

into two broad categories. In the first category, local collective classification models,

the collective models consist of a collection of local vector-based classifiers, such as

logistic regression. For the this category of collective models, each object is described

as a vector of its local attributes ~Xi and an aggregation of attributes and labels

of its neighbors. Examples include Chakrabarti et al. (1998), Neville and Jensen

(2000), Lu and Getoor (2003a), Macskassy and Provost (2007), and McDowell et al.

(2007). The second category of collective classification models are global collective

classification models. In this case, the collective classification is defined as a global

objective function to be optimized. In many cases, a relational graphical model

is learned over all the attributes and labels in the graph, and a joint probability

distribution over these attributes and labels is learned and optimized. Examples

of this category include conditional random fields (Lafferty et al., 2001), relational

Markov networks (Taskar et al., 2002), probabilistic relational models (Getoor et al.,

2002), and Markov logic networks (Richardson and Domingos, 2006).

In this chapter, we use an example model from each category, which we explain

briefly here. For the local collective classification model, we use Iterative Classifi-

cation Algorithm (ICA) (Neville and Jensen, 2000; Lu and Getoor, 2003a), and, for

the global collective classification model, we use a pairwise Markov Random Fields

(MRF) based on the relational Markov network of Taskar et al. (2002). We first in-

troduce notations and assumptions common to both models and then describe the

two approaches.

65

Let Ni denote the labels of the neighboring nodes of Vi, Ni = {Yj | 〈Vi, Vj〉 ∈

E}. A general assumption that is made is the Markov assumption that Yi is directly

influenced only by ~Xi and Ni. Given the values of Ni, Yi is independent of Y \Ni

and is independent of X \ { ~Xi}, where X denotes the set of all attribute vectors in

the graph, X = { ~X1, ~X2, . . . , ~Xn}. That is, once we know the the values of Ni, then

Yi is independent of attribute vectors ~Xj of all neighbors and non-neighbors, and it

is independent of labels Yj of all non-neighbors.

4.2.1.1 Iterative Classification Algorithm (ICA)

In the ICA model, each node in the graph is represented as a vector that is a

combination of node features, ~Xi, and features that are constructed using the labels

of the nodes’ immediate neighbors. Because each node can have a varying number

of neighbors, we use an aggregation function over the neighbor labels in order to get

a fixed-length vector representation. For example, the count aggregation constructs

a fixed-size feature vector by counting how many of the neighbors belong to each

label; other examples of aggregations include proportion, mode, etc. Once the

features are constructed, then an off-the-shelf probabilistic classifier can be used

to learn P (Yi | ~Xi, aggr(Ni)), where aggr is an aggregate function that converts

a set of inputs into a fixed length vector. One can use a single classifier to learn

P (Yi | ~Xi, aggr(Ni)) or can use a structured classifier to learn P (Yi | ~Xi) and

P (Yi | aggr(Ni)) separately, which can be combined in a variety of ways to compute

P (Yi | ~Xi, aggr(Ni)).

66

A key component of this approach is that during inference, the labels of the

neighboring instances are often not known. ICA addresses this issue, and performs

collective classification, by using the predicted labels for the neighbors for feature

construction. ICA iterates over all nodes making a new prediction based on the

predictions made for the unknown labels of the neighbors in the previous iteration;

in the first step of the algorithm, initial labels can be inferred based solely on

attribute information, or based on attribute and any observed neighboring labels.

ICA learning is typically done using fully labeled training data, however there are also

approaches that use semi-supervised techniques for learning ICA (Lu and Getoor,

2003b; Xiang and Neville, 2008).

4.2.1.2 Pairwise Markov Random Fields (MRF)

Now, we briefly describe the MRF model we used. In an MRF, the joint proba-

bility of P (Y | X) is given by:

P (Y | X) =
1

Z

∏
Yi∈Y

φ(Yi, ~Xi)φ(Yi,Ni)

where φ are the “compatibility” functions that in effect capture the degree and the

strength of the relationships between different values of Yi and ~Xi and Yi and Ni, and

Z is the normalization function that ensures P (Y | X) is a legitimate probability

distribution. For example, in social networks, these compatibility functions can be

considered to capture the degree of correlations between the smoking behaviors of

friends in a network.

67

Note that in this representation, the number of arguments for φ are neither

fixed nor uniform; that is, for one particular node φ(Yi,Ni) can have just two argu-

ments whereas for a different node it can have hundreds of arguments. This property

is undesirable for many reasons including representational inefficiency, lack of suf-

ficient data for accurate parameter estimation, and difficulty of generalizing from

train data to the test data. To get around these problems, one trick is to assume

a functional form for the φ. For example, we can approximate the interactions be-

tween many nodes as the product of the pairwise interactions; this assumption leads

to pairwise Markov Random Fields:

P (Y | X) =
1

Z

∏
Yi∈Y

(
p∏
j=1

φ(Yi, Xij)

) ∏
Yj∈Ni

φ(Yi, Yj)

 (4.1)

One other trick to make sure that the φ are generalizable from train to test data

and also to make sure that P (Y | X) is integrable is to represent φ as log-linear

combinations of a set of indicator functions of the form fyi,xij
(Yi, Xij) , σ(Yi =

yi, Xij = xij), and fyi,yj
(Yi, Yj) , σ(Yi = yi, Yj = yj). Then, the compatibility

functions are represented as:

φ(Yi, Xij) = e

 P
ij
wyi,xij fyi,xij (Yi,Xij)

!
;φ(Yi, Yj) = e

 P
ij
wyi,yj fyi,yj (Yi,Yj)

!

where ws are weights to be learned from the train data. With this representation,

the products in Equation (4.1) turn into sums in the exponent of e. Then, maximum

68

likelihood learning can be done by the taking log of P (Y | X), which is now sum of

the products of the weights and the indicator features, and maximizing it through

gradient ascent methods (Taskar et al., 2002).

4.2.2 Label Acquisition

For active inference for both ICA and MRF, we assume that we are given a train-

ing graph Gtr(Vtr,Etr) where labels of all the nodes are known. Let CM represent

the collective model we use, here either ICA or MRF. We train our collective model CM

using this training graph. Given a test graph G, a trained model CM and assuming

the values of the attribute vectors X are known, but the labels for the nodes are

unknown, our goal is to correctly predict Y. We assume we are given a cost for

misclassifying a node; when we classify a node as yk whereas the correct assignment

is yl, we incur a cost of ckl. The expected misclassification cost (EMCCM) for a node

when using the collective model CM is then given by:

EMCCM(Yi | X = x) = min
yk

∑
yl 6=yk

PCM(Yi = yl | X = x)× ckl

The total expected misclassification cost is then sum of the expected misclassification

costs for the individual nodes:

∑
Yi∈Y

EMCCM(Yi | X = x).

69

As mentioned in the introduction, we are interested in settings where we are

able acquire additional information, or to ask for the labels for some of the nodes.

More formally, we consider the case where we can acquire the values for a subset

of the labels A ⊆ Y. The acquisition of A changes the misclassification cost as

follows:

∑
Yi∈Y\A

EMCCM(Yi | X = x,A)

However, we do not know the values of the labels in A before we acquire them.

Thus, we take an expectation over possible values.

∑
Yi∈Y\A

∑
a

P (A = a)EMCCM(Yi | X = x,A = a)

In this general setting, we also attach costs to acquiring labels. Let the cost

of acquiring the value of the label Yi be Ci. Extending it to sets, C(A) =
∑
Yi∈A

Ci.

Then, the total cost we incur is just the sum of the acquisition cost and the expected

misclassification cost:

L(A) = C(A) +
∑

Yi∈Y\A

∑
a

P (A = a)EMCCM(Yi | X = x,A = a) (4.2)

Given a spending budget B, the label acquisition problem, and our objective, is

then to find the optimal subset

A∗ = argmin
A⊆Y,C(A)≤B

L(A)

70

minimizing the sum of expected misclassification cost and acquisition cost.

Finding the optimal A∗ requires us to evaluate the objective function for each

candidate A along with an efficient search and exploration of the candidate space.

Krause and Guestrin (2005a) discuss this problem in the context of value of infor-

mation calculations in graphical models. They associate a reward for observing the

value at a node, which is equivalent to acquiring a label in our case, and they show

that reward computations are #P-complete even for discrete polytrees. They also

show that finding the optimal set to acquire in batch mode, where the acquisition

decisions are made all at once, is NPPP-complete for discrete polytrees. Finally,

they show that finding the optimal set in a conditional plan, that is the next acquisi-

tion is conditioned on the previous acquisitions, is NPPP-hard for discrete polytrees.

Given that we are considering arbitrary networks, such as citation, friendship, and

protein networks, finding the optimal solution is at least as hard as, if not harder

than, considering discrete polytrees. The details of these theoretical limits can be

found in (Krause and Guestrin, 2005a).

4.3 Active Inference

Since finding the optimal solution to the label acquisition problem is in-

tractable under relatively general assumptions, we must resort to approximate and/or

heuristic acquisition techniques. In this chapter, we introduce three such techniques.

Each technique associates a utility value with each label (or sets of labels) and makes

acquisition decisions based on the utility values. The first strategy that we propose

71

approximates the objective function and defines the utility of a label in terms of

the improvement it achieves in the objective value. The second method draws an

analogy between viral marketing and active inference and associates utilities with

labels accordingly. The third is a simple yet effective and intuitive approach based

on learning and predicting the misclassifications of a collective classifier.

4.3.1 Approximate Inference and Greedy Acquisition (AIGA)

There are two reasons why finding the optimal set A∗ is intractable: 1) unless

the probability distribution for A∗ can be factored with the acquisition of a single

label Yi, we need to consider all possible subsets A ⊆ Y, which is exponential in

the size of Y, and 2) for each candidate set A, we need to compute the value of

the objective function L(A) (Equation (4.2.2)), which requires us to compute exact

probability distributions over Y.

To tackle these two obstacles, we first introduce the most obvious approach:

approximate inference and greedy acquisition (AIGA). In AIGA, instead of considering

all candidate sets, we consider acquiring one label at a time. That is, we define the

utility of a label to be the amount of improvement it provides in the current objective

value and we greedily acquire the label that has the highest utility:

utilityaiga(Yi) , L(A ∪ {Yi})− L(A)

In essence, the utilityaiga function is computing the expected value of information

for each label (Howard, 1966).

72

To address the intractability of the exact probability computations, we resort

to approximate inference techniques. For the collective models (such as ICA) that

are a collection of local classifiers, we use iterative approaches to approximate the

conditional probability distributions for the labels. For the collective models that

define and optimize a global objective function (such as MRF), there exist a variety of

approximate inference techniques, including loopy belief propagation (Yedidia et al.,

2000), variational methods (Jordan et al., 1999), and Gibbs sampling (Gilks et al.,

1996); in this chapter, we use loopy belief propagation.

With these two approximations, AIGA iteratively finds the label that has the

highest utilityaiga, adds it to the acquisition set, and repeats this step until the bud-

get is exhausted. Note that, even though we make the problem tractable through

approximate inference and greedy selection, we still need to run approximate in-

ference for each iteration, for each node, and for each possible value of the label

of the node under consideration. This requirement makes this approach still quite

expensive, especially if the number of nodes is relatively high and the underlying

approximate inference technique is slow. Additionally, the accuracy of this method

depends heavily on the precision of the estimated probability values. If the proba-

bility estimates are not well-calibrated, then the expected misclassification costs will

be incorrect (Zadrozny and Elkan, 2001), making the utilityaiga values inaccurate.

73

4.3.2 Viral Marketing Acquisition (VMA)

Another approach to label acquisition is based on an analogy to viral marketing

(Richardson and Domingos, 2002; Kempe et al., 2003; Leskovec et al., 2007a). In the

viral marketing setting, we have customers that are potential buyers of a product,

and the customers have relationships between each other, such as family, friendship,

co-worker, etc. When a customer buys a product, the customer advertises it (by

word of mouth) to his or her neighbors in the network. The objective of viral

marketing is to maximize the sales for a product by marketing it to the right set

of customers, while minimizing the marketing costs. Thus, similar to the label

acquisition problem, there is then the question of which subset of customers we

should target, in the hope that these customers will like the product, buy it, and

recommend it to their neighbors, who will hopefully buy and recommend it in turn.

The analogous mapping to label acquisition for collective classification is as

follows. There are nodes (customers) that we need to classify and we have the

choice to acquire the labels for (market to) some of them. Our task is to acquire the

labels for the right subset of nodes so that the number of correctly classified nodes

(the customers who buy the product) in the end is maximized, while minimizing

the acquisition cost. This analogy between viral marketing and label acquisition is

summarized in Table 4.1.

There are many viral marketing approaches that differ in the formulation of

the problem, the assumptions that they make, and the solutions that they offer

(Richardson and Domingos, 2002; Kempe et al., 2003; Leskovec et al., 2007a). We

74

Table 4.1: The analogy between viral marketing and active inference.

Viral Marketing Active Inference

Objects Customers Nodes

States Bought / Did not buy Classified correctly / Misclassified

Action Market a product to a subset of
customers

Acquire labels for a subset of
nodes

Objective Maximize the number of cus-
tomers that buy the product

Maximize the number nodes that
are classified correctly

Constraint A budget for the marketing costs A budget for acquisition costs

chose the formulation of Richardson and Domingos (2002); an advantage of their

approach is that it has an exact solution.

In this formulation, we introduce a new random variable Ti for each node Vi,

which indicates whether Yi is predicted correctly. Whether a prediction for a node

is correct depends on the informativeness of the node’s attributes Xi, whether its

neighbors Ni are classified correctly, and which labels are acquired, A. Following

Richardson and Domingos (2002), we make the assumption that this probability is

a linear combination of a local probability and a relational probability as follows:

P (Ti | Ni, Xi,A) , βiPl(Ti | Xi,A) + (1− βi)Pr(Ti | Ni,A)

where βi denotes how much the label of a node depends on the node’s local attributes

versus its neighbors. Here, Pl stands for the local probability which is defined as:

75

Pl(Ti | Xi,A) ,

1 if Yi ∈ A

max
yk

P (Yi = yk | Xi) otherwise

(4.3)

and Pr stands for the relational probability which is a linear combination of the

statuses of the neighbors:

Pr(Ti | Ni,A) =
1

|Ni|
∑
Yj∈Ni

Tj.

The probability P (Yi = yk | Xi) in Equation (4.3) can be computed by learning a

classifier on the nodes of the train graph Gtr.

The objective here is to maximize the total probability of correctly classifying

the nodes in the network. With this objective, we define the utilityvma(Yi) to be

the increase in this total probability that Yi causes once it is acquired. To compute

utilityvma(Yi), we first calculate two intuitive measures. The first one corresponds

to how much a unit change in Pl(Ti | Xi,A) affects the total probability in the

network:

∆(Yi) ,
∑
Vj∈V

∂P (Tj = 1 | Xj,A)

∂Pl(Ti | Xi,A)

The second one measures how much an instance’s probability of correct classification

is increased when we acquire the label for it:

∆P (Yi) = βi (Pl(Ti | Xi,A ∪ Yi)− Pl(Ti | Xi,A))

76

Then, the effect that acquiring a label Yi will have in the network, i.e., the utilityvma

of a label is, just a product of the two:

utilityvma(Yi) , ∆(Yi)∆P (Yi).

We omit some of the details about how to derive these equations. The interested

reader can refer to Richardson and Domingos (2002).

With these assumptions, our formulation is the same as that of Richardson and

Domingos (2002) with one subtle difference. In the viral marketing domain, when a

person is marketed a product, there is still a non-zero probability of that person not

buying the product. In label acquisition, however, we assume that we can acquire

labels with perfect information; that is, there is no uncertainty about a node’s label

after we acquire it. Because this particular formulation of viral marketing has an

exact solution, we compute the utilityvma values for all candidate labels only once,

and then we acquire the labels that have the highest utility values. This property

of the approach makes it quite fast and thus attractive.

4.3.3 Reflect and Correct (RAC)

The next method that we introduce is based on a simple intuition: the sets

of nodes that the collective classification model misclassifies tend to be clustered

together because misclassifying one node makes it very likely that its neighbors

will be misclassified as well (propagation of incorrect information). Thus, there are

islands (or peninsulas) of misclassification in the graph – sets of connected nodes

77

that are misclassified. We call such nodes the flooded nodes. If we can find these

islands of misclassification, then we can potentially trigger correct classification of

those islands by acquiring labels for a few of the nodes in the islands. The question

is then how to find the islands of misclassification.

We first focus on finding out when a prediction for a particular node is in-

correct. We again associate a random variable Ti with each Vi ∈ V, like we did in

the viral marketing formulation, but this time we take a reverse perspective and Ti

denotes whether the prediction for Yi was indeed incorrect. Additionally, instead of

using a viral marketing approach to learn and predict Ti, we formulate it as a clas-

sification problem by constructing features that are possible indicators of whether

a node is misclassified, and learn a classifier to capture the dependence of Ti on the

constructed features. Then, the acquisition problem can be solved by running the

collective inference on the test graph, predicting which nodes are misclassified, ac-

quiring a label for a central node among the potentially flooded ones, and repeating

the process until the budget is exhausted. This process is illustrated in Figure 4.1.

Because we reflect back on our inference results on the test graph and try to correct

the mistakes by acquiring a label, we call this method reflect and correct (RAC).

Many different kinds of features can be constructed to be used for predicting

whether a node is misclassified. In this chapter, we present the general framework

for RAC and construct and experiment with only three simple and intuitive features

as examples. The list can be extended with more features; especially, one can think

of incorporating domain knowledge as features as well. The first of the three features

we constructed is based on the content information of the node, the second one is

78

Figure 4.1: Active inference using the RAC method. We iteratively label the nodes
using the collective model, predict which nodes are misclassified, acquire the cen-
tral node among the misclassified ones, and repeat the process until the budget is
exhausted. To predict which nodes are misclassified, we use a classifier whose input
consists of a set features that are constructed using the content information of the
nodes, information from the neighbors, and global statistics.

based on the neighbors of the node, and the last one is based on global statistics.

Intuitively, the content indicator captures how much the node attributes disagree

with the classification decisions of the collective model. The relational indicator

captures how likely it is that the neighbors of a node are also misclassified. Lastly,

the global indicator captures how different the posterior distribution of the labels is

from the expected prior distribution. We next explain these features in detail and

provide their formal definitions.

The content indicator measures how far the prediction of the collective model

is from the truth according to the attributes. Assume that the collective model

predicts Yi = yj. Then, we define the content indicator for node Vi to be:

79

cii , 1− P (Yi = yj | Xi)

Again, we can compute P (Yi = yj | Xi) by learning a local classifier for the nodes

of the train graph Gtr. The intuition behind the content indicator ci is that if the

attributes of a node disagree with the prediction made by the collective model, then

it is a signal for a possible misclassification. The content indicator is a measure

of the strength of the disagreement between the local classifier and the collective

model. However, the content indicator alone will not be sufficient for misclassifica-

tion detection; otherwise, we could just replace the collective model with the local

classifier.

The relational indicator captures how likely it is that a node’s neighbors are

also misclassified. The intuition is that if a node’s neighbors are misclassified, then

the node itself is probably misclassified as well (because the classification model is a

collective one). There are different possibilities for defining the relational indicator;

for instance, it can be defined as a recursive function of Ti, and then it can be

computed iteratively. We take the simplest approach and define it as the average of

the content indicators, cij, of the neighbors of the node Vi.

rii ,
1

|Ni|
∑
Yj∈Ni

cij

Finally, the global indicator captures the difference between our prior belief

about the class distributions and the posterior distribution that we get based on

the predictions. For example, based on our prior belief, if we expect to classify 20%

80

of the nodes with label yj, but the collective model predicts 60% of the nodes as

label yj, then some of the nodes that are classified as yj are probably misclassified.

Let the prior distribution of the class yj be denoted by Prior(yj) and let the pos-

terior distribution based on the predictions of the collective model be denoted by

Posterior(yj). Then, we define the global indicator for the node Vi that is predicted

as yj as follows:

gii ,
Posterior(yj)− Prior(yj)

1− Prior(yj)

Having constructed these three features, we learn a classifier for estimating

the distribution P (Ti | cii, rii, gii). To learn this classifier, we need training data,

which requires four pieces of information per node: the three indicators described

above, and the value of Ti. To obtain this information, we use our collective model

and the training graph Gtr. As a first step, we run collective inference on Gtr

assuming the labels are unknown, to obtain a new graph where the node labels are

now the predicted ones. Let this new graph be called the prediction graph Gpr.

To obtain the content indicator cii, we first learn a content-only classifier on the

attribute vectors of the nodes of the training graph Gtr and then use this content-

only classifier and the predicted labels in the prediction graph Gpr to compute cii.

To obtain the relational indicators rii, we use the content indicators that we just

computed. To obtain the global indicators gii, we collect the prior class distribution

statistics on the training graph Gtr and the posterior class distribution statistics on

the prediction graph Gpr. Finally, to obtain the value of Ti, we compare the correct

81

Figure 4.2: The process of learning P (Ti | cii, rii, gii). We the collective model CM
to predict the labels for the training graph. To construct the content indicator,
we use the predicted labels and a content-only classifier that was learned on the
training graph. To construct the global indicator, we collect prior class distribution
statistics on the training graph and the posterior class distribution statistics on the
predicted labels. To obtain the class information Ti, we compare the true labels and
the predicted labels.

labels from the training graph Gtr with the predicted labels from the prediction

graph Gpr. Having constructed the training data, we can use any probabilistic

classifier to learn the distribution P (Ti | cii, rii, gii). This process is illustrated in

Figure 4.2.

The question that remains to be answered is how to define the utility of label

Yi given P (Ti | cii, rii, gii). The most obvious way is to have utilityracYi , P (Ti |

cii, rii, gii). However, given that we have a limited budget, we want each of the

acquisitions to correct as many misclassifications as possible. The node that has the

82

highest probability of misclassification P (Ti | cii, rii, gii) can be an isolated node in

the network; then acquiring the label for that node might not have a big impact on

the predictions for the labels of the rest of the nodes. Based on these intuitions,

we want the utility of a label to be a function of whether the corresponding node is

misclassified, and how many misclassified neighbors it has. More formally:

utilityrac(Yi) ,

0 if P (Ti | cii, rii, gii) < σ

1 +
∑

Yj∈Ni

δ(P (Tj | cij, rij, gij) ≥ σ) otherwise

where δ(predicate) = 1 if the predicate is true, 0 otherwise, and σ is the threshold

used to decide if a node is misclassified.

We can have a fixed threshold σ, like 0.5, however, we want to set it adaptively

based on the training data and the underlying collective model. Specifically, we want

σ to be a function of the prior probability of the misclassifications of the collective

model on the training data. The way we set it is as follows: let p be the percentage

of the nodes in the training data that are misclassified by the collective model. We

first sort all the test data in decreasing order of P (Ti | cii, rii, gii) and then we set

σ to the misclassification probability of the last node in the top p percent in this

sorted list. Instead of continuously updating the σ after each acquisition step, we fix

it at this value before any acquisitions are made because we expect the percentage

of misclassified nodes in the test graph to decrease as we acquire more labels. With

83

the misclassification predictor learned and the utility function defined, the missing

pieces of the acquisition process, which is illustrated in Figure 4.1, are now complete.

RAC is a general active inference framework that can be applied using varios

features and utility functions; we have discussed three example features and an ex-

ample utility function above. The relative merits of each feature and utility function

depend on the domain, the noise level in the attributes of the nodes, the strength

of the correlation between the node labels, and the degree of class skew present in

the data. For example, the benefit of the content indicator correlates negatively

with the noise level in the attributes of the nodes; the relational indicator’s benefit

correlates with the degree of label correlation; the global indicator’s benefit corre-

lates with the degree of class skew in the data. Similarly, a utility function that

takes the misclassification predictions for neighbors into account is useful for cor-

recting flooded regions, whereas the utility function that takes only the individual

scores into account is useful for domains where flooding is not the main problem

but instead the focus is to correct single mistakes.

4.3.4 Generalized Utility-based Active Inference

In this subsection, we describe a generic active inference algorithm that unifies

the three acquisition methods described above. The algorithm also serves as a

generic utility-based active inference technique. In this general algorithm, which

we formally describe in Algorithm 4.1, we iteratively find the label Yi that has

the highest utility and whose acquisition cost does not cause us to exceed the given

84

budget, we add it to our acquisition set, and then repeat the process until we exhaust

the budget.

Algorithm 4.1: Generalized utility-based active inference algorithm.

Input: G – the test graph, CM – the learned collective model, cij –
misclassification costs, Ci – the acquisition costs, B – the budget

Output: A – the set of acquisitions
A← ∅1

while C(A) < B2

Ymax ← nil3

maxV alue← −∞4

for Yi ∈ Y \A5

utilityYi
← utility(Yi | X,A,Y \A, cij, CM)6

if utilityYi
> maxV alue ∧ C(A ∪ {Yi}) ≤ B then7

maxV alue← utilityYi
8

Ymax ← Yi9

A← A ∪ {Ymax}10

The utility function at step six of the algorithm is replaced with utilityaiga,

utilityvma, and utilityrac for the acquisitions we described previously. The utility

function in its most general form is a function of the label under consideration Yi,

the set of all attribute vectors X, what has been acquired thus far A, the set of

remaining labels Y \A, the cost model cij, and the underlying collective model, CM.

This algorithm is very similar to the general utility-based active learning al-

gorithms used by many different techniques such as Lewis and Gale (1994), Melville

and Mooney (2004), Roy and McCallum (2001), and Saar-Tsechansky and Provost

(2004) with one notable difference; in active learning, we update the underlying

classification model at each step. However, in active inference, we assume that we

have enough training data to learn the collective model. One thing that might

not be obvious from this algorithm is that the utility computation at step six of

85

the algorithm requires running the collective inference for some of the acquisition

strategies.

4.4 Experimental Evaluation

We begin our experimental evaluation with a study aimed at better under-

standing the effects of flooding in collective classification. Then, we evaluate our

proposed label acquisition strategies against a variety of baselines. We evaluate on

both synthetic and real-data and perform a relatively comprehensive exploration of

options and settings for the algorithms.

4.4.1 Understanding Flooding

Collective classification models classify a node in a network based on both

local attributes and characteristics of the node, such as words in a document, and

information contained in the neighboring nodes, such as topics of the documents

that reference this document. Thus, a prediction for a node in a given network both

affects and depends on the predictions for the other nodes in the network. Due to

these structural dependencies, in addition to the typical errors made by the non-

collective models (errors due to noise in the data, incorrect modeling assumptions,

etc.), collective models can make a second type of error by spreading an incorrect

decision to the neighboring nodes or by committing to an incorrect decision jointly.

As mentioned in the introduction, we call this kind of error flooding. Depending on

the characteristics of the data and the underlying collective model, flooding can be

86

quite severe; in extreme cases, most of the network can be flooded with just one

label.

Before we evaluate different acquisition strategies, we explore the spectrum of

flooding as a function of noise in the attributes and correlation of the node labels

in the network. In order to quantify flooding, we introduce two measures. The first

measure, which we refer to as perfect information (PI) accuracy, is the accuracy that

corresponds to the setting where to classify a node, the collective model is allowed

to look at the true labels (according to the ground-truth) of the node’s neighbors

instead of the predicted labels. Obviously, this is a hypothetical situation, but it is

quite useful for quantifying floods and comparing different collective models as to

how well their modeling assumptions fit to the data and how well they can exploit

attribute and neighborhood information. The second measure, which we refer to a

no acquisition (NOACQ) accuracy, is the accuracy that is achieved before any label

is acquired. Given these two measures, we define the flood percentage (FP) as the

difference between the two:

FP , PI− NOACQ

To explore the spectrum of flooding, we generated synthetic data where we

change the attribute noise level and the level of the correlation between the labels

of the neighboring nodes, which we measure using the assortativity coefficient of

Newman (2003). As our collective models, we used a pairwise Markov Random

Field (MRF) (Taskar et al., 2002) and Iterative Classification Algorithm (ICA) (Lu

87

and Getoor, 2003a; Neville and Jensen, 2000). For MRF inference, we used loopy

belief propagation (Yedidia et al., 2000). For ICA, we used the count aggregation

for feature construction, and used logistic regression as the underlying classifier. We

next describe the procedure we used to generate synthetic data.

4.4.1.1 Synthetic Data Generation

We generated synthetic networks using the forest-fire graph generation model

(Leskovec et al., 2007b). The forest fire model is shown to exhibit many real-world

phenomena such as power law degree distribution, small world effect, and shrinking

diameters. However, the forest-fire method, like most random network generators,

does not generate labels and attributes for the nodes. In order to label the nodes,

we used the method described in (Rattigan et al., 2007b). In their method, for each

label an initial number of random nodes are selected and labeled with it. Then, an

each iteration, nodes that have not received a label yet are labeled based on their

neighbors’ labels. The number of nodes that are labeled at random at the initial

phase of the algorithm controls the assortativity of the network; the higher the

initial number of labelings, the less the assortativity. We varied the initial number

of labelings to obtain different levels of assortativity.

Rattigan et al. (2007b) did not generate attributes for the nodes. We generated

attributes using a simple Naive Bayes model after we labeled the nodes. Assuming

we have m labels, we generated m×k binary attributes, aij, where k is a parameter

controlling the total number of attributes generated, i ranges from 1 to m and j

88

ranges from 1 to k; that is, the attributes are grouped by the value of the class label.

P (aij = True | class = l) is set to p > 0.5 if i = l, and it is set to q < 0.5 if i 6= l.

The values of the attributes were sampled by conditioning on the label of the node.

In our experiments, we set m = 5 and k = 4, giving us 20 attributes per node. We

varied the p and q parameters to obtain different levels of attribute noise.

4.4.1.2 The Spectrum of Flooding

We generated 10 train-test graph pairs, each with 2000 nodes and with varying

attribute noise and assortativity levels. We experimented with three noise levels:

low, medium, and high. We distributed these levels uniformly between 0.2 (pure ran-

dom classification accuracy) and 1; thus, accuracies corresponding to high, medium,

and low noise levels are 0.4, 0.6, and 0.8 respectively. Similarly, we distributed the

assortativity levels between 0 and 1 uniformly, having 0.25, 0.5, and 0.75 assorta-

tivity coefficients for the networks of low, medium, and high assortativity.

Before presenting the flooding percentages of MRF and ICA, we present the

PI accuracies they achieved under varying attribute noise and assortativity level

settings. The corresponding plots are shown in Figure 4.3. Not surprisingly, both

MRF and ICA achieve the highest PI accuracies under low attribute noise or high

assortativity settings. However, when the assortativity level is not high and if the

attributes are not very noisy, ICA outperforms MRF in terms of PI accuracy. This

result indicates that ICA is possibly better at exploiting the attribute information

compared to MRF under comparably low assortative settings. The fact that they

89

(a) (b)

Figure 4.3: Analysis of the PI accuracies achieved by MRF and ICA under low noise
(LN), medium noise (MN), high noise (HN), and low assortativity (LA), medium assor-
tativity (MA), and high assortativity (HA) settings. (a) PI accuracy from the attribute
noise perspective. (b) PI accuracy from the assortativity perspective.

achieve comparable PI accuracies when the assortativity level is high regardless

of the attribute noise level signals that MRF is able to exploit the neighborhood

information at least as well as ICA.

We present the flood percentage results in Figure 4.4. As one expects, as

the attribute noise level increases, the flood percentage also increases, and this is

true for both MRF and ICA (Figure 4.4(a)). Because the attributes are noisy 1)

a misclassification is more likely, 2) classification decisions depend more on the

labels of the neighboring nodes, and 3) there are not many nodes that can prevent

misclassification propagation (nodes whose attributes carry enough signal in the

degree that they can be classified using only their attribute information). If we

look at the problem from the perspective of assortativity (Figure 4.4(b)), when the

attribute noise is high, the higher the assortativity, the higher the flooding; however,

90

(a) (b)

Figure 4.4: Analysis of the error caused by flooding, measured as the difference
between PI accuracy and NOACQ accuracy, under low noise (LN), medium noise (MN),
high noise (HN), and low assortativity (LA), medium assortativity (MA), and high as-
sortativity (HA) settings. (a) Flood percentage from the attribute noise perspective.
(b) Flood percentage from the assortativity perspective.

when the attribute noise is low, the assortativity does not play a significant role for

flooding. Again, higher assortativity means greater dependence on the neighbors,

but when the attribute noise is low, attributes also play a significant role in the

classification decision. Thus, nodes are less likely to be misclassified and there are

enough nodes that can prevent misclassification propagation. Finally, we observe

that MRF floods more than ICA does. This observation is also in line with the

observation we made earlier that ICA is able to exploit attribute information more

than MRF.

With these experiments, we provide only a flavor of the different settings

under which flooding occurs. Having analyzed the flooding, we next show how

active inference can be used to detect and correct it.

91

4.4.2 Experiments Comparing Different Active Inference Techniques

Next, we move on to the main evaluation of the proposed algorithms. We

compared six acquisition methods: the three acquisition methods described earlier

(AIGA, VMA, and RAC), two acquisition methods that are based on the structural

properties of the network, and the random acquisition (RND) as a baseline. The two

structural acquisition methods are: degree (DEG) and k-mediods clustering (KM). DEG

ranks the nodes according to their degree in the network and acquires the highest

degree ones. The intuition is that the high degree nodes affect more nodes in the

network. The KM method, which was proposed by Rattigan et al. (2007b) and

shown to outperform many other structure-based acquisition strategies, clusters the

network into k clusters using k-mediods clustering and acquires the mediods of the

clusters. To compute the similarity of nodes, it uses geodesic distances of nodes in

the network. The intuition is to spread the acquired labels in the network evenly

and to choose central nodes whenever possible.

We compare these acquisition strategies on both synthetic and real-world

datasets using accuracy as the performance measure. To assess how well each ac-

quisition methods deals with flooding, we also plot PI and NOACQ accuracies. For

different acquisition methods, we computed accuracy over the labels that were not

acquired (i.e. Y \A), whereas for PI and NOACQ, we measured accuracy on all the

labels Y. Even though PI and NOACQ accuracies are quite useful to know to asses

how well the acquisition strategies perform, neither PI is an upper bound nor NOACQ

is a lower bound because the acquisition strategies and the PI and NOACQ are eval-

92

uated on different sets. An acquisition strategy, in practice, can acquire the labels

that even PI misclassifies, thus can surpass PI accuracy. Similarly, an acquisition

strategy might acquire labels that even NOACQ does not make mistakes on, thus even

though both the acquisition strategy and NOACQ make the same number of mis-

takes, the acquisition strategy has worse accuracy than NOACQ simply because the

acquisition strategy is evaluated on a smaller set (Y \A versus Y).

Finally, both RAC and VMA require content-only classifiers, classifiers that use

only the attribute and label information for each node independently; RAC requires a

content-only classifier for feature construction (the content and relational indicators)

and it requires a content-only classifier for predicting whether a node is misclassified

given the constructed features, whereas VMA requires a content-only classifier for local

probability computation. For RAC feature construction and VMA local probability

computation, we used Naive Bayes for the synthetic datasets (because we generated

the attributes using Naive Bayes) and we compared using Naive Bayes versus logistic

regression for the real-world datasets. To classify nodes as misclassified or not based

on the constructed features, we used logistic regression for both synthetic and real-

world datasets.

Even though the AIGA method is a polynomial-time algorithm, each single

acquisition decision requires running inference for each node and for each possible

value of its label. Thus, it is impractical to run AIGA on large networks.We first

present a series of results on networks small enough to run AIGA, and then present

results on larger networks, which do not include AIGA results.

93

(a) (b)

Figure 4.5: Experiments comparing AIGA with other methods on small size graphs.
(a) MRF results. (b) ICA results.

4.4.2.1 Experiments on Synthetic Networks with 200 Nodes

We trained and tested our collective models on ten training-testing network

pairs; the training networks had 2000 nodes in order to learn a reliable collective

model and the testing networks had 200 nodes. The nodes had medium noise and

assortativity levels. We varied the percentage of labels acquired from 5% to 30% in

5% increments. The results are shown in Figure 4.5.

One of the striking results is that for MRF, AIGA performed worse than random

(Figure 4.5(a)). This is surprising at first, because one would expect the AIGA

method to perform the best. However, recall that we used loopy belief propagation

for MRF inference, which is an approximate method for probability computation

and it is known to produce suboptimal results when there are short cycles in the

graph. Because of the assortativity of the nodes, we observed that beliefs about the

94

nodes’ labels reinforced one another iteratively, and thus most of the probability

distributions for the nodes’ labels were extreme: 1 for one label value and 0 for

the other values. Because the probabilities were extreme, AIGA made acquisition

decisions based on utilityaiga that were extremely similar for many nodes. As for ICA

(Figure 4.5(b)), AIGA performed better than all methods except RAC. This suggests

that the probabilities for ICA were better calibrated than for MRF, however, this

claim needs further investigation.

As for the time it took for different acquisition methods to complete, at 30%

acquisition level for MRF, AIGA took about 38 minutes, RAC took 4 seconds, the other

methods took less than a second. For ICA, AIGA took 11 minutes, RAC took 3 seconds,

and the other methods again took less than a second. Because AIGA takes much

more time and its accuracy depends heavily on the calibration of the probability

estimates, AIGA is an undesirable acquisition method. Some approaches to speeding

up AIGA are to work with a sample rather than using all of the test data and to

acquire more labels at a time, however, these modifications will most likely further

reduce its accuracy.

4.4.2.2 Experiments on Synthetic Networks with 2000 Nodes

Next, we compared the acquisition strategies on larger test graphs with 2000

nodes under nine settings: the cross product of the variations in the attribute noise

level and assortativity level. For each plot, we zoom in to the area of interest; that is,

the low point of the y-axis starts from NOACQ accuracy, and the highest point in the

95

y-axis is the accuracy of either PI or the accuracy achieved by the best performing

acquisition method, whichever is higher. The reason we zoom in is to be able to

highlight the differences between different acquisition methods.

We present results in the order of high noise, medium noise, and low noise

settings. For each noise setting, we vary the assortativity levels. The results for

high attribute noise and varying assortativity levels for both MRF and ICA are shown

in Figure 4.6. For MRF, RAC outperforms all other methods at all levels. The dif-

ferences are statistically significant at all levels for high and medium assortativity

level, and after 15% acquisition level for the low assortativity case, where signifi-

cance is measured using paired t-test at 95% confidence level. For ICA, RAC does

slightly worse than KM for the high assortativity case, comparable for the medium

assortativity case, and slightly better for the low assortativity case; the differences

are not statistically significant except at 20% and 30% acquisition levels for the

low assortativity case. Note that two of the three features that RAC uses are based

on the content-only model’s predictions; even though the node attributes are quite

noisy and thus the content-only model is quite unreliable, RAC is either comparable

or better than the other methods in the high attribute noise case.

When we compare the remaining methods, they all significantly outperform

random acquisition in almost all cases (except random has comparable results to

DEG and VMA only for ICA when the assortativity is high and if we acquire 30% of the

labels). For high assortativity levels, KM significantly outperforms other methods for

both MRF and ICA at almost all acquisition levels and this result is in line with the

findings of Rattigan et al. (2007b). For medium assortative levels, there is not a

96

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Accuracy comparisons for the high attribute noise case. (a) and (b)
High assortativity, (c) and (d) Medium assortativity, (e) and (f) Low assortativity.

97

clear winner between VMA, KM, and DEG, but when the assortativity level is low, VMA

outperforms other methods slightly.

One important observation is that MRF is easier to improve than ICA; even

though MRF accuracies start very low compared to ICA due to high flood percentages,

MRF accuracies are better than ICA accuracies for all acquisition methods (except

RND) starting from 10% acquisition level for high assortativity and starting 15% for

medium assortativity. This observation also confirms that MRF is more dependent

on neighbor information than ICA.

Next, we present results on the medium attribute noise case in Figure 4.7.

RAC significantly outperforms all other methods at all levels for both MRF and ICA.

It is also able to reach beyond PI accuracy at high acquisition levels for medium

assortativity and starting 20% acquisition for low assortativity case. As for the other

methods, KM again has better accuracy than other methods in the high assortativity

case; for the medium assortativity and low assortativity, VMA outperforms other

methods, and the differences are statistically significant for most acquisition levels.

The final set of results on low attribute noise synthetic data are shown in Fig-

ure 4.8. Remember that in this setting, the flood percentage was low, especially for

ICA. Thus, the remaining errors to correct are the errors due to model imperfection,

attribute noise, etc., i.e. the difference between 1 and PI accuracy, and this type of

error is higher for the low assortativity case. Thus, one would expect the acquisition

methods to perform better than PI accuracy in this low attribute noise setting. We

observe that RAC outperforms all other methods significantly at all levels for both

MRF and ICA. It is also able to perform better than PI accuracy in almost all acqui-

98

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Accuracy comparisons for the medium attribute noise case. (a) and (b)
High assortativity, (c) and (d) Medium assortativity, (e) and (f) Low assortativity.

99

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Accuracy comparisons for the low attribute noise case. (a) and (b) High
assortativity, (c) and (d) Medium assortativity, (e) and (f) Low assortativity.

100

sition levels. As for the other methods, VMA significantly outperforms DEG, KM, and

RND in most cases; it is also able to perform better than PI but only in half of the

cases. This result is not surprising because VMA makes use of a content-only classifier

whereas DEG, KM, and RND do not. And, for the same reason, DEG, KM, and RND are

never able to get beyond PI accuracy, except DEG for only the low assortativity case

for only MRF.

4.4.2.3 Experiments on Real-world Datasets

We experimented on two real publication datasets that are publicly available,

the Cora dataset (McCallum et al., 2000) and the CiteSeer dataset (Giles et al.,

1998). The Cora dataset contains 2708 machine learning papers that are divided

into seven classes, while CiteSeer dataset has 3312 documents that are divided into

six classes.

Our evaluation methodology for these datasets is slightly different from the

general practice. In real-world scenarios, we typically have only a small percentage

of the data labeled. This makes the interactions between the unlabeled nodes more

common than the interactions between the labeled and unlabeled nodes. To mimic

these two observations, we adopted the following evaluation strategy. We divided

each dataset into three disjoint splits and repeatedly trained on one split and tested

on the remaining two (in contrast to training on two splits and testing on the other).

Additionally, we did not make use of the edges between the labeled nodes and the

unlabeled ones during inference. Because of these changes in the evaluation strategy,

101

which we believe results in a more realistic evaluation, the accuracies corresponding

to NOACQ are very low compared to the numbers reported in the literature. The

primary reason is that the test graphs are more amenable to flooding now, because

they are large and there are no interactions between the test graph and the training

graph. However, the PI accuracies are close to the previously reported numbers

(Sen et al., 2008), only being slightly lower because we are using less training data.

With these real-world datasets, we also experimented with using different

content-only classifiers for RAC and VMA. The purpose of this experiment is to explore

whether and how much the strength of the underlying content-only model affects

the accuracy results for RAC and VMA. We experimented with using Naive Bayes and

logistic regression; the content-only classification accuracies for Naive Bayes were

worse than logistic regression accuracies; Naive Bayes had an average accuracy of

0.61 for Cora and 0.57 for CiteSeer, whereas logistic regression accuracies were 0.69

and 0.62 respectively. Finally, the assortativity coefficient for Cora is 0.79, whereas

for CiteSeer it is slightly lower with 0.68. The accuracies for different acquisition

strategies are shown in Figure 4.9.

One of the first observations is that MRF again floods more than ICA does

on both datasets; the flood percentage for MRF on Cora is 0.43 and for CiteSeer is

0.35 whereas for ICA they are 0.11 and 0.06 respectively. For MRF, both versions

of RAC outperform all other methods significantly for both datasets. There are not

significant differences between RAC-LR and RAC-NB for MRF, except for Cora at 30%

acquisition level. Because MRF floods more than ICA does, this result suggests that

RAC might not need a very strong local classifier for detecting the floods. Differences

102

(a) (b)

(c) (d)

Figure 4.9: Experiments on the real-world datasets. (a) MRF results on Cora, (b)
ICA results on Cora, (c) MRF results on CiteSeer, and (d) ICA results on CiteSeer.

emerge when most of the flooded nodes are corrected; RAC-LR outperforms RAC-NB

significantly for MRF only at 30% acquisition level.

For ICA, RAC-LR outperforms all other methods, including RAC-NB, for both

datasets. Again, this suggests that when the flood percentage is not high, which is

103

the case for ICA, a stronger local classifier is more helpful. RAC-NB outperforms all

other methods, including VMA-LR, for CiteSeer but it has comparable performance

to VMA-LR for Cora, while still outperforming the remaining methods.

One of the interesting results is that DEG performed quite poorly for ICA for

both Cora and CiteSeer; for Cora, it was initially better than RND but it became

worse after 20% acquisition; for CiteSeer, it was always worse than even NOACQ. This

observation suggests that, at least in these real datasets, higher degree nodes can

be easier to classify for ICA, and thus, acquiring labels for them is not only useless

but in fact, we are investing our budget in nodes that we have a high chance of

being correctly classified, which we should definitely avoid. Because we evaluated

the performance of different acquisition strategies, including DEG, on the labels that

were not acquired (Y\A), acquiring the labels that were already classified correctly

made the performance of DEG worse than NOACQ. The reason is that even though the

number of misclassified nodes did not change for both DEG and NOACQ, the percentage

of misclassified nodes increased for DEG simply because the denominator got smaller

(|Y| for NOACQ versus |Y \A| for DEG).

4.5 Summary and Contributions

We have formulated the active inference problem in terms of expected mis-

classification costs and label acquisition costs and discussed why finding the optimal

solution was hard under relatively general assumptions. We discussed the problem

of flooding and experimentally showed that it was an important problem for two

104

representative collective classification models: pairwise Markov Random Field (MRF)

with loopy belief propagation and Iterative Classification Algorithm (ICA). Through

synthetic data, we explored the degree of flooding under varying attribute noise and

label assortativity settings. We empirically showed that MRF flooded more than ICA.

We introduced three informed active inference strategies and compared them

with two acquisition strategies that are based on structural properties of the net-

work. The first informed active inference strategy that we proposed is based on

approximating the value of the objective function through approximate inference

and acquiring labels greedily. We experimentally showed that this method did not

perform well in practice, especially for MRF. When we analyzed the reasons further,

we observed that the probability estimates were not calibrated, which caused the

failure of this acquisition method.

Next, we described the analogy between viral marketing and the active infer-

ence problem, and introduced a second informed active inference algorithm based

on viral marketing. We showed the details of the mapping between active inference

and the viral marketing formulation of Richardson and Domingos (2002). We empir-

ically showed that this method performed equally well with the structural methods

under high noise settings, and performed better as the attributes got more useful.

Of the methods that were based on structural properties of the network, the

method that acquired labels according to the degree of the nodes had the most

erratic performance; sometimes, it performed better than the other structure-based

method, K-Mediods, while other times, it performed worse than random. K-Mediods

on the other hand performed better than most acquisition methods under high noise

105

and high assortative settings, and it had much more stable performance compared

to the degree method in the remaining settings.

Finally, we proposed a third active inference strategy called reflect and correct

(RAC) that is based on learning when a collective model makes mistakes and suggests

acquisitions to correct those mistakes. RAC learned a misclassification predictor using

three features that we constructed by 1) comparing the predictions of a non-collective

classifier and the collective model, 2) using the neighborhood information, and 3)

comparing the class prior and posterior distribution statistics on the training and

testing networks. We empirically showed that RAC outperformed other methods on

most cases, most of the time with statistically significant differences, and it had

comparable performance on the remaining few cases, never losing significantly. We

also experimented with using Naive Bayes and logistic regression for constructing the

features for the misclassification predictor. We showed that when the flooding was

significant, RAC did not require a strong content-only classifier; otherwise, logistic

regression classifier lead to better results.

4.6 Conclusions

In many real-world applications, a collective inference framework is required to

make predictions. These models are often used to guide a human expert that makes

the final decisions. Our work on active label acquisition helps to focus the efforts

of the expert on feedback that will have the highest impact. It also highlights the

complex processes involved in collective classification, and hopefully raises awareness

106

about the sensitivity of these models to errors, and provides some insight in how

one might detect these types of errors.

107

Chapter 5

Label Acquisition During Learning for Relational Data

In this chapter, I introduce our approach to label acquisition during learning,

i.e., active learning, for relational data. This is a very similar set up to the active

inference setting I described in Chapter 4. The key difference is that in the active

inference setting, we assumed that we had an already learned model and our task

was to determine the right set of labels to acquire at inference time to maximize the

classification performance on the remaining ones. Here, however, we assume that

we are given an unlabeled network and a budget determining the number of labels

to acquire. Our objective is then to determine the right set of labels to acquire and

learn a classifier that is expected to have the least future misclassification cost. I

describe our algorithm that uses the links in the network both to select informative

instances to label and to learn a collective model.

5.1 Introduction

In many domains of interest, the instances are connected via a set of links,

thus forming a network, in which neighboring instances frequently have correlated

labels. For example, in document classification, documents that cite each other of-

ten have similar topics, and in social networks, people that are friends often have

similar characteristics. A long tradition in machine learning has focused on exploit-

108

ing such network information to achieve better predictive accuracy by classifying

instances collectively, rather than treating them as independent samples (see Sen

et al. (2008) for an overview). This approach is appealing because in many cases

link information is readily available. For example, in document classification, ci-

tation or hyperlinks can be automatically collected. On the other hand, labeling

instances requires human attention and may be expensive. For instance, if the task

is to predict the effect of a new substance on organisms in a biological network,

labeling new examples may require laboratory experiments, whereas the network

information regarding interactions among the organisms may be well-known.

Therefore, an important research question is to develop algorithms that reduce

the amount of labeling effort required for such tasks. One promising approach is

to use active learning. In this setting, rather than being presented with a labeled

training set from the start, the learner is allowed to request labels for particular

instances with the goal of achieving high accuracy with minimum number of acquired

labels. While many effective active learning algorithms have been developed (see

Section 2.2 for related work on active learning), to the best of our knowledge, efficient

active learners that take direct advantage of explicit network structure in the data

to select informative examples have not been considered.

The main contribution of this chapter is a novel active learning algorithm

that addresses this setting. Our algorithm, called ALFNET (for active learning for

networked data), exploits the network structure of the domain and the interaction

between the local and relational aspects of a classifier to select more informative

examples to be labeled, thus improving the accuracy of learning from fewer labeled

109

instances. We demonstrate the effectiveness of ALFNET in several real-world collective

classification tasks.

Another important consideration for active learning of collective models from

relational data is that learning the strength and type of correlations between the

instance labels requires the labels of the linked nodes to be known during training.

For example, learning the sign and strength of the correlation between the topics of

linked papers in a citation network requires training data where the labels of both

the citing and cited papers are known. However, because labels are scarce, it is rarely

the case that labels of neighboring nodes are known. We introduce a novel semi-

supervised technique that can effectively handle the problem of missing labels during

training, thus providing the collective classification algorithms sufficient supervision

for learning label correlations.

Further, we argue in favor of combining dimensionality reduction techniques

with active learning. Even though it is well known in the literature that high

dimensionality is an important problem especially when labeled data is limited,

dimensionality reduction is often overlooked in the active learning community. In

this chapter, we employ unsupervised dimensionality reduction as a first step of

learning and show that it leads to significant performance gains.

Such semi- and unsupervised algorithms are of great importance to active

learning settings in which labeled data is typically severely limited. By using them,

we ensure that our proposed active learning algorithm improves over strong base

learners and obtains improvements beyond those achievable by simpler methods.

110

The remainder of the chapter is organized as follows. In Section 5.2 we in-

troduce some background and notation. The ALFNET algorithm is described in

Section 5.3 and semi-supervision and dimensionality reduction is discussed in Sec-

tion 5.4. We present an empricial evaluation in Section 5.5 and then conclude in

Section 5.6.

5.2 Background

This section introduces necessary background and notation on collective clas-

sification and active learning. We assume that our data is represented as a graph

G = (V,E). Each node Vi ∈ V is described by an attribute vector ~Xi and a class

label Yi, Vi = 〈 ~Xi, Yi〉. ~Xi is a vector of individual attributes 〈Xi1, Xi2, . . . , Xip〉.

The domain of Xij can be either discrete or continuous whereas the domain of the

class label Yi is discrete and denoted as {y1, y2, . . . , ym}. Each edge Eij ∈ E, where

Eij = 〈Vi, Vj〉, describes some relationship or link between Vi and Vj. For example,

in a citation network, the nodes are publications, the node attributes include words,

the node labels may be the topics of the papers, and the edges represent citations.

5.2.1 Collective Classification

In network data, the labels of neighboring nodes are often correlated (though

not necessarily positively correlated). For example, papers that cite each other are

likely to have similar topics, and proteins that interact are likely to have complemen-

tary functions. Exploiting these correlations can significantly improve classification

111

performance over using only the attributes, ~Xi, for the nodes. The label correlations

are typically used by defining feature functions over the labels of linked nodes and

the generated features are used in addition to the local attributes to predict Yi.

However, when predicting the label of a node, the labels of the linked instances are

also unknown and need to be predicted. Collective classification is the term used

for simultaneously predicting the labels Y of V in the graph G, where Y denotes

the set of labels of all of the nodes, Y = {Y1, Y2, . . . , Yn}.

In general, the label Yi of a node can be influenced by its own attributes ~Xi

as well as the labels Yj and attributes ~Xj of other nodes in the graph. The variety

of collective classification models that have been proposed make different modeling

assumptions about how to represent and use these dependencies. Some define global

objective functions, for e.g., Relational Markov Networks (Taskar et al., 2002) and

Graph Mincuts (Blum and Chawla, 2001), while others such as Iterative Classifica-

tion (Neville and Jensen, 2000; Lu and Getoor, 2003a), operate more locally. Here,

we focus on the latter, local collective classification models, which consist of a collec-

tion of local vector-based classifiers, such as logistic regression, applied iteratively.

For this category of collective models, each object is described as a vector of its

local attributes ~Xi and an aggregation of attributes and labels of its neighbors. In

particular, we use an Iterative Classification Algorithm (ICA) (Neville and Jensen,

2000; Lu and Getoor, 2003a), which we briefly explain next. However, our active

learning algorithm is largely independent of the underlying collective classification

model.

112

Let Ni denote the labels of the neighboring nodes of Vi, Ni = {Yj|〈Vi, Vj〉 ∈ E}.

A typical modeling assumption that we also make here is that, once we know the

values of Ni, then Yi is independent of the attribute vectors ~Xj of all neighbors and

non-neighbors, as well as of the labels Yj of all non-neighbors.

In ICA, each node in the graph is represented as a vector that is a combi-

nation of node features, ~Xi, and features that are constructed using the labels of

the node’s immediate neighbors, Ni. Because nodes can have different numbers of

neighbors, the size of Ni can vary for different i. In order to get a fixed-length

vector representation, we use an aggregation function, aggr, over Ni. For example,

count aggregation constructs a fixed-size feature vector by counting the number

of neighbors with each label; other examples of aggregations include proportion,

mode, etc. Once the features are constructed, then an off-the-shelf probabilistic clas-

sifier can be used to learn P (Yi | ~Xi, aggr(Ni)). Here we refer to a classifier that

learns P (Yi | ~Xi, aggr(Ni)) as CC, for collective classifier. We refer to a classifier

that uses only the local node features and learns P (Yi | ~Xi) as CO, which stands for

content-only classifier.

A key component of this approach is that during inference, the labels of the

neighboring instances are often not known. ICA addresses this issue, and performs

collective classification by using the predicted labels for the neighbors for computing

the aggregates. ICA iterates over all nodes making a new prediction based on the

predictions made for the unknown labels of the neighbors in the previous iteration; in

the first step of the algorithm, initial labels can be inferred based solely on attribute

113

information, or based on attribute and any observed neighboring labels. ICA is

explained in more detail in Section 4.2.1.1.

5.2.2 Active Learning

Active learning addresses the problem of minimizing the labeling cost by let-

ting the underlying classifier choose which examples to label. A variety of active

learning settings have been studied, such as pool-based sampling, membership query

synthesis, and stream-based selective sampling (see Settles (2009) for an overview).

In this chapter, we consider the pool-based setting, in which the learner is initially

provided with a pool of unlabeled examples P. At each step, it is allowed to select

a batch of k instances that are added to its labeled corpus L and removed from P.

We utilize and build upon uncertainty sampling (Lewis and Gale, 1994), committee-

based sampling (Seung et al., 1992), and clustering (Dasgupta and Hsu, 2008). A

more thorough discussion of related work is provided in Section 2.2.

5.3 ALFNET

ALFNET is a novel active learning algorithm for collective classification. Before

describing it in detail, we provide a precise statement of the problem we study.

Problem Statement: We are given a graph G = (V,E), where a subset

P ⊂ V is the pool of unlabeled examples, a collective classification model CC to be

trained, a batch size k, and a budget B. The task is, within the constraints of B,

to make a series of selections of k elements from P to be labeled by an oracle so

114

that the accuracy of CC on unseen data, after training it on the acquired labeled

examples L, is maximized.

This is an inductive set-up, in which the test data, V \ P, is not available

during the active learning process, i.e., testing is done on unseen instances and not

on the remaining part of the pool P. However, we assume that the labeled data

and the remaining unlabeled instances are available at test time. In the remainder

of this section, for simplicity of notation we assume that the test nodes and their

adjacent edges have been removed from the training graph G, and so, the initial

pool consists of all nodes in V.

The difference between the problem addressed in this and previous active

learning approaches is that here we assume that the instances to be classified form

a network structure, as defined by the edge set E of the graph G. ALFNET can take

advantage of this additional information to select more informative instances. It

proceeds by first using the network structure to cluster the data. It then requests

the labels of examples that belong to clusters in which CC and CO (1) disagree about

the class assignments of the yet unobserved instances and (2) make predictions that

do not match the majority label among the observed ones in the cluster.

The high-level pseudo code for ALFNET is described in Algorithm 5.1. First, in

line 2, the network structure, as given by the edge set E, is used to cluster the nodes

of G into at least k clusters, where k is the batch size, as defined above. To obtain

initial data for training the base learner, k clusters are selected, and one item from

each of them is picked and labeled (lines 3-6). This forms the initial labeled set L.

ALFNET then proceeds in iterations until the budget B is exhausted (lines 7-15), as

115

Algorithm 5.1: ALFNET: Active Learning for Networked Data

Input: G = (V,E): the network, CO: content-only learner, CC: collective
learner, k: the batch size, B: the budget

Output: L: the training set
L← ∅1

C← Cluster the nodes V of the network G into at least k clusters2

Ck ← Pick k clusters from C3

foreach Cluster Ci ∈ Ck
4

Vj ← Pick an item from Ci5

Add Vj to L6

while |L| < B7

Re-train CO and CC8

foreach Cluster Ci ∈ C9

score(Ci)← Disagreement(CC,CO,Ci,L)10

Ck ← Pick k clusters based on the scores11

foreach Cluster Ci ∈ Ck
12

Vj ← Pick an item from Ci ∩P13

Add Vj to L14

Remove Vj from P15

follows. Although only the accuracy of CC is tested in the evaluation, both CC and

CO are trained in parallel so that their predictions can be compared for the purposes

of computing a disagreement score. In each iteration, CO and CC are re-trained using

the currently labeled data L (line 8). For each cluster, ALFNET computes a score

of the disagreement of CO, CC, and the observed labels in the cluster, and selects k

clusters based on their scores. We provide details on how the disagreement score is

computed later in this section. One unlabeled item from each of the selected clusters

is labeled, added to L, and removed from P (lines 13-15).

Next, we provide more detail on how the clusters are computed, how clusters

and elements from them are selected, and how the disagreement score is calculated.

116

For each of these, a variety of options can be explored. Here we focus on the choices

made in our implementation.

Clustering the nodes (step 2): There are many options on how to cluster

the nodes V of the graph G. While in previous work, (Dasgupta and Hsu, 2008),

clustering was performed based only on object attributes, here, we take advantage

of the available network structure and use a graph clustering algorithm to find

clusters. For our experiments we chose modularity clustering by Newman (2006).

The algorithm was allowed to split larger clusters into sub-clusters until one of two

conditions was met: splitting the cluster further either did not add to the modularity

score (Newman, 2006), or it would result in clusters with size smaller than a pre-

defined threshold θ. In the experiments, we set θ = 200 and did not consider other

values. Clustering the nodes based on network structure is promising because it

identifies groups of related nodes in the data, and thus helps the active learner

obtain a balanced training set, while avoiding areas of the data for which sufficient

supervision is already acquired.

Computing the disagreement score of a cluster (step 10): Intuitively,

the disagreement score of a cluster Cj, captures the degree to which CC and CO differ

in their predictions from each other, as well as the majority class, MC, of observed

labels in the cluster. The overall disagreement score of Cj is defined as the sum of

the local disagreement (LD) scores for each unlabeled node in cluster Cj, divided by

117

the number of labeled nodes in the cluster:

Disagreement(CC, CO, MC,Cj) =
1

|Cj ∩ L|+ 1

∑
Vi∈Cj∩P

LD(CC, CO, MC, Vi). (5.1)

Dividing by the number of labeled instances in the cluster is needed to avoid over-

investing in the clusters that have already been explored.

To define the local disagreement LD for an unlabeled node Vi, we collect the

predictions of three classifiers, regarding the label of Vi. The first two are the most

likely labels predicted by CC and CO, respectively, and the third one is the majority

class, MC, in the already observed nodes in Cj∩L. We form a weighted vote classifier,

WVC, using these three predictions:

PWVC(Y = yj | CC, CO, MC) =
wCC × δ(pCC = yj) + wCO × δ(pCO = yj) + wMC × δ(pMC = yj)

wCC + wCO + wMC

(5.2)

where wCC is weight of the CC classifier, pCC is the prediction made by CC, and δ

is the dirac delta function. wCO, pCO, wMC and pMC are defined similarly. The local

disagreement LD of a node Vi is defined as the entropy of Vi’s label according to the

class distribution PWVC:

LD(CC, CO, MC, Vi) = HPWVC
(Vi). (5.3)

Therefore, the more diverse the predictions of the three classifiers are, the greater

the disagreement about an instance is.

Picking clusters (steps 3 and 11): ALFNET picks k of the clusters, from

which it selects items for labeling. In general, the clusters may differ in size, and

118

thus the cluster sizes should be taken into account. In step 3 of the algorithm, k

clusters are picked probabilistically in proportion to their sizes. In step 11, the top k

clusters are picked, where clusters are sorted according to their disagreement scores.

Picking an item from a given cluster (step 5 and 13): Given a cluster, an

item is chosen randomly at step 5, and the item with the highest local disagreement

LD score is picked for labeling at step 13.

5.4 Semi-supervision and Dimensionality Reduction

An important aspect of active learning for networked data is that the collec-

tive classification algorithms need access to the labels of linked nodes in order to

learn the label correlations in the network. More specifically, the collective clas-

sifier is trained on the combined local features ~Xi and features constructed using

the neighborhood Ni. For example, the collective component of ICA is trained on

(~Xi, aggr(Ni)), where aggr(Ni) is computed only over neighbors for which observed

labels are available. When labeled data is scarce, there is an insufficient number of

observed neighbors. We introduce a novel semi-supervised collective classification

method, which is simple, but quite effective, as we show in the experiments. In this

technique, CO is used to predict labels for the unobserved members of Ni, i.e., Ni\L.

The aggregation function aggr(Ni) is then computed over actual (predicted) labels

for the observed (unobserved) neighbors. This results in much stronger supervision

for the neighborhood features.

119

Further, when the number of local features is large and the size of L is not big

enough, then there is not enough supervision to learn the model parameters reliably.

Because the size of L is bound to be small in the active learning scenario, we argue

for combining dimensionality reduction techniques with active learning. Since there

is not enough supervision, we employ unsupervised dimensionality reduction as a

first step of learning. Specifically, we used principal component analysis (PCA) to

transform the original feature space into a smaller one, over which learning from

less data is more effective. We experimentally show that this leads to significant

performance gains.

5.5 Experiments

We experimented with ALFNET in two benchmark collective classification tasks.

Our experimental study is structured as follows. First, we use the techniques de-

scribed in Section 5.4 to strengthen the base learner. We then compare the accuracy

of ALFNET to that of several competitive baselines. We then perform an ablation

study in which we test the importance of different aspects of ALFNET. Finally, we

discuss various strategies for weighting the votes of CO, CC, and MC.

5.5.1 Data

We experimented with two real-world publication data sets – Cora and Cite-

Seer, prepared by Sen et al. (2008)1. Cora contains 2708 instances, each belonging

to one of seven classes, while CiteSeer contains 3312 instances, each of which is in

1The datasets are available at http://www.cs.umd.edu/projects/linqs/projects/lbc/.

120

one of six classes. In both data sets, instances correspond to documents and are

described as 0/1 feature vectors, which indicate the absence/presence of a word.

The size of the vocabulary in Cora is 1433 and CiteSeer is 3703 words. The net-

work structure of both domains is provided by the citations between documents.

Cora contains 5429 citation links, while CiteSeer contains 4732. We ignored the

direction of the links, treating two documents as connected if either of them cited

the other. In a preliminary analysis, we discovered that in each of the data sets

one connected component contained a large percentage of all documents, whereas

the remaining documents were sparsely connected in components of average size

2.86/2.75 for Cora/CiteSeer. We attribute this sparsity to missing information in

the data. Because in this work we are interested in collective classification, and thus

the presence of links between the documents is essential, we cleaned up the data by

removing instances that do not belong to the largest connected component. In this

way, we were left with 92% of all instances in Cora and 64% in CiteSeer.

5.5.2 Methodology

We performed 10-fold cross-validation by randomly partitioning the data into

10 pieces. During training, in each fold of cross-validation, the instances from one

of the partitions were held for testing, and all of their links to the rest of the data

were removed to avoid contaminating the test set. The instances from the remaining

nine partitions had their labels hidden and constituted the pool P, from which the

active learner selected k = 5 instances to be labeled and added to the training set

121

in each iteration. During testing, the links between the test instances and the rest

of the data were restored. Data labeled during the learning stage was available

during testing. However, to ensure that all systems were tested on the same set

of examples, we evaluated their accuracy only on the held-out test set, and not on

unlabeled examples from P. In each fold, we performed three runs for each of the

systems; thus, each point on the learning curves presented here is an average of 30

runs. For the weighted vote classifier (Equation (5.2)) for cluster Cj, we set wCC = 1,

wCO = 1, and wMC = max(1 − Entropy(Cj ∩ L)). By discounting the vote of MC by

the entropy of the observed label distribution in the cluster, we make sure that the

homogeneous clusters are weighed more than the heterogeneous ones. Thus, ALFNET

can benefit from clustering techniques that provide more homogeneous clusters, and

it is protected from the negative effects of heterogeneous clustering. We further

discuss various weighting strategies in Section 5.5.3.4.

The base classifier used for CO and CC was logistic regression (LR). During

preliminary experiments with these data sets, we additionally experimented with

SMO and Naive Bayes, and selected LR as the best among the three. For aggregating

the label information from the neighboring nodes for CC, we used proportion where

for each class, we take the proportion of neighbors of Vi belonging to that class.

122

5.5.3 Results

5.5.3.1 Semi-supervision and Dimensionality Reduction

In this section, we present results on the effect of semi-supervision and dimen-

sionality reduction. We show results for:

• CO – Regular content-only classification.

• CC – Regular collective classification (no semi-supervision).

• CC-LS – Collective classification with label semi-supervision, where CO is used

to predict the labels for every instance in P\L and the collective classification

model is trained using all the observed and predicted labels.

• CC-FS – Collective classification with feature semi-supervision, where CO is

used to predict the labels for only the unobserved neighbors of L and these

predicted labels are used only to generate the aggregate features for the ob-

served ones.

• CC-FS-DR – Dimensionality reduction (PCA) is added on top of CC-FS. In our

experiments, we reduced the dimensionality to 100.

We present the results in Figures 5.1(a) and 5.1(b) for Cora and CiteSeer

respectively. The regular CC has very similar results to CO when the labeled data is

very scarce and CC wins only when the budget is high. This result is due to lack of

enough supervision for CC to learn and exploit the label correlations. What might

be surprising is that CC-LS hurts slightly for Cora and helps slightly for CiteSeer.

123

(a) (b)

Figure 5.1: The effect of semi-supervision and dimensionality reduction. a) Cora,
b) CiteSeer.

CC-FS, on the other hand, has clear advantages over CO, CC, and CC-LS. Adding

dimensionality reduction on top of feature semi-supervision, CC-FS-DR, boosts the

performance even further.

Although the issues considered in the above experiments are orthogonal to

the main contribution of this work, we emphasize their importance as a means of

ensuring that any improvements obtained by active learning are not over a weak

“strawman,” but over a carefully selected base learner that already reaches almost

optimal accuracy, as reported by Sen et al. (2008), and is very challenging to im-

prove upon. These experiments also provide strong empirical evidence in favor of

coupling semi- and unsupervised techniques with active learning. For the remaining

experiments, we use CC-FS-DR as the base learner and perform active learning using

this classifier.

124

5.5.3.2 Active Learning

In this set of experiments, we compare the accuracy of ALFNET to that of two

baselines– RANDOM, which randomly selects examples to be labeled, and Uncertainty

sampling (UNCRTN), which selects the instances about whose labels CC-FS-DR is most

uncertain (Lewis and Gale, 1994). UNCRTN in our experiments is measured as the

expected conditional error of CC-FS-DR. To pick k items in each batch, we follow

Saar-Tsechansky and Provost (2004) and use the uncertainties to weight the samples

and then probabilistically choose k items. This contrasts with picking the top k

most uncertain items, which is known to perform poorly (Lewis and Gale, 1994;

Saar-Tsechansky and Provost, 2004).

(a) (b)

Figure 5.2: a) Relative accuracy of ALFNET in Cora. b) P-values of a paired t-test
between pairs of systems in Cora. A detailed description is in the text.

We present two figures for each data set; the first one shows the accuracies of

the different active learning systems, whereas the second one shows the p-values of

paired t-tests between couples of systems. The accuracy results and the p-values

are shown in Figures 5.2(a) and 5.2(b) for Cora and in Figures 5.3(a) and 5.3(b) for

125

(a) (b)

Figure 5.3: a) Relative accuracy of ALFNET in CiteSeer. b) P-values of a paired
t-test between pairs of systems in CiteSeer. A detailed description is in the text.

CiteSeer respectively. Figures 5.2(b) and 5.3(b) are organized as follows. The X-axis

matches the X-axis of the corresponding accuracy graph. For a curve labeled A vs. B,

any point that falls below the bottom dashed green line indicates a significant win

of system A, and any point above the top dashed green line indicates a significant

win of system B. For example, for the curve labeled ALFNET vs. UNCRTN, ALFNET is

significantly better than UNCRTN at points below the bottom dashed green line, and

UNCRTN is significantly better at points above the top dashed green line. We also

summarize the number of significant wins, significant loses, and ties (no significant

differences) in Table 5.1.

One of the first observations is that, RANDOM is known to be very competitive for

LR (Schein and Ungar, 2007) and we also observe that even though UNCRTN improves

over RANDOM, the differences are not statistically significant for most budget levels

for both datasets as the p-values in Figures 5.2(b) and 5.3(b) and counts in Table 5.1

show; out of 30 cases, UNCRTN wins over RANDOM only 6 times in Cora and 9 times

in CiteSeer.

126

Table 5.1: p-values comparing the accuracies of ALFNET, UNCRTN, and RANDOM sum-
marized as Win, Tie, and Loss. A p < 0.1 is considered a Win, 0.1 ≤ p ≤ 0.9 is
counted as a Tie, and p > 0.9 is a Loss for A when comparing A vs. B.

Dataset Comparison Win Tie Loss

Cora
UNCRTN vs. RANDOM 6 23 1
ALFNET vs. RANDOM 26 3 1
ALFNET vs. UNCRTN 22 7 1

CiteSeer
UNCRTN vs. RANDOM 9 21 0
ALFNET vs. RANDOM 29 1 0
ALFNET vs. UNCRTN 25 5 0

The ALFNET algorithm, on the other hand, improves significantly over both

RANDOM and UNCRTN for both Cora and CiteSeer. ALFNET wins significantly over

RANDOM 26 times in Cora and 29 times in CiteSeer. It wins significantly over UNCRTN

22 times in Cora and 25 times in CiteSeer.

5.5.3.3 Ablation Studies

In this section, we test the contribution of each of ALFNET’s subcomponents

by comparing the complete ALFNET to two variants. The first one, disagreement

(DISAGR), utilizes the disagreement between CO and CC, but does not exploit the

cluster structure of the data. The second variant, clustering (CLUSTR), pre-clusters

the data but selects the instances randomly from each cluster, rather than using

disagreement. We present the accuracy and p-value graphs in Figures 5.4 and 5.5

for Cora and CiteSeer respectively. We also summarize the number of Wins, Ties,

and Loses in Table 5.2.

127

(a) (b)

Figure 5.4: a) Ablation study - Accuracies in Cora. b) P-values of a paired t-test
between pairs of systems in Cora.

(a) (b)

Figure 5.5: a) Ablation study - Accuracies in CiteSeer. b) P-values of a paired t-test
between pairs of systems in CiteSeer.

These results show that ALFNET performs better than any of its subcomponents

applied alone. For example, compared to UNCRTN, DISAGR wins 13 times and CLUSTR

wins 14 times, while ALFNET wins 22 times in the Cora dataset. An important

observation is that even though CLUSTR wins only 4 times over UNCRTN in the CiteSeer

dataset, adding clustering on top of DISAGR (i.e., making it ALFNET), boosts the wins

from 14 to 25. This result shows that even though CLUSTR does not perform very

well alone, it helps a lot when combined with DISAGR.

128

Table 5.2: Ablation study - p-values comparing the accuracies of ALFNET, UNCRTN,
DISAGR, and CLUSTR summarized as Win, Tie, and Loss.

Dataset Comparison Win Tie Loss

Cora
DISAGR vs. UNCRTN 13 17 0
CLUSTR vs. UNCRTN 14 15 1
ALFNET vs. UNCRTN 22 7 1

CiteSeer
DISAGR vs. UNCRTN 14 16 0
CLUSTR vs. UNCRTN 4 24 2
ALFNET vs. UNCRTN 25 5 0

5.5.3.4 Disagreement Computation Strategies

We finally experimented with three possible ways of computing the disagree-

ment of CO, CC, and MC. These are:

• Average probabilities (ALFNET-AVE): Take a simple average of the probabilities

estimated by CO, CC, and MC, and use the entropy of this probability distribution

as the disagreement score of the instance. CO and CC use logistic regression, and

we use the probability estimates directly. For MC, we use the class distribution

in the cluster as an estimate of the class probabilities.

• Uniform weights (ALFNET-UNI): Rather than taking the average of the proba-

bility estimates, construct a weighted vote classifier by taking the votes of CO,

CC, and MC, as described more formally in Equation (5.2). For ALFNET-UNI,

we set the weights wCO, wCC, and wMC uniformly. The disagreement score of an

instance is than the entropy of the probability distribution estimated by this

weighted vote classifier (Equation (5.3)).

129

• ALFNET: Set the weights in Equation (5.2) to be as follows: wCO = wCC = 1

and wMC = max(1−Entropy(Cj∩L)). The motivation is that because clusters

are not equally homogeneous in terms of the node labels, we discount the vote

of MC in more heterogeneous clusters. This is the ALFNET method we used in

the experiments that we discussed in the above sections.

(a) (b)

Figure 5.6: a) Disagreement computation strategies - accuracies in Cora. b) P-values
of a paired t-test between pairs of systems in Cora.

(a) (b)

Figure 5.7: a) Disagreement computation strategies - accuracies in CiteSeer. b)
P-values of a paired t-test between pairs of systems in CiteSeer.

We show the results in Figures 5.6 and 5.7 and summarize them in Table 5.3.

These results show that a simple combination of probabilities through averaging

130

them (ALFNET-AVE) performs the worst. Moreover, applying a simple discounting

factor for MC’s vote provides significant performance gains over using uniform weights

(ALFNET vs. ALFNET-UNI).

Table 5.3: Disagreement computation strategies - p-values comparing the accuracies
of ALFNET, UNCRTN, ALFNET-UNI, and ALFNET-AVE summarized as Win, Tie, and
Loss.

Dataset Comparison Win Tie Loss

Cora
ALFNET-UNI vs. UNCRTN 14 15 1
ALFNET-AVE vs. UNCRTN 1 28 1

ALFNET vs. UNCRTN 22 7 1

CiteSeer
ALFNET-UNI vs. UNCRTN 3 27 0
ALFNET-AVE vs. UNCRTN 1 22 7

ALFNET vs. UNCRTN 25 5 0

5.6 Conclusion

Active learning, semi-supervised learning, and collective classification are all

important concepts within machine learning. In this work, we have shown how all of

them can be leveraged in the setting where we have network data. We developed an

algorithm, ALFNET, which leverages network structure in a variety of ways to select

samples for labeling in an informed manner. We show how to adapt classic active

learning ideas such as disagreement and clustering to the setting in which we have

network structure as well as attribute information. In addition, we show how to

significantly boost the baseline performance of our active learner by combining di-

mensionality reduction with a carefully designed semi-supervised learning. We have

performed an extensive experimental evaluation and showed that principled use of

131

structure using ALFNET provided significant improvements over RANDOM and UNCRTN.

Through ablation studies, we have shown that both the clustering component and

disagreement component of ALFNET are essential for the performance gains.

132

Chapter 6

Conclusions and Future Work

In this thesis, I discussed the general problem of cost-sensitive information

acquisition for structured domains and introduced three techniques for feature and

label acquisition. Here, I first summarize our contributions. Then, I discuss potential

avenues for future work and then conclude.

6.1 Summary of Contributions

In this thesis, I have discussed feature and label acquisition techniques for

classification in relational and non-relational data. Specifically, I introduced a data

structure called the Value of Information Lattice (VOILA) that

• utilized the conditional independence relations that hold in the underlying

probability distribution of the features and the labels to reduce the number of

possible feature sets to consider for acquisition, and

• allowed efficient sharing of probabilistic inference computations between dif-

ferent candidate sets.

I empirically showed that this technique led to a huge reduction in the space of all

feasible subsets of features and that it was able to share computations effectively,

making reasoning with sets of features tractable in practice. Through searching

133

sets of features, I also showed that the most common approach, the greedy policy,

often prematurely stopped feature acquisition, judging single features as useless and

unable to forecast the benefit of combining multiple features.

I also described two label acquisition techniques for classification in relational

data. The first technique I discussed aimed at label acquisition during inference for

relational data, assuming a relational model of the domain already exists. I intro-

duced a method named Reflect and Correct (RAC) that can learn and predict which

instances the underlying relational model is likely to misclassify. RAC then recom-

mends acquiring the labels of the instances that lie in a high-density misclassified

region, maximizing the utility of each acquired label. I showed on both synthetic

and real-world datasets that RAC significantly outperformed several methods that

are based on network structural measures and viral marketing.

The second label acquisition technique I described aimed at constructing train-

ing data to learn a relational model. I proposed a method named Active Learning

for Networked Data (ALFNET) that utilizes the explicit links in a network of instances

both to select which labels to acquire and to learn a relational model using semi-

supervision. ALFNET first clusters the network of entities into a small number of

groups using the links in the network, and uses the cluster structure to distribute

the labels in the network. Then, ALFNET iteratively i) uses the existing labels (a

few labels might be chosen at random at the first iteration) to learn a relational

and a non-relational model, ii) scores each cluster based on the disagreement of the

relational model, the non-relational model, and the existing labels in the cluster, iii)

picks the clusters where the disagreement is the highest, and iv) acquires the labels

134

of the most disagreed instance in each chosen cluster. I showed that ALFNET signif-

icantly outperformed uncertainty sampling on two real-world publication datasets.

6.2 Future Directions

There are many interesting avenues for future work on cost-sensitive informa-

tion acquisition. I describe four possible directions here.

6.2.1 Complex Cost Structure

We assumed in our feature acquisition work that both the feature costs and

misclassification costs had the same unit and scale and they were monetary costs.

However, in practice, there are many additional considerations in addition to min-

imizing monetary costs and they all need to be optimized simultaneously. For

example, the additional considerations for the medical domain might include the

following:

• Patients want to receive the necessary treatment as soon as possible, mini-

mizing the number of visits to the doctor and the labs, and minimizing the

waiting time for lab test results.

• Some lab tests can be risky for certain groups of patients, thus such tests need

to be avoided unless they are deemed to be worth the risk.

• Patients often have preferences for or against certain procedures.

135

• Patients might ask for immediate medication, such as pain relievers, to reduce

the discomfort caused by the problem they are facing, while still waiting for

the lab test results. Prescribed medications might provide positive results or

might have undesired side effects, changing the status of the patient, and thus

requiring different feature acquisitions after the medication is used.

Practical feature acquisition techniques need to take these considerations into

account, and minimize monetary cost, number of visits, time to treatment, risk,

and patient discomfort, while satisfying the patient preferences as much as possible

simultaneously. Formulating feature acquisition as a multiple criteria optimization

problem and utilizing and adapting existing techniques (Keeney and Raiffa, 1993;

Steuer, 1986) is a promising future direction.

6.2.2 Cost-sensitive Large-scale Data Mining

Recent advances in hardware and software have made it possible to capture

large volumes of data. Examples include financial transactions, server logs, news

stories, surveillance videos, sensor network data, and tweets. The sheer size of the

data often makes it challenging to mine it effectively and efficiently. Timely and

intelligent analysis of the data requires fast, accurate, and large scale data mining

techniques for sure, but in addition to the fully automated techniques, expert advice

and intervention is also needed for at least three cases:

• Even though there is huge amount of data available, we are generally interested

in predicting what is not available. Sufficient annotation to learn a (semi-)

136

supervised model is often unavailable for most domains and tasks. In these

cases, expert knowledge is needed to annotate a subset of the instances to

construct training data.

• The state-of-the art data mining techniques might not have the desired pre-

dictive power for certain domains and tasks. Thus, it might be desirable to

consult an expert for difficult instances rather than purely relying on the data

mining technique that is being used.

• The domain and task might require making critical decisions that are pre-

ferred not to be fully automated. In these cases, an expert might oversee the

predictions and intervene if necessary.

It is important in these scenarios to automatically direct the human attention

to the right portions of the data, as it will be impossible (or prohibitively expensive)

to manually inspect and analyze all the data in a timely fashion. Thus, a promising

future direction is to develop large-scale data mining techniques that can automat-

ically determine where human input will be most useful and intelligently integrate

the human input into the prediction process.

6.2.3 Visualization Support

Due to its interactive nature, cost-sensitive information gathering can benefit

greatly from decision support tools that have strong visual components. Such tools

need to be able to:

137

• Provide a visual and aggregate overview of the predictions of the underlying

model, based on what the model currently knows.

• Highlight the pieces of information that are requested from the user and visu-

alize them in relation to the remaining ones.

• Provide visual and analytical reasons why a particular piece of information is

requested from the user.

• Allow rich interactions such as letting the user navigate through the instances,

change predictions, and provide constraints on the predictions.

We have previously developed an interactive tool named D-Dupe for the task

of determining and merging duplicate entries in a database with no primary keys (for

e.g., author names and citations in a bibliography database) (Bilgic et al., 2006). The

visualization component of D-Dupe has shown to be an effective way of supporting

human decisions, as users were able to perform faster, more accurately, and more

confidently with the help of D-Dupe compared to tabular style visualization that

listed the possible duplicates (Kang et al., 2008). However, D-Dupe did not utilize

the human input to revise its predictions for the portions of the database that has

not yet been inspected by the user. Developing D-Dupe like tools that can effectively

direct the human attention to the right portions of the inference results, while also

intelligently utilizing the human input for refining the predictions, is a promising

future direction.

138

6.2.4 Other Prediction Tasks

In this thesis, I considered information acquisition for only classification. In-

formation acquisition for other prediction tasks such as regression and ranking is

still under-researched, even though these tasks are also quite common and useful

in practice. For example, ranking algorithms are used in every day tools, such as

searching the web and providing recommendations to the users. Competitive rank-

ing models such as SVMRank (Joachims, 2002) and LambdaRank (Burges et al.,

2006) are trained using data that consist of documents whose relevancy for a given

query is typically judged by human annotators. Developing cost-sensitive informa-

tion acquisition techniques for ranking and regression is still its infancy and thus

promises to be a viable future direction.

6.3 Conclusion

In this thesis, I introduced three general techniques for feature and label ac-

quisition for classification. I described how to make reasoning with sets of features

tractable in practice for feature acquisition, how to perform label acquisition through

a meta-classifier that can learn and predict which instances the primary classifier

is likely to misclassify, and how to exploit the underlying network structure to con-

struct effective training data for relational models. With the rising amount of data

that is being collected every day and increased adoption of machine learning algo-

rithms in everyday tools and electronics, the importance of pulling human input

139

and feedback only when necessary and intelligently utilizing it to revise both the

underlying model and its predictions will become only more important.

140

Bibliography

Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and
bagging. In International Conference on Machine Learning, pages 1–9, 1998.

B. Anderson and A. Moore. Active learning for hidden Markov models: Objective
functions and algorithms. In International Conference on Machine Learning, 2005.

Dana Angluin. Queries revisited. In International Conference on Algorithmic Learn-
ing Theory, pages 12–31, 2001.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,
1988.

J. Baldridge and M. Osborne. Active learning and the total cost of annotation. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, pages 9–16, 2004.

Valentina Bayer-Zubek. Learning diagnostic policies from examples by systematic
search. In Annual Conference on Uncertainty in Artificial Intelligence, 2004.

Mustafa Bilgic and Lise Getoor. VOILA: Efficient feature-value acquisition for clas-
sification. In AAAI Conference on Artificial Intelligence, pages 1225–1230, 2007.

Mustafa Bilgic and Lise Getoor. Active inference for collective classification. In
Twenty-Fourth Conference on Artificial Intelligence (AAAI NECTAR Track),
2010.

Mustafa Bilgic and Lise Getoor. Effective label acquisition for collective classifica-
tion. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 43–51, 2008.

Mustafa Bilgic and Lise Getoor. Reflect and correct: A misclassification prediction
approach to active inference. ACM Transactions on Knowledge Discovery from
Data, 3(4):1–32, 2009.

Mustafa Bilgic, Louis Licamele, Lise Getoor, and Ben Shneiderman. D-Dupe: An
interactive tool for entity resolution in social networks. In IEEE Visual Analytics
Science and Technology (VAST), 2006.

Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor. Active learning for networked
data. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), 2010.

Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using
graph mincuts. In International Conference on Machine Learning, pages 19–26,
2001.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

141

Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. Learning to rank with
nonsmooth cost functions. In Proceedings of the Neural Information Processing
Systems (NIPS), pages 193–200, 2006.

Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hypertext catego-
rization using hyperlinks. In ACM SIGMOD International Conference on Man-
agement of Data, pages 307–318, 1998.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine Learning, 15(2):201–221, 1994.

David A. Cohn. Minimizing statistical bias with queries. In Advances in Neural
Information Processing Systems, pages 417–423, 1997.

David A. Cohn. Neural network exploration using optimal experiment design. Neural
Networks, 9(6):1071–1083, 1996.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with
statistical models. Journal of Artificial Intelligence Research, 4:129–145, 1996.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

A. Culotta and A. McCallum. Reducing labeling effort for structured prediction
tasks. In AAAI Conference on Artificial Intelligence, 2005.

S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In International
Conference on Machine Learning, 2008.

Søren Dittmer and Finn Jensen. Myopic value of information in influence diagrams.
In Annual Conference on Uncertainty in Artificial Intelligence, pages 142–149,
1997.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL
http://archive.ics.uci.edu/ml.

Linton C. Freeman. Centrality in social networks conceptual clarification. Social
Networks, 1(3):215–239, 1979.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

Linda van der Gaag and Maria Wessels. Selective evidence gathering for diagnostic
belief networks. AISB Quarterly, (86):23–34, 1993.

142

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of
link structure. Journal of Machine Learning Research, 3:679–707, 2002.

Lise Getoor, Eran Segal, Benjamin Taskar, and Daphne Koller. Probabilistic models
of text and link structure for hypertext classification. In IJCAI Workshop on Text
Learning: Beyond Supervision, pages 24–29, 2001.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An automatic
citation indexing system. In ACM Conference on Digital Libraries, pages 89–98,
1998.

Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter. Markov Chain
Monte Carlo in Practice. Interdisciplinary Statistics. Chapman & Hall/CRC,
1996.

J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics, 16(1):122–128, 1986.

Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost-sensitive active
classifiers. Artificial Intelligence, 139(2):137–174, 2002.

David Heckerman, Eric Horvitz, and Blackford Middleton. An approximate non-
myopic computation for value of information. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(3):292–298, 1993.

David Heckerman, John S. Breese, and Koos Rommelse. Decision-theoretic trou-
bleshooting. Communications of the ACM, 38(3):49–57, 1995.

R. A. Howard and J. E. Matheson. Readings on the Principles and Applications of
Decision Analysis, chapter Influence Diagrams. Strategic Decision Group, 1984.

Ronald A. Howard. Information value theory. IEEE Transactions on Systems Sci-
ence and Cybernetics, 2(1):22–26, 1966.

L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-
Complete. Information Processing Letters, 5(1):15–17, 1976.

David Jensen, Jennifer Neville, and Brian Gallagher. Why collective inference im-
proves relational classification. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 593–598, 2004.

Thorsten Joachims. Optimizing search engines using clickthrough data. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 133–142, 2002.

143

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul.
An introduction to variational methods for graphical models. Machine Learning,
37(2):183–233, 1999.

Hyunmo Kang, Lise Getoor, Ben Shneiderman, Mustafa Bilgic, and Louis Licamele.
Interactive entity resolution in relational data: A visual analytic tool and its eval-
uation. IEEE Transactions on Visualization and Computer Graphics (TVCG),
14(5):999–1014, 2008.

Ralph L Keeney and Howard Raiffa. Decisions with multiple objectives: preferences
and value tradeoffs. Cambridge University Press, 1993.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influ-
ence through a social network. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 137–146, 2003.

Andreas Krause and Carlos Guestrin. Optimal nonmyopic value of information in
graphical models - efficient algorithms and theoretical limits. In International
Joint Conference on Artificial Intelligence, pages 1339–1345, 2005a.

Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information
in graphical models. In Annual Conference on Uncertainty in Artificial Intelli-
gence, 2005b.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
In International Conference on Machine Learning, pages 282–289, 2001.

Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral
marketing. ACM Transactions on the Web, 1(1):5, 2007a.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densifica-
tion and shrinking diameters. ACM Transactions on Knowledge Discovery from
Data, 1(1):1–40, 2007b.

David D. Lewis and William A. Gale. A sequential algorithm for training text clas-
sifiers. In ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 3–12, 1994.

D. V. Lindley. On a measure of the information provided by an experiment. Annals
of Mathematical Statistics, 27:986–1005, 1956.

Qing Lu and Lise Getoor. Link based classification. In International Conference on
Machine Learning, pages 496–503, 2003a.

Qing Lu and Lise Getoor. Link-based classification using labeled and unlabeled
data. In ICML Workshop on The Continuum from Labeled to Unlabeled Data in
Machine Learning and Data Mining, 2003b.

144

S. Macskassy and F. Provost. Classification in networked data: A toolkit and a
univariate case study. Journal of Machine Learning Research, 8:935–983, 2007.

S. Macskassy and F. Provost. A simple relational classifier. In ACM Workshop on
Multi-Relational Data Mining, 2003.

Andrew McCallum and Kamal Nigam. Employing EM and pool-based active learn-
ing for text classification. In International Conference on Machine Learning, pages
350–358, 1998.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
Automating the construction of internet portals with machine learning. Informa-
tion Retrieval, 3(2):127–163, 2000.

Luke McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious inference in
collective classification. In AAAI Conference on Artificial Intelligence, pages 596–
601, 2007.

Prem Melville and Raymond J. Mooney. Diverse ensembles for active learning. In
International Conference on Machine Learning, pages 584–591, 2004.

Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226,
1982.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functionsI. Mathematical Programming, 14(1):
265–294, 1978.

Jennifer Neville and David Jensen. Iterative classification in relational data. In SRL
Workshop in AAAI, 2000.

M. E. J. Newman. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences of the United States of America, 103(23):
8577–8582, 2006.

M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126,
2003.

Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering. In
International Conference on Machine Learning, 2004.

Marlon Núñez. The use of background knowledge in decision tree induction. Machine
Learning, 6(3):231–250, 1991.

Ontario Ministry of Health. Schedule of benefits: Physician services under the health
insurance act, October 1992.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco, 1988.

145

Foster Provost, Prem Melville, and Maytal Saar-Tsechansky. Data acquisition and
cost-effective predictive modeling: targeting offers for electronic commerce. In
ACM International Conference on Electronic Commerce, pages 389–398, 2007.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

Matthew Rattigan, Marc Maier, and David Jensen. Exploiting network structure
for active inference in collective classification. In ICDM Workshop on Mining
Graphs and Complex Structures, pages 429–434, 2007a.

Matthew Rattigan, Marc Maier, and David Jensen. Exploiting network structure
for active inference in collective classification. In ICDM Workshop on Mining
Graphs and Complex Structures, pages 429–434, 2007b.

Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral
marketing. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 61–70, 2002.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2):107–136, 2006.

D. Roth and K. Small. Margin-based active learning for structured output spaces.
In European Conference on Machine Learning, 2006.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through
sampling estimation of error reduction. In International Conference on Machine
Learning, pages 441–448, 2001.

Donald B Rubin. Multiple imputation for nonresponse in surveys. John Wiley, 1987.

Maytal Saar-Tsechansky and Foster Provost. Active sampling for class probability
estimation and ranking. Machine Learning, 54(2):153–178, 2004.

Maytal Saar-Tsechansky, Prem Melville, and Foster Provost. Active feature-value
acquisition. Management Science, 55(4):664–684, 2009.

T. Scheffer, S. Wrobel, B. Popov, D. Ognianov, C. Decomain, and S. Hoche. Learn-
ing hidden Markov models for information extraction actively from partially la-
beled text. Künstliche Intelligenz, 2, 2002.

Andrew I. Schein and Lyle H. Ungar. Active learning for logistic regression: an
evaluation. Machine Learning, 68(3):235–265, 2007.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collec-
tive classification in network data. AI Magazine, 29(3):93–106, 2008.

146

Burr Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence
labeling tasks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 1070–1079, 2008.

Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In
Neural Information Processing Systems, pages 1289–1296, 2008.

Burr Settles, Kevin Small, and Katrin Tomanek, editors. Proceedings of the Active
Learning for NLP (ALNLP) Workshop at NAACL-HLT, 2010.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In ACM Annual
Workshop on Computational Learning Theory, pages 287–294, 1992.

Claude Elwood Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379–423,623–656, 1948.

Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computations, and Ap-
plication. John Wiley & Sons Inc, 1986.

Ming Tan. CSL: A cost-sensitive learning system for sensing and grasping objects.
In IEEE International Conference on Robotics and Automation, 1990.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for rela-
tional data. In Annual Conference on Uncertainty in Artificial Intelligence, pages
485–492, 2002.

Simon Tong and Daphne Koller. Support vector machine active learning with ap-
plications to text classification. Journal of Machine Learning Research, 2:45–66,
2001.

Peter Turney. Types of cost in inductive concept learning. In In Workshop on
Cost-Sensitive Learning at the Seventeenth International Conference on Machine
Learning, pages 15–21, 2000.

Peter D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid ge-
netic decision tree induction algorithm. Journal of Artificial Intelligence Research,
2:369–409, 1995.

Rongjing Xiang and Jennifer Neville. Pseudolikelihood EM for within-network rela-
tional learning. In IEEE International Conference on Data Mining, pages 1103–
1108, 2008.

Qiang Yang, Charles Ling, Xiaoyong Chai, and Rong Pan. Test-cost sensitive classi-
fication on data with missing values. IEEE Transactions on Knowledge and Data
Engineering, 18(5):626–638, 2006.

147

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In
Neural Information Processing Systems, pages 689–695, 2000.

Bianca Zadrozny and Charles Elkan. Learning and making decisions when costs and
probabilities are both unknown. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 204–213, 2001.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon
University, 2002.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning
and semi-supervised learning using gaussian fields and harmonic functions. In
ICML workshop on The Continuum from Labeled to Unlabeled Data in Machine
Learning and Data Mining, 2003.

148

