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ABSTRACT

Active inference is the method of selective information gathering during pre-

diction in order to increase a predictive machine learning model’s prediction perfor-

mance. Unlike active learning, active inference does not update the model, but rather

provides the model with useful information during prediction to boost the prediction

performance. To be able to work with active inference, a predictive model needs to

exploit correlations among variables that need to be predicted. Then the model, while

being provided with true values for some of the variables, can make more accurate

predictions for the remaining variables.

In this dissertation, I propose active inference methods for predictive models of

spatio-temporal domains. I formulate and investigate active inference in two different

domains: tissue engineering and wireless sensor networks. I develop active inference

for dynamic Bayesian networks (DBNs) and feed-forward neural networks (FFNNs).

First, I explore the effect of active inference in the tissue engineering domain.

I design a dynamic Bayesian network (DBN) model for vascularization of a tissue

development site. The DBN model predicts probabilities of blood vessel invasion

in regional scale through time. Then utilizing spatio-temporal correlations between

regions represented as variables in the DBN model, I develop an active inference

technique to detect the optimal time to stop a wet lab experiment. The empirical

study shows that the active inference is able to detect the optimal time and the results

are coherent with domain simulations and lab experiments.

In the second phase of my research, I develop variance-based active infer-

ence techniques for dynamic Bayesian networks for the purpose of battery saving for

wireless sensor networks (WSN). I propose the expected variance reduction active

inference method to detect variables that reduce the overall variance the most. I first

propose a DBN model of a WSN. I then compare the prediction performance of the

xi



DBN with Gaussian processes and linear chain graphical models on three different

WSN data using several baseline active inference methods. After showing that DBNs

perform better than the baseline predictive models, I compare the performance of ex-

pected variance reduction active inference method with the performances of baseline

methods on the DBN, and show the superiority of the expected variance reduction

on the three WSN data sets.

Finally, to address the inference complexity and the limitation of representing

linear correlations due to Gaussian assumption, I replace the DBN representation with

a feed-forward neural network (FFNN) model. I first explore techniques to integrate

observed values into predictions on neural networks. I adopt the input optimization

technique. Finally, I discover two problems: model error and optimization overfitting.

I show that the input optimization can mitigate the model error. Lastly, I propose a

validation-based regularization approach to solve the overfitting problem.
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CHAPTER 1

INTRODUCTION

Machine learning is a research field in artificial intelligence that solves prob-

lems by learning from experience. Typically, in predictive machine learning, the aim is

to estimate the value of an attribute of a given instance based on patterns previously

discovered from instances of the same domain. Among major paradigms of machine

learning such as unsupervised learning and reinforcement learning, supervised learn-

ing encompasses problems in which preliminary data is used to adjust mathematical

models which are then used for decision making. The key element that differentiates

supervised learning from unsupervised learning is the fact that the data should origi-

nally have a target variable, namely label, available for every instance in the data set.

That data set can then be used to adjust a mathematical model to map from input

features to target variables [115]. This process of adjustment is called training, and

it is indeed the process of finding optimal values for all parameters of the selected

model that will make the model capable of estimating the labels of instances. Once

this model is trained, it can then be used to predict labels of new instances [91].

A well-known application of supervised learning is spam filtering [149, 45]. In

this problem, the goal is to detect whether an email is spam or legitimate by examining

certain attributes of the email, such as the sender address, subject, email body, etc. A

function is first trained on a number of emails that are previously labeled by human

experts as spam or legitimate. Then, the same function is used to categorize new

emails.

In a supervised learning problem, if the label values are categorical or qualita-

tive, then the problem is called classification. Otherwise, if they are from a range or if
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they are quantitative, then the problem is called regression [91, 45]. For example, in

spam filtering, emails can be either legitimate or spam. As there are two categories,

this is an example of binary classification. On the other hand, if, for instance, the

problem requires to predict wind speed at a given time in a region, based on past

weather information of various regions, then it would be regression as wind speed is

a continuous value.

A prevailing impediment in supervised learning is that, for each instance,

features can automatically be collected, yet the label needs to be manually set. For

example, in spam filtering, attributes of an email such as words existing in its body,

subject, sender address, date and time, etc. can automatically be gathered. On the

other hand, whether it is spam or legitimate has to be detected by a human labeler.

In the majority of the cases, labeling has to be done manually, thus it takes time

and effort. In addition, in some specific problems such as medical diagnosis, labeling

requires expert knowledge, making it costly.

Many paradigms have been proposed to overcome the problem of labeling

costs. One approach is active learning [33, 120]. In pool-based active learning, we

have plenty of unlabeled data, commonly represented as U and initially very little

labeled data (or sometimes none at all), commonly represented as L. Given a budget

B, we are allowed to select instances (xi, ?) from U , obtain their labels from a human

labeler (xi, yi), and add them to L (L := L ∪ {xi, yi}) [101]. Since we have a limited

budget to create the training set, we need to select those that are most informative

and that accelerate the training of our predictive model. Many strategies have been

proposed for detecting most informative instances such as uncertainty sampling [79],

query by committee [37], and expected error reduction [111]. In uncertainty sampling

[79], instances on which the predictive model is most uncertain are selected to be

annotated. In query by committee [37], instances on which a set of predictive models
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most disagree are selected. In expected error reduction [111], instances that are the

most promising in reducing the error that the predictive model is expected to make,

etc.

Let us consider the spam filtering problem in active learning perspective. We

may have hundreds of thousands of emails in our data set, yet they are most likely not

labeled as spam or legitimate. Labeling all of them will be very expensive. Therefore,

we need to be selective. We randomly select a few of them to bootstrap a predictive

model. We then select the next instance that will make the highest contribution to

the training of the model. We label it and add it to our set of labeled emails, L, which

forms our training set. We then retrain our model with this incremented training set

and select the next most useful instance. We keep iterating until we are out of budget

or our predictive model performs well enough, whichever comes first.

1.1 Active Inference

In budget constrained supervised learning problems, active learning selects the

most useful instances for training, as long as one has the freedom to choose instances

to build up a training set. Similarly, in some problem definitions, one may have the

budget to manually label instances at prediction time. In such cases, knowing the

true label of some instances may help more accurately predict labels of the others. For

such problems, a novel approach has recently been introduced to supervised learning,

called active inference [15].

Active inference deals with the problem of selective gathering of information

for some of the variables of a model with the objective of improving prediction for

the remaining variables. Unlike active learning [120] which collects label information

while training a statistical model, the main task here is to gather more information

during inference to increase the predictive performance of the underlying model. The
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underlying models tend to be graphical models or relational models, where observing

the values of a subset of random variables helps with the prediction for the remaining

variables. A few applications of active inference include node classification in which

Bilgic and Getoor [16] query the labels of a few carefully chosen nodes in a network to

let the underlying model (pairwise Markov random fields) condition on those labels

to improve the prediction on the remaining nodes; and video analysis in which Chen

et al. [28] manually analyze a few short segments of a video and let the underlying

model (hidden Markov model) condition on the observed information to improve pre-

diction on the remaining segments of the video. There are two main active inference

categories: (i) feature acquisition, which gathers information on the input variables of

the predictive model, and (ii) label acquisition, which gathers labels of some instances

[13]. In this dissertation, we will focus on label acquisition.

In the context of the spam filtering example, for active inference to be ap-

plicable, the underlying model needs to be a collective classification model, where

the labels of many emails are jointly predicted [119]. For example, assume that the

emails form a network based on their senders and domains, and that the emails that

are connected in this network are likely to have a similar label. Then, for a collec-

tive classification of these emails, active inference deals with the question of “given a

limited budget, which emails should be manually labeled, so that the remaining ones

can be predicted most accurately?”.

1.2 Dynamic Bayesian Networks in the Context of Active
Inference

In some problems, one may need to predict multiple variables at each predic-

tion. Traditional predictive models, such as näıve Bayes, logistic regression, decision

tree, etc. can only predict one variable. Therefore, usually in such cases, one will

need to train a model per variable to be predicted. Unfortunately, this approach
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ignores correlations potentially present between predicted variables. In the context

of spam filtering, suppose one needs to predict whether an email is an advertisement

along with whether it is spam. Labeling an email as an advertisement will probably

affect the prediction of whether it is. However, aforementioned predictive models will

need to predict these two labels independently.

Another challenging problem in predictive machine learning is to handle miss-

ing values. For example, näıve Bayes assumes that features are independent given

class label [86]. However, when a feature value is missing, a näıve Bayes model will

not be able to represent it in the calculation of the probability distribution of the

label. Similar inconveniences apply to logistic regression as well as to decision tree.

Bayesian networks can easily overcome these two problems. They represent

each feature as a random variable and explores conditional dependencies between

them in the training phase. These dependencies are represented as a directed acyclic

graph, which is also called the structure or the topology of the network [85]. The

structure of the network is then used to extract conditional probability distributions

or densities for the random variables.

Bayesian networks are powerful in representation. BNs can capture the joint

probability of random variables compactly. By factorizing the joint probability dis-

tribution into multiplication of conditional probability distributions, BNs reduce the

complexity of training from the product of the order of the number of values for

each variable to the order of the summation of number of values for each variable.

Therefore, the training phase becomes much more efficient as conditional probabili-

ties require much less data than the joint probability. This capability is discussed in

further detail in Chapter 2.

Dynamic Bayesian networks (DBNs), as an extension of Bayesian networks,
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represent variables in a dynamically expending dimension [90, 61]. Without loss

of generality, let this dimension be time. In such a scheme, the network has time

slices each representing a time point in uniform intervals. Each variable is then

represented once in each slice. Generally, dependencies between variables within a

slice is replicated for each slice. In addition, new dependencies between variables are

defined across time slices. Thereby, a variable’s observation can affect probabilities

of the same variable and its dependents in future time slices as well as past time

slices. All these additional properties provide DBNs with the capability to model time

involving physical phenomena. In our weather forecast example, we are interested in

weather conditions every day. Conditions on each day are correlated to conditions on

the previous day. Therefore there are temporal correlations which can be represented

in DBNs.

Furthermore, if a domain involves dynamically expanding dimensions other

than time, such as space, then DBNs can also deal with them as well. For example,

in our weather forecast problem, suppose we are interested in not only a single re-

gion’s weather conditions but many different regions. Clearly, these regions’ weather

conditions are correlated with one another. In such a case, for example, we can in-

clude variables for humidity, temperature and rain for each region and we can explore

conditional dependencies among these variables across regions.

One problem with DBNs is that uncertainty of an inference on a BN is in-

versely correlated with the amount of observed values provided. Less evidence causes

higher uncertainty in an inference, hence higher probability of prediction error. On a

DBN, typically, the lack of evidence increases uncertainty as inference expands along

the dynamic dimensions. For example, in weather forecast, if we provide all vari-

ables, such as humidity, temperature, wind speed, wind direction, etc., with evidence

through observation on the first day of month and make predictions on the rest of
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the month without any additional observation, then as we move forward towards the

end of the month our predictions will be more and more uncertain.

1.3 Neural Networks in The Context of Active Inference

Dynamic Bayesian Networks have certain limitations. Although parameter

learning is easy, optimal structure learning is exponentially hard. There are viable

near-optimal methods for structure learning. Even then, exact inference is generally

exponentially hard. Therefore, usually one might need to resort approximate inference

methods. In certain circumstances, such as dynamic Bayesian networks where all

variables are linear Gaussian, the exact inference is polynomial in the number of

variables. However, this configuration imposes the limitation of linear correlations

between variables.

Neural networks can be a promising alternative to DBNs, as inference on neu-

ral networks is fast. In addition, neural networks are strong in representing non-linear

correlations, without compromising on the ease of inference. However, they are ex-

pensive to train: (i) it takes time and (ii) it requires ample data depending on the

domain and the problem to be solved. These two problems can perhaps be worked

out with today’s computational and data gathering technologies. Meanwhile, there is

one problem that needs to be addressed diligently in the context of active inference:

For neural networks, integrating evidence into predictions is not straightforward. It

requires additional methods to incorporate the evidence to predictions, whereas in-

tegration of evidence into prediction is a natural behavior of dynamic Bayesian net-

works. Therefore, while using neural networks as predictive models, one needs to

resort some additional methods to enhance prediction performance using collected

evidence.

1.4 Contribution of the dissertation
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In this research, we developed active inference for (i) dynamic Bayesian net-

works and (ii) feed-forward neural networks to increase prediction performance at

inference time by quantifying uncertainty with the applications in two different do-

mains: tissue engineering, and wireless sensor networks.

Table 1.1. Application cases of active inference

Predictive Model Tissue Engineering Wireless Sensor Networks

Dynamic Bayesian Network X X

Feed-forward Neural Network - X

1.4.1 Active Inference for Dynamic Bayesian Networks in Tissue Engi-

neering to detect the optimal time to stop a wet experiment. In this

scenario, we applied active inference for dynamic Bayesian networks in the domain

of tissue engineering for the purpose of predicting vascularization and detecting the

optimal time to stop a wet experiment. In tissue engineering, wet experiments take

often weeks. In addition to long durations, they are costly. Terminating experiments

earlier, observing the latest status and predicting about the finale with an acceptable

uncertainty would help to get rid of unnecessary costs and time loss. Yet, detecting

the right moment to stop an experiment depends on the experiment configuration.

We proposed a DBN modeling for tissue engineering experiments. Then we applied

active inference to detect the optimal time to stop an experiment, to collect evidence

and to provide domain experts with reliable predictions on the end of the experiment.

We discuss the details in Chapter 3.

1.4.2 Active Inference for Dynamic Bayesian Networks to detect optimal

subsets in sequential prediction. In this problem description, instead of detect-

ing the optimal time for a complete observation of the space, we focus on finding the

optimal subset of observation among all candidate variables at each time of prediction.

We investigated this problem in the wireless sensor network (WSN) domain.
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For WSNs, battery consumption is a major problem that limits the lifespan of

sensors. To mitigate this problem, instead of collecting information from all sensors,

we collect from a subset and predict the rest. Therefore, there are two main tasks in

this problem: (i) Building a predictive model to predict non-collected sensor readings

using sensor readings collected at present and in the past, (ii) Finding the subset of

sensors of which the readings at present will reduce the prediction error the most.

We modeled an entire WSN as a DBN in which we associated a Gaussian

random variable with each sensor. We learned the structure as well as conditional

dependencies from data. Then for each time being predicted, we actively selected

sensors to be observed so as to minimize prediction error. We applied this approach

on three different WSN datasets. We showed that, as a predictive model, our DBN

performs better than the Gaussian process and the linear chain Bayesian model. We

also showed that our active inference method outperforms the baseline active inference

methods, the random selection and the sliding window selection. We discuss the

details in Chapter 4.

1.4.3 Active Inference for Neural Networks to detect optimal subsets in

sequential prediction. To address some limitations of DBNs in the previous do-

main, we replaced it with another predictive model, feed-forward neural networks.

Then we applied active inference for feed-forward neural networks on battery saving

for wireless sensor networks. The purpose is the same as the previous domain. In

addition to the tasks described above, neural networks bear another task: how to

incorporate sensor readings collected at present into predictions? Although DBNs

naturally allow this evidence integration through inference, unfortunately neural net-

works do not. Therefore we proposed backpropagation of error to the input to match

the predicted values of the observed sensors to their collected readings by adjusting

all the inputs of the neural network, assuming that this will also reduce the error in
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the prediction of non-collected readings. We first explored the origins of the predic-

tion error of neural networks and showed that the error occurs due to two reasons:

(i) model error and (ii) predicted values used at the input. We then showed that

both errors can be reduced using input optimization by backpropagation of error.

We finally discovered that input optimization can lead to overfitting. We proposed a

regularization method using a validation set. We discuss the details in Chapter 5.

The rest of the thesis is organized as follows: Chapter 2 discusses the related

work and the background of this research. Then, Chapter 3 presents our research on

active inference for DBNs for modeling vascularization in tissue engineering. Chap-

ter 4 illustrates our research of active inference for DBNs on an application of wireless

sensor networks. Chapter 5 discusses our research on active inference for neural net-

works on an application of wireless sensor networks. Finally, I conclude our research

and present potential future directions in Chapter 6.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this section we provide our background along with related work for sev-

eral topics that involve in this research: Bayesian networks and dynamic Bayesian

networks, active learning, active inference, neural networks, neural networks for time

series, tissue engineering, and finally battery optimization in wireless sensor networks.

2.1 On Bayesian Networks and Dynamic Bayesian Networks

Charniak describes Bayesian networks (BNs) (also known as belief networks,

knowledge maps, probabilistic causal networks) as a research topic composed of col-

lective effort put forth by many researchers [25]. Then he refers Pearl [97] for the

name of Bayesian networks. It has been a very popular model in the artificial intelli-

gence community, and it has been used in many different areas [25] such as medical

diagnosis [57, 132], map learning [38], language understanding [27, 26, 48], computer

vision [78], heuristic search [55].

First and foremost, BNs represent conditional independencies among variables

and thereby alleviate parameter estimation complexity for joint probability distribu-

tion. For a glimpse of the difficulty, let us consider this case: Suppose we have n

discrete variables, and for each variable, the domain sizes are d0, d1, . . . , dn−1, re-

spectively. Then, the number of independent parameters in the joint probability

distribution of these discrete values is d0 × d1 × · · · × dn−1 − 1. In the best case, all

domains are binary, and the required number of parameters that need to be learned

turn out to be 2n − 1, which is exponential in the number of variables. Even worse,

data needed to learn parameters of the joint distribution will be equivalently large.
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In such cases, Bayesian networks can drastically reduce the number of pa-

rameters to be learned by factorizing the joint distribution into a product of local

distributions based on conditional independencies. Those local distributions are noth-

ing but conditional distributions. Suppose that, a domain, D, consists of variables,

v0, v1, . . . , vn−1, and that each variable vi can be conditioned on one variable, vi−1.

Then the joint probability distribution can be factorized into P (v0, v1, . . . , vn−1) =

P (v0)P (v1|v0) . . . , P (vn−1|vn−2). Each factor here will require the following numbers

of parameters to be learned respectively: d0 − 1, d0 × (d1 − 1), . . . , dn−2 × (dn−1 − 1).

Thereby the total number of parameters required will be: d0−1+d0× (d1−1)+ · · ·+

dn−2 × (dn−1 − 1). In contrast with joint probability distribution, this factorization

requires the summation of these values which results the complexity in pseudopoly-

nomial with the number of variables.

Furthermore, random variables may evolve over a dynamically expanding di-

mension such as time. Therefore, one may need a joint probability distribution that

involves variables from different time stamps. Unfortunately such a distribution can-

not be expressed unless number of time stamps is predefined. Dynamic Bayesian

networks (DBNs) become even more handy regarding its capability to handle vari-

able states across time, without loss of generality. Dynamic Bayesian networks are

thoroughly discussed by many, such as Murphy [90], Ghahramani [46], Horsch [61].

DBNs are often selected due to their powerful expressiveness.

Some caveats require attention about DBNs. First, the structure of a DBN,

i.e. the set of conditional independencies, needs to be carefully designed. On one

hand, if too many conditional independencies are included, then the DBN will fail to

represent the domain. On the other hand, if a handful of conditional independencies

are included then the factorization nears the full joint probability distribution.

DBNs have been successfully applied to several real-world problems. A few
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examples include managing water sources [19], gene regulatory networks [89, 99, 62],

figure tracking [96], ranking [24], speech recognition [151], modeling environmental

problems [140], and driverless cars [44].

Gaussian Bayesian networks are so far used in various contexts. Castillo et al.

[22] designed a model for damage assessment in concrete structures of buildings using

Gaussian Bayesian network modeling. They used their model in numerical propaga-

tion of uncertainty in incremental form and they also proved that conditional means

and variances of nodes in their network are rational functions given evidence. Again

Castillo et al. [23] used Gaussian Bayesian networks to model traffic flow.

2.2 On Active Learning

Active learning, after being introduced to supervised learning in mid-1990’s,

attracted vast attention and ample research has been carried out in active learning.

Bilgic and Getoor focused on uncertainty sampling and pointed out at its

weakness about selecting outliers. They proposed a three-step solution in network

data: (i) exploration by randomly sampling instances, (ii) expansion by choosing a

random neighbor of instances, and finally (iii) connection by picking more instances

by focusing on those that have maximum neighbor selected previously [14].

In the same line of work, Bilgic et al. applied active learning on network

data. They asserted that links in a network where nodes are to be classified, can

be utilized. Furthermore, they claim that active learning can be improved by using

links as features for instances. As the number of neighbors vary for each instance,

they aggregate connections into one feature. They use two classification models. One

considers only the original features, the other considers in addition the aggregated

feature. Based on their disagreements, the active learning algorithm picks the most

uncertain instances for training [18].
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In a different line of work, Ramirez-Loaiza et al. studied the performance

change of active learning in various combinations of active learning approaches with

classification models, under different performance measures. They showed that the

choice of the classification model is as important as the active learning approach to

increase the performance. They also showed that an active learning approach selected

to increase a performance measure can harm the performance with respect to other

measures [104].

In active learning, Ramirez-Loaiza et al. introduced the concept of interrupting

the expert while the expert is providing the active learner with annotation. They

formulated the cost of annotation as time spent by the expert. In text classification,

they empirically showed that some interruption is always better than none [102, 101].

In their follow-up work, they extended their study with user study and proved that

an interruption after the first 25 words has shown a much better performance than

allowing the expert to read the first 100 words. Note that, early interruption is

prorated to the cost of annotation and therefore reducing cost per annotation helped

the active learning to have more instances annotated [103, 101].

Sharma and Bilgic focused on uncertainty sampling of active learning. They

split the uncertainty into two categories: (i) uncertainty by lack of evidence for any

class, and (ii) uncertainty by contradicting evidences for multiple classes. They inves-

tigated this separation on näıve Bayes, logistic regression, and support vector machine

[122, 124, 121].

Sharma et al., similar to the work by Ramirez-Loaiza et al., tried to improve

active learning by requesting rationales from the human annotator for each instance

labeled. They integrated the rationale to the instance as a new feature. They showed

that this new method has increased the performance of active learning independently

from the classification model [126, 125, 121].
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In a follow-up work, Sharma and Bilgic extended the rationales approach by

providing explanations to the active learner. They asked the human expert to high-

light phrases supporting the selected label and those contradicting the selected label.

They empirically showed on three text datasets that teh active learning with explana-

tions outperforms the active learning with rationales, the traditional active learning

[123, 121].

Additionally, Sharma et al. applied using rationales to detecting operationally

significant anomalies in commercial flights. They first used unsupervised learning

techniques to detect anomalies. Then, using active learning with rationales, they la-

beled few instances as operationally significant or insignificant, integrating rationales

by subject matter experts. They showed that their method reached 75% improvement

over the state-of-the-art [127, 121].

2.3 On Active Inference

Information acquisition is examined under two categories in Supervised Learn-

ing: feature acquisition and label acquisition. The first category includes various

methods that deal with the problem of deciding which features of instances to gather

in cases where features are not readily available and/or expensive. Methods in label

acquisition concentrate on the problem of how to collect labels effectively. This col-

lection can be practiced during learning as well as during prediction, depending on

objectives and constraints. Addressing effective strategies for label acquisition in the

learning phase are collected under the title of Active Learning. Active Learning pur-

sue objectives of training a supervised learning model with a smaller budget, or fewer

instances in other words. In real world, data is often structured and instances are

not independent. Therefore, true label information of an instance can help predicting

labels of some others. Based on this presumption, label acquisition is addressed also

during prediction to mitigate prediction error [13]. The the question emerges as which
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instances should be selected for true labeling to reduce prediction errors? Strategies

designed to answer this question are called as Active Inference. Active Inference name

was first proposed by Rattigan et al. in the context of network data [107].

Active inference [15] is a technique of selective information gathering during

inference/prediction with the objective of maximizing prediction accuracy. Though

active inference and active learning sound similar, the key setting and objective are

different. Active learning’s [120] objective is to train a predictive model with as little

supervision as possible. To achieve this, the system queries an oracle/expert for only

the most informative objects. Active inference, on the other hand, assumes that

there is an already-trained predictive model that has been deployed, and additional

information can be gathered at inference time to help the predictive model make more

accurate decisions.

For example, in a medical diagnosis setting, a predictive model that has al-

ready been deployed can gather additional information about a patient (for e.g., the

system can order new laboratory tests) to make a more informed decision. Like ac-

tive learning, active inference has a limited budget (money, time, risks, etc.) and has

to be selective about what information it chooses to gather. Unlike active learning,

however, active inference already has access to an already-trained model, and hence

active inference’s objective is not to make the model better, but rather, it is to gather

additional information to condition on so as to make the predictions more accurate.

Active inference is even more applicable to domains where several predictions

need to be made collectively and the predictions are interrelated. For example, when

one is classifying frames of a video footage for whether a given suspect is present or

not, one can learn and utilize the spatio-temporal correlations in the video frames.

Given a trained model, active inference can then collaborate with a human user,

asking the user to inspect certain frames, and the system can condition on the infor-
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mation provided by the user to make predictions on the rest of the frames. To be able

to condition the predictions on the information provided by the user, the underlying

model needs to be a joint model, such as a Bayesian network.

Active inference was previously applied by Bilgic and Getoor ([15, 16]) for

general graphs. They used active inference to query the labels of a small number of

carefully chosen nodes in a network to condition the underlying model on these col-

lected labels to increase prediction performance on the remaining nodes. In [16], they

used iterative classification algorithm as the underlying predictive model, whereas in

[15], they used pairwise Markov random fields as the underlying predictive model.

Active inference was also used by Chen et al. [29] on hidden Markov models,

to analyze short chunks of a video on which the underlying model can condition and

make better predictions on the remaining segments. Chen et al. [28] used again active

inference for video analysis which was modeled as general graphical models. Active

inference was also discussed in the context of hidden Markov models by Krause and

Guestrin [74]. Finally Krause and Guestrin [72, 73, 74], and Bilgic and Getoor [17]

formulated active inference as optimal value of information on graphical models.

2.4 Neural Networks

Artificial neural networks, or simply neural networks (NNs) in the field of ma-

chine learning, are human brain-inspired mathematical models designed for prediction

purposes [4, 115, 56]. They can be used for supervised learning purposes as well as

unsupervised learning purposes [91]. A neural network is composed of neural units

or perceptrons.

Perceptrons are first introduced by Rosenblatt [110] in 1958. Each perceptron

has multiple inputs, x and one output, y.
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Figure 2.1. An example of multilayer perceptron

y = f(x) = a(w · x+ b) (2.1)

In Equation 2.1, w is the weight vector, b is the bias vector, and a is an

activation function. The activation function can be a variety of mathematical func-

tions, such as rectified linear unit (ReLU), logistic sigmoid, hyperbolic tangent, step,

identity, radial basis function, etc. [128, 66].

A neural network can be composed of multiple layers of perceptrons such as in

Figure 2.1. These type of networks are named as multilayer perceptrons(MLP), also as

feed-forward neural networks, or as deep feed-forward networks [49]. Every layer has

one or more perceptrons except the input layer. Typically, all perceptrons in one layer

have the same activation function, yet their input weights are different, which makes

them different decision-makers. Every perceptron behaves like a decision-making

agent based on the input signal.

The input signal originated from multiple sources are weighted with a set of

coefficients and added some bias values. Then an activation function is applied. If

the input signal is strong enough, then the perceptron is activated and generates a

signal at the output, otherwise inhibited and does not generate a signal. Depending
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Figure 2.2. A sample of multilayer perceptron with multiple output

on the domain and the problem needs, this activation behavior can be modified. The

step function output is defined on {0, 1}. Logistic sigmoid function generates an

output in the range of [0, 1] as it is a continuous function. Hyperbolic tangent is a

continuous function like logistic sigmoid, yet it generates an output in the range of

[−1, 1]. Finally, ReLU permits the weighted sum of the input signal to the output if

it is positive.

One needs to be careful about neural network design, depending on the prob-

lem definition. If the objective is classification, the output layer can have the step

activation function. However, if one needs to have a probabilistic behavior, logistic

sigmoid is also an option as it generates values in the range of [0, 1]. When the ob-

jective is regression, then the output layer may not use the step function, nor logistic

sigmoid. Generally identity function is used.

Similar to DBNs, NNs have the advantage of supporting multiple label, i.e.

multiple output prediction (e.g. Figure 2.2). This helps the model reuse the patterns

and correlations learned from the domain in predicting all output. Alternatively, on

the same domain, one can train a single output model for each variable to predict, such

as a logistic regression or a decision tree, yet predictions will not support correlations

between variables to predict.
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Like any other machine learning model, neural networks need training before

they are deployed. Generally, gradient descent or its variants [112] (e.g. Nesterov ac-

celerated gradient [94], Adagrad [42], Adadelta [147], RMSProp1, Adam [68], Adamax

[68], Nadam [41]) are used to train neural networks. A very common variant of gra-

dient descent is stochastic gradient descent (SGD). The objective of gradient descent

is to keep updating every parameter of the model until its contribution to the error

is minimized, given a training set.

w+
i = wi + η

∂ Err(y, ŷ)

∂wi
(2.2)

Figure 2.2 outlines the update of a parameter with respect to the error of the

model on a training set. wi is a parameter in the model. Err(x, x̂) is the error, also

known as loss, if the model on the training set. y is the vector true labels of the

entire set, or a subsample of it. ŷ is the vector of predicted labels for the instances of

y. The gradient of error with respect to the current value of the parameter, ∂ Err(y,ŷ)
∂wi

is calculated, then used for dowsing its global minimum. η is the step size. While the

gradient provides with the direction and the length of the step towards the next value,

η adjusts the size of the step. Finally wi is updated to w+
i as the next value. This

update iterates until the error is minimized. In the context of feed-forward neural

networks this optimization is called backpropagation, as it calculates the gradient of

the error and propagates it back to all parameters [114].

For temporal or sequential domains, an extension of feed-forward networks is

proposed: recurrent neural networks (RNNs) [47, 98, 108, 109, 113]. As in Figure 2.3,

RNNs are composed of one or more hidden layers. One layer has recurrent connec-

1This is not a published method, rather a discussion in lecture notes by Geof-
frey Hinton, Nitish Srivastava, and Kevin Swersky in Coursera, Neural Networks for
Machine Learning Lecture 6a: Overview of minibatch gradientdescent
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Figure 2.3. Typical topology of a recurrent neural network

tions. That is, the input to this layer is composed of the output of the previous layer

and its own output. The values from itself are generated in previous forward pass,

i.e. inference. Equation 2.3 shows the equation of the output of the hidden layer. h+

is the output of the recurrent layer at the current inference, while h is the output of

the recurrent layer at the previous inference, and u is the weight matrix of h. x is

the output of the layer preceding the recurrent layer, or the input of the network, w

is the weight matrix of x, and b is the bias vector. h is also called internal state of

the neural network as it is stored until the next inference, and used in it.

h+ = f(x) = a(w · x+ u · h+ b) (2.3)

To train an RNN, backpropagation algorithm is utilized and extended. The

extended version is called backpropagation through time (BPTT) [142, 143, 144].

BPTT simply propagates the gradient of the error backwards in time over h which

is the output of the hidden layer in the previous time inference.

Cho et al. used RNN for machine translation. They built two RNN sequences.

One for encoding the other for decoding. The first encodes the input sequence into a

fixed size vector representation. Then the decoder RNN, initialized with the encoded
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Figure 2.4. Typical structure of a long short-term memory cell

vector generates the translated word sequence [32].

Bahdanau et al. [6] addressed some limitations in fixed length vector represen-

tation in encoder-decoder approach for neural machine translation, proposed by Cho

et al. [32] and Sutskever et al. [134]. They claim that fixed vector representation pose

problems in representation especially when the input sentence is long. Therefore, [6]

propose an extension to the encoder-decoder model that learns to align and trans-

late jointly. They use a bidirectional RNN model to select more important words in

translation for each output word [6].

Inspired by neural machine translation approach proposed by Bengio et al.

[10], Ranzato et al. use RNNs to predict the next frame in a video given all past

frames. They augment the RNN with convolutional layers placed not only at both

the input and output of the recurrent layer but also at the transfer of the hidden

state from time t to time t+ 1. They tested their model in UCF-10 dataset [131] for

human activity recognition [105].

As investigated by Hochreiter and Schmidhuber, by Hochreiter et al., and

then by Pascanu et al. one major problem with RNNs is the difficulty of training.
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Although BPTT is very promising in theory, gradients can easily explode or vanish

over long sequences. This is a major impediment to updates by SGD, unfortunately

resulting no learning of long-term dependencies [59, 60, 95]. For instance, in machine

translation, a decision at the last time step of a word sequence composed of 30 words

may very well depend on the initial word. Therefore, in training, the error gradient

needs to be propagated 30 steps back which can easily vanish the gradient or explode

it. Such cases are called long-term dependencies. To support learning long-term

dependencies, Hochreiter and Schmidhuber proposed a new topology, long short-term

memory (LSTM).

Figure 2.4 shows a typical LSTM cell which is a sophisticated version of an

RNN’s recurrent hidden layer. The structure is deliberately complicated to sustain

long-term dependencies. In this structure, there are two hidden states, ht and ct.

ht is initialized to represent the stored information that is generated by the current

time inference using the previous internal state, ht−1 and the current input to the

network, xt. Meanwhile, ct works as a registry for how much the previous internal

state should be forgotten and how much the new information should be stored in the

current internal state. The first multiplication defines how much the cell will forget

on the previous state. The following summation defines how much it adds up the new

information in the internal state.

LSTMs are used for many different problem domains that require to sup-

port long-term dependency. Some notable studies are phoneme classification [52, 53],

handwriting recognition [54], sequence generation and machine translation [51, 134],

speech recognition[117, 116], anomaly detection [83], weather forecast [145], etc.

Graves and Schmidhuber compared bidirectional LSTMs with other recur-

rent and regular topologies, unidirectional LSTMs, bidirectional RNNs, unidirectional

RNNs, and finally MLPs for the problem of framewise phoneme classification. Though
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the number of hidden units/cells varied for each topology, they used the same training

algorithm, BPTT and training parameters. They claimed that bidirectional models

outperformed unidirectionals and MLPs. In addition, LSTMs were faster in training

and more accurate than RNNs [52].

In [53], Graves et al. improved the framewise phoneme prediction using bidi-

rectional LSTMs by coupling them with hidden Markov models (HMMs). In [54],

Graves et al. used LSTMs for unconstrained handwriting recognition. In [51], Graves

used LSTMs to generate sequences. The problems that he dealt were text prediction,

handwriting prediction, and handwriting synthesis.

Donahue et al. used LSTMs in the video domain. They tackled two problems:

activity tracking and text generating. They stacked one layer of LSTM on top of the

other, and they fed the first LSTM layer with the output of a convolution layer. They

treated the output of the second LSTM layer as their predictions Donahue et al..

Xingjian et al. used LSTMs for precipitation prediction given atmospheric

radar data. Their data was composed of radar images that showed precipitation level

at each cell of a grid at each time point. Their architecture was composed of two

separate sequences: (i) Encoder, and (ii) Predictor. Each sequence was composed of

two stacked LSTMs. That is, one LSTM layer was placed on top of the other. Both

layers had convolution layers in their input. They also transmitted hidden and cell

states through convolution layer from one time step to the next [145].

Srivastava et al. used LSTMs in supervised learning approach to encode video

frames into a fixed length representation similar to Xingjian et al. [145], Sutskever

et al. [134], Bahdanau et al. [6]. However, instead of generating a sequence, Srivastava

et al. they predicted only the next time step [133].

2.5 Neural Networks on Time Series
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Adya and Collopy reviewed prominent published studies on neural networks

used for forecasting. They made a systematic evaluation of 48 different works. They

explored the quality and impact of each of these works mainly in two perspectives:

(i) Quality of implementation (ii) Quality of validation. They concluded that 21 of

them had problems in validating their work, 16 had problems with implementing

their models, 11 had good quality of implementation, as well as of validation. Out of

48 studies, 30 concluded that neural network models are better their contemporary

state-of-the-art models, 13 studies were inconclusive whether neural networks have

been better, and seven did not make a comparison [1].

Following Adya and Collopy’s study [1], Zhang et al. also reviewed literature

for forecasting in time series domains using neural networks. They first introduced the

difficulty of forecasting in time series domains originated from non-linearity between

input and output variables. The first advantage of neural networks for forecasting is

that neural networks are data-driven self-adaptive models. That is, they can learn

the domain with very little to non domain knowledge. Second advantage that they

discussed is that the capability of neural network in generalizing. Third, they pointed

out to the non-linear representation capability of neural networks. They continued

their discussion with a brief description of neural networks. Then they presented

some different application domains of neural networks for forecasting. Finally, they

concluded with a discussion of potential issues of neural networks such as defining

the number of hidden layers, and neural units in each layer, as well as normalizing

the input, alternative to conventional backpropagation [148].

Gorr et al. proposed a densely connected single hidden layer neural network

equipped with a linear decision rule administered by domain experts to predict student

GAPs in a professional school, then they compared their model with linear regression

and stepwise polynomial regression. They concluded that the comparison results were
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not statistically significant [50].

Ho et al. used multilayer perceptrons for short-term power load forecasting.

Also they proposed a new learning algorithm for neural networks, Adaptive Learning

Algorithm, which adjusts the learning step, η, and the momentum, α based on the

gradient of the error and the change on the parameter values. They compared their

learning algorithm with backpropagation using gradient descent, and claimed that

the proposed learning algorithm yields a faster learning [58].

Applying recurrent neural networks on time series data dates back as early

as 1991 [34, 35, 82, 36, 75]. Logar, in her PhD thesis, compared recurrent neural

networks against feed-forward neural networks and ARMA (autoregressive moving

average) models in several different time series domains. She also proposed an im-

provement to gradient decent algorithm by projecting the weights to a potential

trajectory and eliminating many steps, after the assumption that weight trajectories

through gradient decent search are locally parabolic [82].

In addition to Logar, Kuan and Liu also compared recurrent networks with

feed-forward networks. They conducted an empirical study on foreign exchange rate

data. They proposed an automated two-step parameter learning approach. Then

they experimented various topologies of feed-forward neural networks and recurrent

neural networks on different currency exchange rates such as, Canadian dollar, British

Pound, German mark, Japanese yen, and Swiss franc. According to their results, there

was no decisive superiority between feed-forward networks and recurrent networks.

Each outperformed the other in different cases, unless they tied [75].

Connor and Atlas showed that feed-forward neural networks are non-linear

autoregressive (NAR) models. They also showed that recurrent neural networks are

non-linear autoregressive moving average (NARMA) models. Then on a power system
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regional load forecasting problem, they showed that RNNs with the help of feedback

resulted better than feed-forward NNs [34].

Connor et al., in their follow up work, confirmed that RNNs are a type of

NARMA. Based on their empirical studies on electric load forecasting, they showed

that RNNs can be superior to feed-forward NNs in state dependent domains or do-

mains having trends [35].

In their other follow-up work, Connor et al. showed that feed-forward NNs are

a special case of NAR, and recurrent neural networks are a special case of NARMA.

Therefore, similar to the advantage of NARMA over NAR in time series domain in-

volving a state transition behavior, RNNs are superior to feed-forward NNs in certain

time series domains [36].

Malhotra et al. used stacked LSTMs for anomaly detection in time series.

They trained LSTMs first on non-anomalous trainin data. In prediction, they used

the model to generate the data. Then they fit a multivariate Gaussian distribution to

the generated data. Finally they used the distribution to decide on anomalous cases

[83].

Sutskever et al. used LSTMs for sequence to sequence learning and machine

translation. Their objective was to translate an English sentence to a French sentence.

They trained two distinct LSTM models. First they encoded the input sentence into

an internal state. Then the second model, initialized with the encoded internal state

is used to generate the target sentence [134].

2.6 On Tissue Engineering

Although the human body has a great capability to heal, sometimes the tissue

loss is so severe that the body cannot heal completely. For such cases, the missing

tissue is replaced with autologous tissue or donor tissue. These approaches are limited,
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and tissue engineering offers a potential alternative of growing new tissue using cells

on biomaterial scaffolds [12, 80, 84]. The process starts with a small number of cells

seeded into a biomaterial scaffold, the structure that holds the newly formed tissue

together. If stem cells are used, they differentiate into specific tissue cells and the

tissue cells multiply to fill the space. At the same time, blood vessels from surrounding

tissue grow into the scaffold, carrying oxygen and nutrients to the cells and removing

carbon-dioxide and other waste from them. The scaffold that holds the tissue cells

degrades over time, allowing the cellular matrix to develop with the blood vessels to

generate a fully functional tissue.

In our research, we focus on the vascularization aspect of the tissue engineering

process, which is illustrated in Figure 2.5. When a tissue cell is far from the service

range of a blood vessel, it cannot receive the oxygen and nutrients it needs; hence,

it enters into a “distressed” phase, called hypoxia. Such a cell signals its distress by

releasing solubale chemical signals such as vascular endothelial growth factor (VEGF).

VEGF diffuses into the region and upon binding the outer layer of a blood vessel,

this chemical initiates the process of sprouting a new blood vessel. The tip of the

new blood vessel sprout, called the Tip Cell, grows stochastically in the direction

of the VEGF. Stalk Cells proliferate behind the Tip Cell forming a new blood

vessel as it elongates. When two different blood vessel sprouts meet, they connect

(anastomosis) and the blood circulation starts through the newly formed blood vessel

loop. If a cell stays in hypoxia for an extended amount of time, it dies. Therefore

vascularization is crucial for healthy tissue growth.

The vascularization process is both a temporal and stochastic process. Over

time, the tip of the blood vessel elongates stochastically in the direction of the VEGF

gradient, searching for the distressed cell. The direction that the blood vessels grow

through is stochastic because i) the blood vessels tend to do some exploration in their
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Figure 2.5. Illustration of vascularization, including Tip Cell, Stalk Cell, and
anastomosis. Figure courtesy of Mehdizadeh et al. [88].

search for the distressed cell, ii) scaffold structures can sterically hinder movement of

the cells up the gradient, and iii) there are other unaccounted and unknown factors

besides VEGF that affect vascularization. Because the process is both temporal and

stochastic, we model the process using a dynamic Bayesian network, which we explain

in detail in Chapter 3.

Tissue engineering is an active research field where a number of papers tackle

different aspects of the problem using in-vivo and in-vitro laboratory experiments

(e.g., [2, 30, 31, 63, 64, 146]). There have been also computational models of tissue

development, such as multi-agent systems (e.g., [5, 7, 11, 20, 88]). Artel et al. [5]

proposed a multi-agent model to simulate vascularization in polymer scaffolds. They

compared effects of various growth factor concentrations and scaffold porosities on

vascularization. Mehdizadeh et al. [88] observed the contribution of porosity and

interconnectivity of scaffold to vascularization. Bentley et al. [11] also proposed an

agent-based model for vascularization in which they observe the effect of different

growth factor conditions on blood vessel growth. Bailey et al. [7] used an agent-

based model to represent an existing blood vessel network and they simulate white

blood vessel trafficking. Finally, Byrne et al. [20] modeled tissue differentiation using
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agent-based models under different settings of scaffold porosity and degradation rate.

2.7 On Wireless Sensor Networks and Battery Optimization

Wireless sensor networks (WSN) have become more and more common in the

automated world. In an abundant variety of deployment, WSNs are used for many

sensing purposes such as measuring temperature, humidity, light; sensing motion,

vibration; detecting rain, fire; surveying traffic, etc.

Key elements of WSNs are sensors which are small-scale agents equipped with

sensing devices, a processing unit, communication components, and an energy source.

In majority of cases, sensors rely on their battery for energy as they are mechanically

independent. The lifespan of each sensor is determined by its battery capacity and

rate of energy consumption. Many solutions are proposed to increase battery life such

as increasing battery capacity or reducing device demand. Many other strategies have

been proposed in addition to hardware optimization [3].

A sensor node performs three essential tasks: i) sensing in which it converts

a physical quantity into a representation, ii) processing in which it treats and saves

readings, and iii) communicating in which it sends and receives data packages. In

terms of energy consumption, sensing and processing are negligible compared to com-

munication.

Many studies have addressed predictive models for energy saving on wireless

sensor networks (WSN). Elnahrawy and Nath [43] propose prediction by context

awareness. They discretize readings and use näıve Bayes classifier to predict these

discrete values. They use the geographical topology of WSN as the basis of node

neighborhood in their model.

In a similar way, Wang and Deshpande [141] clustered sensors and discretized

readings. Then they applied compression techniques on descretized data to detect
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correlations between sensors within each cluster. Using compression-based correla-

tions, they fit joint distributions for variables in each cluster, and they incorporated

the joint distributions into a probabilistic model, which they referred as decomposable

model, to predict some sensors instead of reading them.

Deshpande et al. [39] also applied a model based predictive approach to saving

energy. They trained a multivariate Gaussian distribution which models a wireless

sensor network and let user run queries on their model with arbitrary confidence

intervals. Depending on target query and confidence interval, their model decided

which sensors to observe. Their approach involved the entire set of sensors as one

multivariate distribution and they incorporated only observations of the prediction

time. In our case, we make use of current observations and all past observations.

Another approach to energy optimization is scheduling sensors for reading.

Slijepcevic and Potkonjak [129] addressed this approach to seek an efficient way of

clustering sensors so that each cluster alone covered the entire area of surveillance,

and that clusters alternated for sensing one at a time. They turned this problem into

an area cover problem and maximized the count of clusters so that they could keep

as many sensors silent as possible at each turn.

2.8 Examples of Applications in Spatio-temporal Domains

One spatio-temporal domain on which many applications of prediction have

been conducted is activity recognition. In this domain, usually, measurements related

to human activity are collected for prediction purposes. The data is collected over

time. The temporal data is considered as features. Using these features, activities

are predicted.

In one such work, Bao and Intille predicted a person’s activities using readings

collected from five biaxial accelerometers attached to that person’s body (one on
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biceps, one on a wrist, one on the waist, one on an ankle and one on a thigh). They

collected acceleration values within the range of ±10 G from each accelerometer with

a frequency of 76.25 Hz (every 20 ms). Using these readings, they predicted the

human activity every 6.7 s with a time window of 512 samples window. Every activity

is categorized into one of the 20 activities: walking, sitting & relaxing, standing still,

watching TV, running, stretching, rubbing, folding laundry, brushing teeth, riding

elevator, walking carrying items, working on computer, eating or drinking, reading,

bicycling, strength-training, vacuuming, lying-down & relaxing, climbing stairs, and

riding escalator. For predictions, they used decision trees and obtained an overall

accuracy of 84% [8].

In a similar work, Kwapisz et al. focused on the same problem using only cell

phone accelerometers carried on human body. Among many other sensors included

in cell phones or portable music devices, such as optical sensors, audio sensors, GPS

sensors, they only used accelerometers. These accelerometers are, unlike those worn

on body in the work of Bao and Intille [8], are not biaxial but triaxial. In addi-

tion to two axes acceleration measurement, they also have gravity direction which

introduces a new feature that helps discriminating activities. In their configuration,

each person carried one device. They converted 10-seconds time windows, which

contained approximately 200 readings, into an example. For each example, they gen-

erated features for each axis: average acceleration, standard deviation of acceleration,

average absolute difference, average resultant acceleration, time between peaks, and

binned distribution. As classification models, they used decision trees (J48, an ex-

tension of C4.5 [100]), logistic regression, and multilayer perceptrons. They defined

six activities, walking, jogging, upstairs, downstairs, sitting, and standing. In overall

accurracies, they could reach 91.7% using multilayer perceptrons, 85.1% using J48,

and 78.1% using logistic regression [76].
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Zhou and Hu investigated different techniques of motion tracking for rehabili-

tation purposes, in terms of instruments. They first split them into three categories:

non-visual tracking, visual tracking, and robot-aided tracking. They then scrutinized

each technique in these categories, by assessing advantages and disadvantages. Un-

der non-visual tracking techniques, they listed inertia-based methods which are also

known as accelerometers, magnetic-based techniques, glove-based techniques and oth-

ers. Glove-based techniques are used to track hand gestures and to reconstruct motor

functions. The category of others include for example acoustic devices. They claim

that though acoustic devices are highly used in the medical field, for motion track-

ing of human body, they are not very suitable as those devices are rather large and

require large surface to reflect acoustic waves. Under visual tracking systems, they

list three sub-categories: visual marker-based tracking techniques, marker-free visual

tracking techniques, and combinatorial techniques. In marker-based techniques, the

subject person carries some light reflectors (in the passive case) or light sources on

different spots of her body. Then using cameras placed in different angles, the sub-

ject’s motions are tracked. In marker-free cases, the same task is tried to be achieved

without using actual devices mounted on the subject’s body. Finally, in robot-aided

category, they discuss various techniques in which robotic systems are actively used

to treat patients [150].

Motion tracking in video is another interesting machine learning application for

spatio-temporal domains. For example, Klaser et al. used local descriptors composed

of 3D gradients to track motion in video. Given a video, they first scanned it to

determined local regions using an interest point detector or by dense sampling of the

video. The sampled regions usually come with coordinates that describe the extent

of their neighborhoods. Each neighborhood, also known as an interest region is then

converted to a feature vector. Finally, the whole video is represented by a set of such

feature vectors. Similar to the bag-of-words approach, they used these features to
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classify motions in a video into certain predefined categories. For example, in the

Hollywood actions dataset [77], they classified motions in videos into eight different

actions: answering phone, getting out of the car, hand shaking, hugging kissing,

sitting down, sitting up, and standing up [69].

Another method of motion tracking in videos is temporal difference, proposed

by C. H. Anderson. In this method, the difference between consecutive frames is

calculated. All regions that exceed a certain threshold in terms of difference are

considered as motion regions. In these regions, not only the moving object but also

the background that was occluded in the previous frame but then appeared in the

next is detected as moving region. The background is eliminated by calculating the

motion vector and filtering only the vectors that exist for a number of consecutive

frames. Finally, only the moving objects remain [21]. Lipton et al. pointed out to

a common problem with this method: it tends to combine the background region

that yet has been left into the moving object. They also discussed certain weaknesses

of this method such as, if there is a significant camera motion, the method simply

does not work, or if the object is occluded then this method has difficulties to keep

track of it. Therefore, they propose a simple solution by complementing temporal

difference with template matching. They claimed that although template matching

also suffers from changes of the appearance of the target object, the combination of

both methods eliminates all these handicaps [81].

For the domain of video tracking, Trucco and Plakas prepared a rich survey in

which they discuss various methods of motion tracking in videos. They categorized

some of the published tracking methods into the categories of window tracking, feature

tracking, planar rigid shapes method, solid rigid object method, tracking deformable

contours, and visual learning. In window tracking, the motivation is to find a region of

correlation at time, t+1 for each pixel at time frame, t, and to repeat this for all frames
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[139]. Feature tracking is similar to window tracking with the difference that instead

of windows, image features are tracked from one time frame to the next. Those image

features can be edges, corners, contours, etc. [137]. In planar rigid shapes, 2D shapes

such as rectangles and circles are detected, then tracked over the sequence of frames.

Solid rigid objects method extends the tracking of 2D shapes in planar rigid shapes

method to 3D objects extracted from the images through finding 3D translational and

rotational vectors. In tracking deformable contours, the challenge that is addressed

is shapes changing through consecutive frames. In this method, the change in the

shapes is represented as snakes [67, 136] or B-splines [9]. Finally, unlike the previous

methods which use a priori models to extract shapes, objects, and targets, visual

learning method approaches to the tracking problem through learning shapes and

other complex dynamics from a training set composed of videos and images [92]. The

survey finalizes with a table that compares example applications of these methods

[138].
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CHAPTER 3

ACTIVE INFERENCE FOR DYNAMIC BAYESIAN NETWORK FOR TISSUE
ENGINEERING

In this chapter we illustrate an application of active inference for dynamic

Bayesian network on a tissue engineering problem. Given the basics of tissue engi-

neering as illustrated in Chapter 2, we first describe the problem in this domain on

which we have focused along with our motivation. Next we present our approach and

empirical evaluation. We finalize this chapter with a discussion.

3.1 Problem Description and Motivation

Tissue engineering researchers experiment with various settings, including the

number of initial stem cells, the shape of scaffold, the distance between host blood

vessels and stem cells, etc., in order to gain a better understanding of the tissue growth

process. Ultimately, the goal is understanding the entire phenomenon and to detect

the optimal settings for engineering a healthy tissue so that the lost tissue in humans

can be healed through tissue engineering. Laboratory experiments take a long time

however, often weeks if not months. Therefore, researchers often need to stop them

early and make predictions about its future growth had the experiments not been

stopped. To gain the best understanding of tissue growth process, researchers dissect

tissue and analyze cellular matrix and blood vessel network, inspecting the depth and

density of blood vessel coverage of the tissue. When a tissue is dissected, obviously,

the experiment cannot resume where it stopped. Hence researchers need to determine

the ideal time to stop an experiment and be able to make reliable predictions about

its future formation had it not been stopped.

In this domain, the initial settings of an experiment is provided by the tissue
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engineering researchers; hence, the random variables for the initial time, t = 0, are

observed. Stopping an experiment at time t and dissecting the tissue is equivalent to

observing the values of the random variables at time t. The researchers would like to

predict the status of the experiment at a future time T . Hence, the active inference

problem here is how early can we stop the experiment (i.e., what is the smallest value

of t) so that the uncertainty of our prediction about time T is acceptable, i.e., less

than a provided threshold?

We next introduce our DBN model of vascularization and then present the

active inference problem more formally.

3.2 Modeling Approach and Problem Formulation

In this section, we first describe our DBN model for vascularization and then

we discuss the active inference formulation for DBNs.

3.2.1 DBN Modeling of Vascularization in Tissue Growth. In a typical

tissue engineering laboratory experiment, there are many factors considered: the

shape and porosity of the scaffold that holds the tissue, the tissue cells that are in

various cycles of their lives, and the distribution of the VEGF that is emitted by

distressed cells, etc. In this study, we focus on the following question: given a group

of distressed cells that signal their distress through VEGF, which we simply refer to

as the VEGF sources (VS), and the closest host blood vessel, how likely are the VSs

to be reached by new blood vessels that sprout from the host blood vessel?

In this study, we zoom in the region that is not vascularized yet. Hence, given

one or more VSs and a host blood vessel, we model the vascularization using random

variables that represent each location in a tissue grid as Empty (E), the tip of a new

blood vessel Tip Cell (TC), or the body of the blood vessel Stalk Cell (SC). We elicit

the DBN structure from domain experts and we experiment with numerous parameter
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settings allowing the researchers to try various real and hypothetical situations. We

next describe the structure and the parameters for the DBN.

3.2.1.1 The DBN Structure. In vascularization, at each step in time, the tip of

a blood vessel elongates stochastically in the direction of the gradient of the VEGF,

forming the body of the blood vessel. This corresponds to the following transition in

our DBN: a location that is TC at time t becomes SC at time t+1 forming the body of

the blood vessel, and whatever direction the blood vessel elongates towards becomes

the new TC. Given a 2D grid of the space, following the assumption made in [88], we

assume that the VSs are located at north whereas the host blood vessel is located in

south, and hence the blood vessel elongates towards north-east, north, or north-west.

Figure 3.1 illustrates the tissue grid, the dependencies between the random variables,

and the corresponding 2-slice DBN.
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Figure 3.1. a) The tissue grid. The status of a location at time t + 1 depends on
the previous time t statuses of itself and its neighbors at its south-west, south, and
south-east. b) The corresponding 2-slice DBN.

In this DBN, the status of a location at time t + 1, Lt+1
xy , depends on the

statuses of itself, Ltxy, and the neighbors at its south-west, Lt(x−1)(y−1), south, Ltx(y−1),

and south-east, Lt(x+1)(y−1), at previous time t. We simply refer to these neighbors

generically as LtSW , LtS and LtSE. We next describe the parameter settings, i.e., the
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conditional probability densities (CPDs), for this DBN.

3.2.1.2 The DBN Parameters. The typical vascularization process is as follows:

a Tip Cell elongates stochastically in the direction of the VEGF source, VS, occupy-

ing an Empty location and forming the body of the blood vessel (Stalk Cell) during

the process. Upon touched by VEGF, the body of the blood vessel might sprout a

new blood vessel, i.e., a Stalk Cell might turn into a Tip Cell. Hence, if a location

is

• a Tip Cell at time t, it elongates at time t+ 1 to an Empty location at one of

its NW, N, or NE location, and leaves a Stalk Cell behind.

• a Stalk Cell at time t, it either remains a Stalk Cell or turns to a new Tip

Cell to sprout a new blood vessel at time t+ 1.

• Empty at time t, whether it remains Empty or gets occupied by Tip Cell at

time t+ 1 depends on whether there was a Tip Cell that can elongate to this

location from at least one of its SW, S, and SE locations at time t.

𝐿𝑡 

TC SC E 

TC SC E 

𝜖 1 − 2𝜖 𝜖 

TC SC E 

𝛾 1 − 𝛾 − 𝜖 𝜖 

Noisy-OR with 
parameters 
𝜆0, 𝜆𝑆𝑊, 𝜆𝑆, 𝜆𝑆𝐸  

Figure 3.2. The tree CPD representation for P (L(t+1)|Lt, LtSW , LtS, LtSE).
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These transitions are best represented through a tree-CPD, which is shown

in Figure 3.2. In this representation, we present the parameters in the order of

〈TC, SC, E〉.The CPD corresponding to the three above transitions is:

• P (L(t+1)|Lt = TC, LtSW , L
t
S, L

t
SE) = P (L(t+1)|Lt = TC) = 〈ε, 1− 2ε, ε〉

• P (L(t+1)|Lt = SC, LtSW , L
t
S, L

t
SE) = P (L(t+1)|Lt = SC) = 〈γ, 1− γ − ε, ε〉

• P (L(t+1)|Lt = E, LtSW , L
t
S, L

t
SE) = noisy-OR(LtSW , L

t
S, L

t
SE)

where ε is a small noise parameter and γ is the new sprout probability. Whether

an E location at time t gets occupied with the tip of a blood vessel (TC) at time

t+ 1 is modeled as a noisy-OR of its parents located at its SW, S, and SE neighbors:

P (L(t+1) = TC|Lt = E, LtSW , L
t
S, L

t
SE) is a noisy-OR of LtSW , LtS, LtSE, with parameters

λ0, λSW , λS and λSE. λ0 is a leak parameter, and λSW , λS and λSE represent the

possibility that a TC in the SW, S, or SE will elongate to this location.

The magnitude of λSW , λS and λSE are determined by i) how far the VEGF can

travel before it completely dissipates and ii) the magnitude of the VEGF gradient. If

the VEGF cannot reach a TC, then TC follows a path uniformly at random, exploring

its surroundings. If TC is reached by VEGF, then the closer the TC to the source

of VEGF , VS, the higher the VEGF gradient, and hence the λ values become more

skewed towards the VS. The further away from the VS, the more uniform the λ values

get.

More formally, let dxy be the distance of location Lxy to VS and let dV represent

the maximum distance that the VEGF can travel before it dissipates (or becomes

negligible). If dxy > dV , then because VEGF cannot reach Lxy, the tip cell at Lxy has

no clue as to whether it should grow towards NW, N, or NE, and hence it has equal

probability in either direction: λ(x−1)(y+1) = λ(x)(y+1) = λ(x+1)(y+1) = 1
3
. If dxy ≤ dV ,
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then the λ values become skewed towards VS. Without loss of generality, assume

that the VS is located at NE with respect to xy. Then λ(x−1)(y+1) = λ(x)(y+1) =

dxy
3dV

, λ(x+1)(y+1) = dxy
3dV

+ (1 − dxy
dV

), and hence the TC has a higher probability moving

NE.

It is important to note that the λ formalism discussed above is only an ap-

proximation to the reality. The VEGF gradient is one of many factors that effect

the direction of the blood vessel growth. Hence, the probabilistic framework allows

researchers to “sweep the unaccounted and uncontrolled factors under the probability

rug.” Additionally, how far the VEGF travels depends on a number of factors in-

cluding the scaffold porosity. Therefore, we do not set dV parameter to a fixed value;

rather, we allow the researchers to experiment with various hypothetical values to see

how it effects vascularization.

In collaboration with the tissue engineering researchers, we developed the first

prototype of our DBN model of tissue development in our workshop paper [71]. In

our first prototype, we made a number of simplifying assumptions. For example, we

assumed that the λ values were fixed across the grid. In our model of the second phase,

we allow a distressed cell that can emit VEGF, which in turn results in non-uniform

λ values across the grid. Another limitation existing in the first model was the grid

size. In that work, largest size applicable in the proposed model was 9x9 whereas in

the extended version we reach sizes beyond this limit such as 51x51. Additionally, we

formulate and experiment with active inference in the second phase. As it is described

in the next section we propose a novel approach to measure uncertainty in temporal

graphical models. Furthermore, using this uncertainty measure we formulate a trade-

off on two conflicting objectives. Using uncertainty measure and formulated trade-off

we applied some common search methods to detect optimal time for decision making
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as this method called active inference.

3.2.2 Active Inference for DBNs.

3.2.2.1 Motivation and Objective Function. In this section, we formalize the

question of “given an uncertainty threshold of σ, how early can a tissue engineering

experiment be stopped so that the prediction uncertainty over the tissue grid for a

target time slice T is below σ?” More formally, we need to find t∗ such that:

t∗ = argmin
t<T

UNC
(
P
(
LT |l0, lt

))
< σ

where UNC
(
P
(
LT |l0, lt

))
is the prediction uncertainty over the target time slice T ,

σ is the maximum uncertainty acceptable to the researcher, LT is the collection of

all locations at T , lt is the observation (i.e., the values of all the random variables

Ltxy at time t) we would get once we stop the lab experiment and dissect the tissue.

Of course, we do not know what the status of the experiment would be at time t

unless we actually stop the experiment. Therefore, a standard technique is to take

an expectation over all possible outcomes lt:

t∗ = argmin
t<T

∑
lt

P
(
Lt = lt|l0

)
UNC

(
P
(
LT |l0, lt

))
< σ

A challenge here is, however, that if the number of all locations at time t is m,

then lt ranges over 3m possible assignments (each location can be TC, SC, or E), which

makes taking the expectation clearly intractable. There are two viable approximations

that are common in the literature. One is to sample potential assignment values using

the probability distribution P (Lt|l0) and take the mean of UNC
(
P
(
LT |l0, lt

))
. A

second approach is to use lt where P (Lt|l0) is maximum (i.e., the MAP assignment).

Note that finding lt where P (Lt|l0) is maximum does not necessarily require us to

enumerate all possible lt values, when i) each location at time t is independent of other

locations at time t given their parents, and ii) there are no future, t′ > t, observations.
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Both assumptions hold for our DBN structure.

3.2.2.2 Uncertainty Definition. There are a number of possible approaches

for defining uncertainty over the target time slice, UNC
(
P
(
LT |l0, lt

))
. One typical

approach is to use entropy. However, entropy cannot capture correctly the cases that

are misclassified with high certainty. In our domain, the researchers are interested in

predicting the path that a new sprout from the host blood vessel follows and hence

we formulate uncertainty as the conditional error of the most probable blood vessel

path that originate from the host blood vessel.

More formally, let p = 〈p1, p2, ..., p|path|〉 be a path of length |path| that repre-

sents a connected sequence of locations representing a blood vessel, whose tip p|path|

is a TC and whose body 〈p1, p2, ..., p|path−1|〉 are SCs. Then, the conditional error over

this path p being a blood vessel is:

UNC(p|lt, l0) =

|path|−1∑
i=1

(
1− P (pi = SC|lt, l0)

)+
(
1− P (p|path| = TC|lt, l0)

)

The uncertainty over the target time locations LT is then defined as the conditional

error of the most probable blood vessel path at time T :

UNC
(
P
(
LT |l0, lt

))
= argmin

p∈LT
UNC(p|lt, l0) (3.1)

3.2.2.3 Search. To find the optimal t∗ to stop a laboratory experiment so that

uncertainty for target time T is below threshold σ, we need to search for the 0 < t < T

for which UNC
(
P
(
LT |l0, lt

))
< σ < UNC

(
P
(
LT |l0, lt−1

))
. However, such a search

can be computationally expensive. For each t value we try, we need to:

• Step 1: Find the most-likely assignment lt for Lt, i.e., find argmax
lt

P (Lt = lt|l0).
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Given the Bayesian network structure, this requires us to run inference from

t′ = 0 to t′ = t; any variables for t′ > t are irrelevant. However, given two

times t1 < t2, the computations done for argmax
lt1

P (Lt1 = lt1|l0) can be reused

for computing argmax
lt2

P (Lt2 = lt2|l0). For example, if a sampling is used for

inference, the counts can be stored and reused for all 0 ≤ t ≤ T . Therefore,

this step can be done once for the whole search process.

• Step 2: Compute UNC
(
P
(
LT |l0, lt

))
, which requires us to run inference with

lt as observed, find the most-probable blood vessel path of length T at time

T , and compute conditional error for this blood vessel path. Unfortunately,

for this phase, computations needed for P
(
LT |l0, lt

)
cannot be shared between

different t values, and hence, this step needs to be repeated for every t value

the search algorithm tries.

In this active inference setting, the observations are always for past time slices;

i.e., we need to compute P (Lt|l0) where t > 0 and P
(
LT |l0, lt

)
where t < T . We

assume that once the laboratory experiment is stopped at time t and the tissue is

dissected, all locations at time t can be observed by the experimenter. Hence, forward

sampling can be conveniently utilized for both probability computations. Then, the

inference cost for computing P (Lt′ |lt) is

IC(t′|t) = m× (t′ − t)× s

where m is the number of locations on each time slice and s is the number of samples

per location. The inference cost for Step 1 is independent of t and it is IC(T |0)

because sampling is done once for all time slices and the computations are shared

between different time slices. The inference cost for Step 2 depends on t and it is

IC(T |t). Hence, a search algorithm that tries multiple time steps will incur the

first cost once and it will incur the second cost for each t tried. More formally, the
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aggregated inference cost for a search algorithm to find the optimal t∗ is:

ASC(t∗|search) = IC(T |t = 0) +
∑

t∈search

IC(T |t) (3.2)

Assuming the uncertainty over the target time slice decreases as the evidence

is gathered later in time (i.e., the later the experiment is stopped, the more reliable

the predictions about the target time slice get), viable search algorithms are:

• Forward search (ForS), starting with t = 1 and ending when the uncertainty

goes below σ,

• Backward search (BackS), starting with t = T − 1 and ending when the uncer-

tainty goes above σ,

• Binary search (BinS), starting with end points, and halving the space at each

iteration, and

• Line search (LineS), iteratively fitting a line to the uncertainties of the latest

known (computed) time points and trying to pinpoint the optimal time t∗ ac-

cordingly. Line search iteratively fits a line to the two known/computed end

points of the interval that contain t∗.

We compare these search algorithms in terms of their aggregated inference

costs (Equation 3.2) both empirically and analytically in the rest of the article.

3.3 Empirical Evaluation

In this section, we present inference results of our DBN model on various real

and hypothetical settings that are obtained by varying the location of the VEGF

source, VS, the number and locations of initial sprouts as Tip Cells (TCs), and the

maximum distance the VEGF can travel, dV .

3.3.1 Experimental Setup. Given an initial setup specified by the experimenter,
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which is specified as the values of all the random variables at time t = 0, i.e., the

locations that are TC, SC, and E at t = 0, given the initial location of the distressed

cell VS, and the maximum distance that the VEGF can travel, dV , we compute the

probability distribution of 〈TC, SC, E〉 for each location for each time slice 0 ≤ t ≤ T .

We present detailed results for 5 × 5 and 9 × 9 grids for illustrative purposes first.

Then we present active inference results using a much larger 51 × 51 grid, which is

more realistic. Note that these grids are relatively small compared to the full tissue

space, because each grid does not represent the full tissue space but rather represents

a zoomed region of a single VS, because the task is to figure out the likelihood of this

single VS being reached by a blood vessel.

The grid is drawn in such a way that the VS is at the top/north of the grid

(y = Y − 1) and the blood vessel sprout(s) (TC) are located at the bottom/south of

the grid (y = 0). We experimented with various conditions where the VS is located in

the middle versus in the corners, the TC is in the middle or the corners, and there is

only one or more TCs in the grid. We also varied how far the VEGF can travel (dV ).

We chose three representative cases where the VEGF can travel short, medium, and

long (in comparison to the grid height) distances dV = Y/4, dV = Y , and dV = 4Y .

3.3.2 Prediction Results. Figure 3.3 shows the probability of each location being

occupied by a blood vessel cell (i.e., P (Lt = TC|l0) +P (Lt = SC|l0)) for t = 0, 1, 2, 3, 4

for a 5× 5 grid. The case where VEGF can travel only a short distance, dV = Y/4, is

shown at the top and the case where VEGF can travel a long distance, dV = 4Y , is

shown at the bottom. For both cases one VS is located at the middle north location

and one TC is located in the middle south.

Note that λ parameters denote the likelihood of TC elongating in one of NW,

N, or NE directions and the values of these parameters depend whether the TC is

reached by VEGF and if so, how close the TC is to the VS, the source of the VEGF.
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.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .14 .16 .18 .16 .13

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .12 .19 .23 .19 .15 .12 .19 .23 .19 .15

Y/4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .11 .21 .31 .21 .12 .11 .21 .31 .21 .12 .11 .21 .31 .21 .12

.00 .00 .00 .00 .00 .00 .31 .34 .35 .00 .00 .31 .34 .35 .00 .00 .31 .34 .35 .00 .00 .31 .34 .35 .00

.00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .76 .01 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .78 .03 .00 .00 .02 .78 .03 .00

4Y .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .04 .83 .04 .00 .00 .04 .83 .04 .00 .00 .04 .83 .04 .00

.00 .00 .00 .00 .00 .00 .05 .87 .06 .00 .00 .05 .87 .06 .00 .00 .05 .87 .06 .00 .00 .05 .87 .06 .00

.00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00

l
0 P(L1|l 0 ) P(L2|l 0 ) P(L3|l 0 ) P(L4|l 0 )

Figure 3.3. Cell probabilities (the sum of TC and SC) for the 5 × 5 grid at all time
slices for dV = Y/4 and dV = 4Y .

For dV = Y/4, any location that is further away from the VS as much as Y/4 or more

has uniform λ values and hence the blood vessel has equal likelihood of growing in

all three directions, resulting in uniform probabilities (the top of Figure 3.3). For

dV = 4Y , all locations are in the VEGF diffusion range, causing the λ values to be

more skewed in the gradient of the VEGF. In this case, we see that the TC simply

follows the gradient to reach the distressed cell. For dV = Y/4, the probability that

the TC reaches the distressed cell is only 0.18 whereas for dV = 4Y , the probability is

much higher: 0.76.

We next present results of different placings of VS and TC on a 9 × 9 grid

(we present only the dV = 4Y case as the dV = Y/4 case results simply in uniform

probabilities). The top of Figure 3.4 shows a setting where the VS is on the north-

west corner and a single TC is on the south-east corner. The bottom of the same

figure shows the results for the case of one VS in the middle north, one TC in the

south-east corner and another TC in the south-west corner.

Comparing to the 5 × 5, the 9 × 9 grid is larger in both dimensions and

furthermore, on top the top figure, the VS and TC are placed on the opposite ends
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of a diagonal. This setting doubles the distance between VS and TC comparing with

the previous case and hence the likelihood of VS being reached by a blood vessel

is much smaller, 0.37 versus 0.76. At the bottom, however, the chance of VS being

reached by a blood vessel is much higher then the case on top since there are two

initial TCs and VS is not as further away. These results illustrate the obvious: that

as the VEGF travels longer distances, the chance of a blood vessel finding the VS

increases. When multiple initial sprouts are involved, the chance rises even more.

What is more, however, is that it associates a probability with these scenarious that

can be acted upon by the tissue engineering researchers.

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .37 .19 .17 .09 .05 .03 .01 .01 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .37 .19 .17 .08 .05 .02 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .39 .20 .18 .08 .04 .01 .00 .00 .00 .39 .20 .18 .08 .04 .01 .00

1 VS .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .43 .20 .17 .07 .03 .01 .00 .00 .00 .43 .20 .17 .07 .03 .01

1 AC .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .48 .21 .16 .06 .03 .00 .00 .00 .00 .48 .21 .16 .06 .03

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .56 .23 .14 .05 .00 .00 .00 .00 .00 .56 .23 .14 .05 .00 .00 .00 .00 .00 .56 .23 .14 .05

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .65 .23 .11 .00 .00 .00 .00 .00 .00 .65 .23 .11 .00 .00 .00 .00 .00 .00 .65 .23 .11

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .79 .21 .00 .00 .00 .00 .00 .00 .00 .79 .21 .00 .00 .00 .00 .00 .00 .00 .79 .21

.00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 1.00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .80 .01 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .80 .04 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .09 .82 .06 .02 .01 .00 .00 .00 .02 .09 .82 .06 .02 .01 .00

1 VS .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .05 .17 .82 .16 .04 .02 .00 .00 .02 .05 .17 .82 .16 .04 .02 .00

2 AC's .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .04 .14 .19 .81 .20 .14 .03 .01 .01 .04 .14 .19 .81 .20 .14 .03 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .12 .19 .64 .00 .62 .20 .13 .02 .03 .12 .19 .64 .00 .62 .20 .13 .02 .03 .12 .19 .64 .00 .62 .20 .13 .02

.00 .00 .00 .00 .00 .00 .00 .00 .00 .08 .18 .73 .00 .00 .00 .71 .19 .09 .08 .18 .73 .00 .00 .00 .71 .19 .09 .08 .18 .73 .00 .00 .00 .71 .19 .09

.00 .00 .00 .00 .00 .00 .00 .00 .00 .16 .85 .00 .00 .00 .00 .00 .83 .17 .16 .85 .00 .00 .00 .00 .00 .83 .17 .16 .85 .00 .00 .00 .00 .00 .83 .17

1.00 .00 .00 .00 .00 .00 .00 .00 1.00 1.00 .00 .00 .00 .00 .00 .00 .00 1.00 1.00 .00 .00 .00 .00 .00 .00 .00 1.00 1.00 .00 .00 .00 .00 .00 .00 .00 1.00

P(L8|l
0 )P(L6|l

0 )P(L3|l
0 )l

0

Figure 3.4. Cell probabilities for the 9× 9 grid at 4 selected time slices for maximum
travel distance = 4Y .

3.3.3 Discussion. Evaluating mathematical models of tissue engineering is fairly

challenging for several reasons: there are many uncontrolled and unaccounted factors

that mathematical models simply do not take into account. Therefore, the process

looks just too stochastic from the modeling perspective, and comparison by a set

of controlled experiments is not straightforward. Therefore, rather than evaluating

precision of locations of the blood vessels, general characteristics are evaluated, such

as how much branching occurs, the mean and the maximum blood vessel invasion



49

depth, blood vessel length density, etc.

3.3.3.1 Laboratory Experiments. We next present laboratory experimental

results where we focus on the invasion depth, i.e., the depth of vascularized tissue

growth into the environment. An experimental study was previously performed using

porous polymer scaffolds containing gradients of growth factors in vivo [2]. More

detail on the experimental conditions can be found in [2]. Briefly, gradient scaffolds

with varying growth factor doses (0, 2, 20 and 200 ng) of PDGF-BB (a growth factor,

of which VEGF is a subfamily) were investigated on a rodent model and vasculariza-

tion was evaluated at 1, 3, and 6 weeks post implantation. Harvested samples were

stained, i.e., the tissue was colored with dyes (in this case with hematoxylin and eosin

(H&E)) to enhance visibility and contrast in the microscopic imaging. H&E stain cell

nuclei and the tissue structure purple and pink, respectively.

Stained samples were imaged to quantify tissue invasion depth using an Ax-

iovert 200 inverted microscope (1.10 µm/pixel). The depth of tissue invasion was

measured as the straight-line distance from the underlying host tissue to the deep-

est location where tissue could be seen within the scaffolds. For these experiments,

five animals were sacrificed at each time point (1 week, 3 weeks, and 6 weeks). Each

animal received four implants each one corresponding to a different growth factor con-

centration (0, 2, 20, and 200ng). This procedure resulted in five samples per growth

factor concentration per time point. We took measurements from three different lo-

cations (right, middle, and left) within each sample. Therefore, we have 5 × 3 = 15

measurements for each condition (dose & time). In each measurement, we calculated

tissue invasion depth statistics for various threshold ranges (Table 3.1). Statistics

were calculated by dividing the number of times tissue invasion reaches an identified

threshold to the total number of measurements of the condition.

Blood vessels within the scaffold were labeled using a fluorescent dye (Alexa
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Table 3.1. Statistics of tissue invasion depth.

0 ng <1000 µm 1000 µm 1250 µm 1500 µm >1750 µm

Week 1 1 0.2 0.13 0.07 0

Week 3 1 0.53 0.13 0 0

Week 6 1 0.73 0 0 0

2 ng <1000 µm 1000 µm 1250 µm 1500 µm >1750 µm

Week 1 1 0.53 0.33 0.2 0.07

Week 3 1 0.8 0.73 0.53 0.27

Week 6 1 0.67 0.27 0.07 0

20 ng <1000 µm 1000 µm 1250 µm 1500 µm >1750 µm

Week 1 1 0.73 0.4 0 0

Week 3 1 0.93 0.67 0.4 0.2

Week 6 1 0.87 0.73 0.27 0.2

200 ng <1000 µm 1000 µm 1250 µm 1500 µm >1750 µm

Week 1 1 0.93 0.8 0.47 0.2

Week 3 1 1 0.87 0.67 0.6

Week 6 1 1 1 0.4 0.33

Fluor 647-isolectin) and imaged using confocal microscopy. Representative images of

blood vessels within gradient scaffolds (20 ng PDGF-BB) for weeks 1, 3 and 6 are

shown in Figure 3.5.

Figure 3.5. Blood vessel invasion within gradient scaffolds at (A) week 1, (B) week 3,
and (C) week 6. All images are for the 20 ng PDGF-BB case. Red shows isolectin
labeled blood vessels and green is autofluorescence of the tissue. The large black
areas are the scaffold structure. Scale bars are 100 µm.
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As these results in Table 3.1 illustrate, the higher the growth factor dose (the

lower rows), the higher the likelihood of deeper invasion of the tissue (the columns

on the right). For example, at week 6, the ratios of samples where an invasion depth

of 1250 µm was reached are 0%, 27%, 73%, and 100% corresponding to 0 ng, 2 ng, 20

ng, and 200 ng doses of growth factor. Note that in some cases, the invasion depth

decreases between 3 and 6 weeks due to regression and pruning, i.e., cell death.

We cannot directly compare these numbers (Table 3.1) with the numbers in

Figure 3.3, because our model focuses on specific regions whereas these experimental

results show aggregate information. However, these data support the claim that our

DBN model captures the phenomenon that the higher the growth factor concentration

is (Figure 3.3 bottom figure), the higher the likelihood of reaching distressed cells.

3.3.3.2 Agent-Based Models. A direct comparison of our DBN model with

the laboratory experiments is challenging, as was explained above. However, there

are other mathematical models of tissue engineering applications where one-to-one

evaluation is more straightforward. One such mathematical modeling approach is

agent-based modeling. For example, [5] developed an agent-based model to inves-

tigate blood vessel formation in biomaterial scaffolds, and the model was improved

progressively through constant revision and incorporating new experimental findings

[5, 87, 88, 130].

The agent-based models have many advantages over dynamic Bayesian net-

works. Different cell types such as stem cells, tissue cells, and the cells forming blood

vessels can be represented through different agents with specific rules governing their

behavior. This allows the modeler to impart domain knowledge easily into the sys-

tem. For example, a cell going through its life cycle can exist in different states and

perform actions such as migration, proliferation, or differentiation. The cell state

such as being hypoxic or not can be determined by the presence (or lack thereof) of
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nearby blood vessels that are also represented by agents that have their own rule set.

A big challenge in using agent-based models is the need for many simulations

to observe the average behavior of the system. In order to observe the average behav-

ior, the researcher repeats the same simulation multiple times, starting with the same

initial conditions but varying the random seed. The number of trials is often decided

on an ad-hoc manner. Graphical models have the obvious advantage over such simu-

lations in observing average behavior because that is what the probabilistic graphical

models are obviously designed for. Further, and more importantly, graphical models

allow for “what if” analysis more effectively by enabling one to provide hypothetical

evidence values for future time slices and then one can reason both backward and

forward in time. Starting an agent-based model in future and running it backwards,

however, is almost impossible, unless one designs a complete set of new rules that

takes agents back in time.

We next provide a comparison of DBN inference results to average behavior

of the agent based model of Artel et al. [5]. The average behavior of the agent-based

model is obtained by running multiple simulations (200 in this case) and averaging

the observed results. In Figure 3.6, on the left, we present cell probabilities at 5th

time tick at each location after 200 runs of the agent-based model simulation and in

the middle we present cell probabilities at 5th time slice of the DBN model. These

results show that both models result in the same average behavior. We computed

Jensen-Shannon divergence between the results of these two models and present it as

a table on the right of Figure 3.6. As these results show, the differences between the

two models are very small, and the differences stem from the approximation errors of

the average behavior from multiple simulations.

In addition to matching the results of the agent-based model, the DBN allows

for more complicated queries that the agent-based models cannot readily handle. For
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Cell probabilities based on simulation Cell probabilities based on DBN Jensen-Shannon Divergence

.14 .20 .21 .14 .16 .14 .16 .18 .16 .13 3.80E-05 1.52E-03 1.03E-03 5.66E-04 9.23E-04

.15 .18 .22 .27 .11 .12 .19 .23 .19 .15 1.39E-03 1.20E-04 2.35E-04 5.79E-03 3.30E-03

.14 .19 .34 .24 .10 .11 .21 .31 .21 .12 1.49E-03 7.12E-04 5.16E-04 9.31E-04 7.38E-04

.00 .34 .31 .36 .00 .00 .31 .34 .35 .00 0 5.16E-04 7.40E-04 1.98E-05 0

.00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 0 0 0 0 0

Figure 3.6. The comparison of cell probabilities obtained from 200 runs of simulation
with our DBN model.

example, we can observe the behavior of the underlying vascularization laboratory

experiment at time t and enter the observations as evidence into the DBN model.

Further, this ability to enter the state of the experiment as evidence into DBN allows

us to perform active inference, which we discuss next in the following section.

3.3.4 Active Inference Results. In this section, we provide empirical results

for investigating the question of “given an acceptable uncertainty threshold of σ, how

early can a tissue engineering experiment be stopped so that the prediction uncertainty

for a target time T is below σ?” We first present results exploring how uncertainty, as

defined in Equation 3.1, is affected by dV and how it varies by t. Then, we compare

the computation cost of various search algorithms that search for the optimal time

to stop an experiment.

3.3.4.1 The Uncertainty Distribution. In this experiment, we computed

uncertainty as defined in Equation 3.1 on a 51 × 51 grid. We placed one VS in the

middle north and one TC in the middle south. We experimented with dV = Y/4,

dV = Y , and dV = 4Y to observe the relation between dV and uncertainty. Figure 3.7

shows the uncertainty in the y axis, assuming the lab experiment is stopped at time

t (the x axis).
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Figure 3.7. Uncertainty at time slice T for each time slice candidate of observation,
using various dV values.

As expected, as we stop the tissue engineering experiment at later time slices,

the uncertainty for the target time goes down. Additionally, the longer the VEGF

can travel, the more skewed the λ values become and hence the blood vessel path

becomes more predictable, i.e., less uncertain.

Next, we tackle the question of finding the optimal t∗, the earliest time t that

guarantees a prediction uncertainty below the threshold of σ. This question can be

easily answered if we compute the expected uncertainty for each candidate time t,

like we did in Figure 3.7. However, computing uncertainty for a candidate time t is

computationally expensive, as was discussed and formulated in the approach section.

Next, we compare various search algorithms on how they fare in minimizing this

computational cost.

3.3.4.2 Uncertainty Search. We compared the search methods we described in

the approach section: forward search (ForS), backward search (BackS), binary search

(BinS), and line search (LineS) in terms of the amount of computation (Equation 3.2)

they would require to find t∗. We tested how the search algorithms would compare

if the ideal time t∗ was t = 1, t = 2, ..., t = T − 1. We experimented with both
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dV = Y/4 and dV = 4Y cases, but we show only the dV = Y/4 case, as the other case

is similar.

Figure 3.8 shows the aggregated computation cost of each search method. The

x axis represents the hypothetical ideal time to stop an experiment and the y axis

shows the aggregated search cost a search algorithm would incur to find that ideal

time. As expected, ForS incurs more cost and BackS incurs less cost as we move t∗

to later time slices, and BinS outperforms both ForS and BackS. LineS performs the

best because it fits a function to the so-far-computed uncertainty values and tries to

pinpoint t∗ using this function. We also see that LineS outperforms BinS for each

t∗.
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Figure 3.8. Aggregated computation cost for each search method when dV = Y/4.

3.4 Analytical Evaluation

In this section, we provide closed-form solutions to the aggregated search costs

(Equation 3.2) for the search algorithms ForS, BackS, BinS, and LineS. We make the

reasonable assumption that uncertainty decreases as we provide evidence for later

time slices. That is, UNC
(
P
(
LT |l0, lt+1

))
< UNC

(
P
(
LT |l0, lt

))
for 0 < t < T .

This assumption is verified to hold for our domain as was shown in Figure 3.8.
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In the active inference problem, we are searching for t∗ where t∗ = argmint<T

UNC
(
P
(
LT |l0, lt

))
< σ. ForS tries t = 1, 2, · · · , T − 1 in increasing order till

it finds the first t that satisfies the uncertainty requirement. Therefore, ForS will

try t = 1, 2, · · · , t∗. BackS tries t = T − 1, T − 2, · · · , 1 in decreasing order till it

finds the first t that violates the uncertainty requirement. That is, BackS will try

t = T − 1, T − 2, · · · , t∗, t∗ − 1. BinS will perform search by halving the search space

at each iteration. That is, it will first try t = T/2 and depending on the uncertainty

at this time, it will try either t = T/4 or t = 3T/4, and so on, till it tries t∗ and either

one of t∗−1 or t∗+1. LineS tries t = T −1 first and then fits a line to the uncertainty

at time t = 0, which is given, and tries to pinpoint the exact uncertainty threshold.

If the pinpoint uncertainty is larger than the threshold, it fits a new line between

the pinpoint and t = T − 1, otherwise between the pinpoint and t = 0. It iterates

narrowing the search interval down until σ is clamped between two latest pinpoints.

3.4.1 Forward Search. The aggregated search cost for ForS, ASC(t∗|ForS) is:

ASC(t∗|ForS) = IC(T |t = 0) + IC(T |t = 1) + ...+ IC(T |t = t∗)

= m× s× [(T − 0) + (T − 1) + ...+ (T − t∗)]

= m× s× [(t∗ + 1)× T − t∗(t∗ + 1)

2
]

= m× s× (t∗ + 1)(T − t∗

2
)

Note that 0 < t∗ < T and hence each of the terms (T −0), (T −1), . . . , (T − t∗)

in the second line of this equation are positive and the number of terms grows in

t∗. Therefore, the ASC for ForS grows as the ideal time to stop the experiment is

closer to the target time T as expected and as has also been empirically validated
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and shown in Figure 3.8.

3.4.2 Backward Search. Similarly, the aggregated search cost of BackS is:

ASC(t∗|BackS) = IC(T |t = 0) + IC(T |T − 1) + IC(T |T − 2) + · · ·+

IC(T |t∗) + IC(T |t∗ − 1)

= m× s× [(T − 0) + (T − T + 1) + (T − T + 2) + · · ·+

(T − t∗) + (T − (t∗ − 1))]

= m× s×
[
T +

(
T − (T − 1)

)
+
(
T − (T − 2)

)
+ · · ·+(

T − (t∗ − 1)
)]

= m× s×
[
T + T ×

(
(T − 1)− (t∗ − 1) + 1

)
− [(T − 1)+

(T − 2) + · · ·+ (t∗ − 1)]
]

= m× s×
[
T + T [T − t∗ + 1]− (T − t∗ + 1)(T + t∗ − 2)

2

]
= m× s×

[
T +

(T − t∗ + 1)(T − t∗ + 2)

2

]

Following similar reasoning, each of terms (T − 0), (T − T + 1), (T − T +

2), . . . , (T −(t∗−1)) in the second line are positive and the number of terms decreases

in t∗ resulting lower cost as the ideal time to stop the experiment gets closer to the

target time T .

The ASC for ForS is monotonously increasing in t∗ whereas it is monotonously

decreasing for BackS. Next, we determine t∗ for which ForS and BackS have equal

cost.



58

(t∗ + 1)

(
T − t∗

2

)
= T +

(T − t∗ + 1)× (T − t∗ + 2)

2

−1

2
t∗2 + (T − 1

2
)t∗ + T = T +

(T − t∗ + 1)× (T − t∗ + 2)

2

−1

2
t∗2 + (T − 1

2
)t∗ + T = T +

t∗2 − (2T − 3)t∗ + T 2 + 5T + 2

2

2t∗2 + (−4T − 2)t∗ + T 2 − 3T + 2 = 0

The solution of this quadratic equation is:

t∗ =
4T + 2±

√
(−4T − 2)2 − 4× 2× (T 2 − 3T + 2)

4

= T +
1

2
±
√
T 2

2
− T

2
+

5

4

The feasible solution for which t∗ < T is:

t∗ = T +
1

2
−
√
T 2

2
− T

2
+

5

4

For large T values, the t∗ for which ForS and BackS have equal aggregated inference

cost is equal to:

t∗ ≈ T − T√
2

= T (1− 1/
√

2) (3.3)

≈ 0.3T

That is, for t∗ < 0.3T , ForS is more efficient than BackS, and for t∗ > 0.3T , it is

better to use BackS. For T = 50, ForS and BackS are equal on t∗ = 15 which is

roughly the value we see in Figure 3.8.

3.4.3 Binary Search. For binary search, because the actual steps depend on
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where t∗ lies, we provide closed-form solutions for i) the worst-case, ii) the best-case,

and iii) average-case scenarios.

3.4.3.1 Worst-Case Scenario. Because the inference cost of earlier steps is larger

than the cost of the later time steps, in the worst case, the binary search keeps trying

earlier time steps t = T
2
, T

4
, · · · , T

2dlog2 Te . Let n = dlog2 T e. The inference cost is then:

ASC(t∗ = 0|BinS) = m× s×
[
T +

(
T − T

2

)
+

(
T − T

4

)
+ · · ·+

(
T − T

2n

)]
= m× s×

[
T + nT − T

(
1

2
+

1

4
+ · · ·+ 1

2n

)]
= m× s×

[
T + nT − T

(
1

2
+

1

4
+ ...+

1

2n

)]
= m× s×

[
T + nT − T

(
2n − 1

2n

)]
2n−1

2n
≈ 1 for large n. So the equation becomes:

ASC(t∗ = 0|BinS) ≈ m× s× [T + nT − T ]

= m× s× nT

= m× s× dlog2 T eT

3.4.4 Best Case. Because the inference cost of later time steps is smaller than the

cost of the earlier time steps, in the best case, the binary search keeps trying later

time steps t = T
2
, 3T

4
, · · · , (2dlog2 Te−1)T

2dlog2 Te . Let n = dlog2 T e. The inference cost is then:
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ASC(t∗ = T − 1|BinS) = m× s× T +

[(
T − T

2

)
+

(
T − 3T

4

)
+ · · ·+(

T − (2n − 1)T

2n

)]
= m× s×

[
T + T

(
1

2
+

1

4
+ · · ·+ 1

2n

)]

= m× s×

[
T + T

(
2n − 1

2n

)]

≈ m× s× 2T

3.4.4.1 Average Case. We analyze the average case in Figure 3.9. Binary search

makes a decision on two options at each step. Without prior knowledge, two options

are equally likely to be selected. Since each option in the previous step is equally

likely, all possible decisions are also equally likely in following steps. For example

in Figure 3.9, in the third step, four time slices can be dissection point and each of

them can be reached with equal probability. Therefore, knowing inference cost for

each time slice, we can compute expected inference cost at each step. Computing

and summing expected inference cost at each search step gives the expected inference

cost of binary search as a function of T , which is equal to m× s× dlog2T eT/2.

3.4.5 Line Search. If UNC(P (LT |l0, lt)) is assumed to follow a perfect line as

a function of t, then line search can try t = T − 1 (the cheapest case) and because

t = 0 case is already given, can fit a line and pinpoint t∗ without any further search.

In that case, the total cost of LineS is:

ASC(t∗|LineS, perfect line) = IC(T |t = 0) + IC(T |t = T − 1)

= m× s× [(T − 0) + (T − (T − 1))]

= m× s× (T + 1)
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Figure 3.9. Indices of potentially explored time slices by binary search at each step
of the search phase. Each of these time slices may or may not be explored. Hence,
probability of a time slice for being explored is equal to other time slices of the
same row.

As Figure 3.7 shows, the uncertainty is not a perfect line but close to a line.

In that case, line search needs to verify that its pinpoint is indeed correct. That

is, line search tries t = T − 1, t = t∗, and t = t∗ − 1 to verify UNC(LT |l0, lt∗) <

σ < UNC(LT |l0, lt∗−1). Then, for each possible t∗, line search incurs the cost of

IC(T |t = 0), IC(T |t = T − 1), IC(T |t = t∗), IC(T |t = t∗ − 1).

In order to compute the average case, we need to calculate the summation of
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Table 3.2. Aggregated search cost for each t∗ value in the case that uncertainty curve
is close to a line

t∗ explored slices aggregated search cost

1 0, T − 1, 1 (T − 0) + (T − (T − 1)) + (T − 1)

2 0, T − 1, 1, 2 (T−0)+(T−(T−1))+(T−1)+(T−2)

3 0, T − 1, 2, 3 (T−0)+(T−(T−1))+(T−2)+(T−3)

... ... ...

t 0, T − 1, t− 1, t (T − 0) + (T − (T − 1)) + (T − (t− 1))

+(T − t)
... ... ...

T − 2 0, T − 1, T − 3, T − 2 (T − 0) + (T − (T − 1)) + (T − (T − 3))

+(T − (T − 2))

T − 1 0, T − 1, T − 2 (T − 0) + (T − (T − 1)) + (T − (T − 2))

aggregated search cost for each of t∗ = 1, 2, · · ·T − 1, as illustrated in Table 3.2:

T−1∑
t∗=0

ASC(t∗|LineS) = m× s×
[
(T − 1)× (T + 1) + [(T − 1) + (T − 2) + ...+ 2]

+ [(T − 1) + (T − 2) + (T − 3) + ...+ 2]
]

= m× s×

[
(T − 1)(T + 1) + 2×

[
(T − 1)T

2
− 1

]]

= m× s×
[
(T 2 − 1) + (T − 1)T − 2

]
= m× s×

(
T 2 − 1 + T 2 − T − 2

)
= m× s×

(
2T 2 − T − 3

)
The average case aggregated search cost is then:

E[ASC(t∗|LineS)] =
1

T
×

T−1∑
t∗=0

ASC(t∗|LineS)

=
1

T
×m× s× (2T 2 − T − 3)

= m× s×
(

2T − 1− 3

T

)

3.5 Current Limitations and Generalizations to Other Domains



63

The DBN model we presented in this article serves as a proof of concept to

show the feasibility of using DBNs for vascularization, as has been validated through

the similarities of the results with those of agent-based models of vascularization [5],

and on an aggregate level through real-world experimental data [2]. The DBN model

can be enriched further to reflect reality, such as a 3D instead of a 2D model. Much of

these enrichments are engineering problems, where the parents of a node come from

a 3D space instead of a 2D space.

The active inference formulation we discussed in this article focused on tissue

engineering. Some of the ideas and approaches are, however, general enough to be

applicable to several other domains. There are many practical scenarios in which

intelligent agents face the question of how much to wait gathering information versus

when to act based on what is so far known. This problem is in fact an active inference

problem in a temporal domain such as the one we described in this article and hence

cost formulations and search results we discussed largely carry over to these problems.

Though our active inference formulation is generic, our inference cost calcula-

tions assumed that when an observation is made at time slice t, all variables at that

time slice are observed. Hence, expected uncertainty calculations required forward

sampling starting from time t to target time T . This meant searching for later time

steps incurred less cost (note that BackS had less cost than ForS for t∗ > 0.3T as

shown in Equation 3.3). In practice, however, there might be hidden variables or

variables that are too costly to acquire so that not all variables can be observed at

time t. Then, a simple forward sampling from t to T would not suffice; instead, other

approximations algorithms, e.g., likelihood weighting and Gibbs sampling, including

all non-observed variables from time 0 to time T need to be performed and hence

search for earlier and later steps would incur the same inference cost. In that case,

ForS and BackS would have equal cost when t∗ = T/2. Still, BinS is expected to
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outperform ForS and BackS, and LineS is expected to outperform BinS, as expected.

3.6 Chapter Conclusion

We presented a dynamic Bayesian network model of vascularization in en-

gineered tissues. The DBN model allows tissue researchers to perform spatial and

temporal reasoning for the tissue development process. Additionally, we formulated

and evaluated active inference for DBNs in the context of tissue engineering, aimed

at answering the question of determining the ideal time to stop a laboratory experi-

ment to guarantee an acceptable uncertainty for the prediction of the future progress

of the tissue. We compared several search algorithms and analyzed their inference

time complexity, providing closed-form solutions whenever possible. In this article,

we focused on the tissue engineering application. However, the active inference for-

mulation for DBNs and the complexity analysis for the search algorithms are general

and can potentially be applied to other spatio-temporal domains under some natural

assumptions.
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CHAPTER 4

ACTIVE INFERENCE FOR DYNAMIC BAYESIAN NETWORK TO REDUCE
BATTERY CONSUMPTION IN WIRELESS SENSOR NETWORKS

In this chapter, we will illustrate the second phase of our research framed on

a specific real world problem: Battery optimization on wireless sensor networks. We

first present an introductory description of the problem followed by our motivation.

Then we describe our approach tailored regarding the constraints of the problem.

Next, we present our results, and conclude the chapter with a short discussion.

Previously, in Section 2.7, we made a brief introduction to wireless sensor net-

works, their use cases and battery consumption problem. Wireless sensor networks

(WSN) have seen increased deployment mainly due to reduction in hardware costs.

Applications of WSNs include monitoring health (of humans, plants, machines, land,

etc.), air pollution, water quality, traffic, and detection of movement, fires, and land-

slides. In majority of the cases, WSNs are not wired to an electric source; they operate

on batteries. Even though there have been significant developments in storing more

energy in smaller batteries, battery life remains one of the main challenges in effective

use of WSNs. Even if batteries are assumed to be cheap, one still has to physically

visit each failed sensor to replace the battery. Therefore, several solutions have been

proposed to increase battery life, such as reducing communication frequency [3].

A sensor node performs three essential tasks: i) sensing in which it converts

a physical quantity into a representation, ii) processing in which it processes and

saves readings, and iii) communicating in which it sends and receives data packages.

In terms of energy consumption, sensing and processing are negligible compared to

communication [3]. Therefore, a typical energy-saving strategy is to communicate

only when it is “necessary” and remain silent otherwise. The key questions for this
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solution are i) how to determine when it is necessary to communicate and ii) how to

handle the missing data that are caused by silent sensors.

One approach is to build a predictive model of the WSN and use the model’s

predictions in place of the missing data when a sensor is silent. Then, one can wake

up the sensor only when the predictive model’s predictions are expected to deviate

far from the truth. The balance between when to keep the sensor silent and use

the predictive model versus when to wake up the sensor and use the sensor readings

depends on how much energy one is willing to save versus how accurate one needs

the culmination of sensed and predicted readings to be.

Note that the prediction accuracy can be increased by utilizing temporal and

spatial correlations among sensors. A sensor’s readings are expected to be correlated

over time. For example, the current temperature reading of a sensor is expected

to be somewhat close to the last temperature reading. Similarly, there might exist

correlations across sensors. For example, it is possible that one temperature sensor in

one location returns readings that are often a few degrees below compared to another

sensor at a different location, and hence this correlation can be utilized to increase

prediction accuracy when a sensor is silent but the correlated one is awake.

In this phase of our research, we modeled WSNs as dynamic Gaussian Bayesian

networks (dGBn) to exploit the spatio-temporal correlations in WSNs. As baseline

models, we used Gaussian Processes (GP) and linear chain graphical model (LC).

We also formulated active inference problem and solutions: given an already-trained

predictive model and a battery consumption budget, which sensors should communicate

their readings and which ones are allowed to remain silent so as to minimize the

error over predicted and observed readings? As baseline active inference methods

we tried random selection (RND), sliding window selection (SW), and two variance-

based selection methods (maximum variance selection (MV), and iterative maximum
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variance selection (iMV)). We proposed a new variance-based active inference method.

Finally, we collected temperature data from 50 major airports across the U.S.A. We

empirically compared the models and the active inference methods on these two

datasets and on an indoor temperature dataset.

4.1 Problem Description and Motivation

Sensor lifespan in a typical wireless sensor network (WSN) depends on battery

consumption, and communication is the largest consumer of battery. To increase

lifespan, an obvious solution is to reduce the frequency of messages that a sensor

sends to other sensors and/or to a central server. The downside of reducing the

frequency of messages is that it leads to missing information at various time stamps.

One possible remedy is to use a predictive model of the WSN and i) when the sensor

reading is available, use the observed reading, and ii) when the sensor reading is

missing, predict missing values using the underlying model.

We tackle the following problem: given a sensor network, a predictive model

for the sensor network, θ, and a battery budget consumption budget, B, defined in

terms of what percentage of the sensors are allowed to communicate their readings

per time step, determine the ideal set of sensors, S, that should communicate their

readings to a central server so that the overall error over the network at each time

step, Err(Yt|YSt ,O,Xt, θ), is minimized. More formally, following the notation in

Table 4.1, the objective is:

argmin
S

Err(Yt|YSt ,O,Xt, θ) s.t. |S| = B (4.1)

Note that in this case, the error is computed over both observed and predicted

sensors. The error for the observed sensors can be assumed to be zero or in the case

of noisy sensor readings, the error can reflect the noise in the readings. As we discuss
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Table 4.1. Notation used in this chapter.

Symbol Description

t Current time, for which we run prediction

Y s
t Sensor reading for time t and sensor s (if it is communicated to

the central server, then it is observed; if not, it is predicted)

Yt Sensor readings (including both observed and predicted) of all
sensors at time t

S Set of sensor selected to communicate their readings at the pre-
diction time

Xs
t Always-observed features of the sensor s at time t, which includes

sensor specific information such as ID and location

Xt Set of observed features of all sensors at time t (i.e, Xt is the
union of Xs

t for all s)

B Budget, i.e. the number of sensors we can observe at each time

O Set of observed readings up to time t (i.e., the communicated Y s
i

values for 0 ≤ i < t)

θ Underlying model

Err Error function over Y

later in Section 4.3, our goal is to run a WSN at a lower frequency and yet curate a

collection of readings (the union of observed and predicted) for a target time t that

will be as close as possible to a WSN that runs at full frequency. Hence, our gold

standard is the actual sensor readings. This, however, does not preclude one to use a

noise filtering approach, like Kalman Filters, on top of our system.

4.1.1 Active Inference. We made an introduction to active inference in Sec-

tion 2.3. Active inference is the technique of selective information gathering for pre-

dictions in domains where collective labeling can increase the prediction performance

such as network data, or spatio-temporal domains.

In this phase of our research, we model battery optimization in WSNs as an

active inference formulation for Bayesian networks. Hence, the Bayesian network

formulation allows us to integrate information across sensors and predict missing
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readings conditioned on the communicated ones, while the active inference formu-

lation allows us to determine which sensors should communicate their readings so

as to maximize the prediction accuracy on the remaining ones, subject to battery

consumption constraints.

4.1.2 Approach. We propose to use a dynamic Gaussian Bayesian network

(dGBn) to model a WSN. The spatial correlations in the WSN are captured via

the edges across sensor variables, while the temporal correlations are captured via

the edges between the time slices. During active inference, when a new reading is

communicated by a sensor, its value is entered as an observation into the respective

variable, and via conditioning on it, its effect is naturally propagated to other variables

via the Bayesian network connections. Alternatively, one can choose to use undirected

models, such as Markov networks, to model these spatio-temporal correlations. We

chose a directed model over an undirected one because, even though the spatial aspect

is not necessarily directed, the temporal aspect is naturally directed.

In the proposed dGBn, each sensor s’s reading at time t is represented by a

Gaussian random variable Y s
t with the conditional Gaussian distribution N (β0 +βT ·

Pa(Y s
t ), σ2) where Pa(Y s

t ) is Y s
t ’s parents in the Bayesian network structure, β0 is

the bias, β are the edge weights, and σ2 is the conditional variance. To estimate

the structure and the parameters of the dGBn from data, we create an initial 2-slice

dynamic Bayesian network with the following structure: the random variables at time

t, Yt form a fully connected directed-acyclic graph (capturing the spatial correlations)

and the temporal connections are added from sensor s’s random variable at time

t − 1, Y s
t−1, to itself at time t, Y s

t . We set all conditional distributions to be linear

Gaussian distributions. We estimate the respective β0, β, and σ parameters from the

training data using L1 regularization. L1 regularization naturally leads to a sparse

representation by setting some of the β values to exactly zero, in which case the
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respective edge is dropped from the structure.

4.1.2.1 Prediction on dGBn. In the battery-saving dGBn model of a WSN, the

sensors that communicate their readings are entered as observations while the silent

sensors are unobserved variables. We use inference in the dGBn model to predict the

readings of the silent sensors, conditioning on the observed readings obtained from

the communicating sensors.

Although exact inference methods are intractable [70] on general Bayesian net-

works (except the most simple structures such as trees), dynamic Bayesian networks

with only Gaussian random variables is a special case and allows tractable exact in-

ference [90]. Since we have linear Gaussian distribution for each variable for the first

time slice and for intermediate time slices, we can construct a multivariate Gaussian

distribution that includes all variables at all time slices from the initial time slice

up to the last time slice. To infer conditional Gaussian distribution of each random

variable, conditioned on observed variables, we drop all irrelevant variables from the

multivariate Gaussian distribution parameters (mean vector and covariance matrix),

then we condition the variable to be predicted on observed variables, and insert ob-

served values into the conditional distribution. We next analyze the time complexity

of this approach.

Assume the number of sensors is N and our unrolled dGBn has T time slices.

Because we will be predicting every variable that is not observed, the first step requires

the calculation of the joint multivariate Gaussian distribution, where the covariance

matrix’s size is (N × T )2. Next, we need to condition the target variable on all the

observations, O. This requires getting the relevant, i.e., |O| × |O|, subsection of the

covariance matrix, and inverting it. The time complexity of the Gaussian elimination

algorithm for matrix inversion is O(|O|3). Hence, all operations have polynomial time
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complexity.

4.1.2.2 Active Inference: Expected Variance Reduction. In this section,

we explain our proposed active inference approach. Our objective, as defined in

Equation 4.1, is to find a subset of variables S to condition at time t to minimize

the error over all random variables at time t, Yt, subject to budgetary constraints.

However, clearly, we cannot condition on Y St before the sensors communicate the

actual values, and hence, instead of minimizing the actual error, we need to minimize

the expected error, where the expectation needs to be taken with respect to P (Y St ).

argmin
S

∫
YSt

Err(Yt|YSt )P (YSt )dYSt (4.2)

For simplicity of notation, we dropped O, Xt, and θ from the conditioning of the

error, but note that they are always conditioned on, even though they are not shown

in the equations.

The error over all variables at time t, Yt, is the summation of the errors on

the individual variables at time t, Y i
t for all sensors i:

Err(Yt|YSt ) =
∑
Y i
t ∈Yt

Err(Y i
t |YSt )

where, the individual error is defined as square of the difference between the ground

truth Y i
t and the predicted value Ŷ i

t :

Err(Y i
t |YSt ) , (Y i

t − Ŷ i
t |YSt )2 (4.3)

Since we do not know the ground truth Y i
t , we cannot calculate Equation 4.3. We

again calculate the expected error over the distribution of the true reading, P (Y i
t ).

EY i
t

[
Err(Y i

t |YSt )
]

=

∫
Y i
t

(Y i
t − Ŷti|YSt )2P (Y i

t )dY i
t
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We do not know P (Y i
t ), yet we can approximate this expectation by replacing the

true distribution P (Y i
t ) with our estimated distribution, P̂ (Y i

t |YSt ).

EY i
t

[
Err(Y i

t |YSt )
]

=

∫
Y i
t

(Y i
t − Ŷ i

t |YSt )2P̂ (Y i
t |YSt )dY i

t

= V AR(Y i
t |YSt ) = V AR(Y i

t |S) (4.4)

Note that in the Gaussian case, the predicted value, Ŷ i
t |YSt , is the mean of the

estimated distribution, P̂ (Y i
t |YSt ). Therefore, the integration in Equation 4.4 is the

variance of P̂ (Y i
t |YSt ). Since the underlying distributions are Gaussian, the variance

does not depend on the actual value of the observations but rather which variables

are observed, and hence V AR(Y i
t |YSt ) = V AR(Y i

t |S). When we put the expected

error back in Equation 4.2, we get:

argmin
S

∫
YSt

( ∑
Y i
t ∈Yt

V AR(Y i
t |S)

)
P (YSt )dYSt

As the variance is independent of YSt , we can move the variance out of the integral:

argmin
S

( ∑
Y i
t ∈Yt

V AR(Y i
t |S)

)∫
YSt

P (YSt )dYSt

The integral is obviously equal to 1. Therefore our objective function simply reduces

to:

S∗ = argmin
S⊂Yt

∑
Y i
t ∈Yt

V AR(Y i
t |S)

Unfortunately finding the optimal S∗ that would lead to minimum expected

variance is not tractable. Therefore, to build S for a target time t, we iteratively

select sensors that are expected to minimize the sum of the variances at time t. We

call this approach as expected variance reduction (EVR).

4.2 Baselines
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We will evaluate the performance of both our predictive model, the dynamic

Gaussian Bayesian network (dGBn), and our active inference method, the expected

variance reduction, (EVR). Therefore we present baselines for our predictive model

and for our active inference method.

4.2.1 Predictive Model Baselines.

4.2.1.1 Gaussian Processes. One of the simplest and yet most appropriate

strategies for modeling sensor readings over time is Gaussian processes [106]. For

WSN, a possible approach is to train one Gaussian process (GP) per sensor using

its past readings over time. The advantages are i) training of a GP per sensor and

using it for prediction are both remarkably fast, ii) one GP per sensor means it is

highly specialized per sensor and can be quite accurate. The disadvantage of using

one GP per sensor is that the correlations across sensors are not taken into account.

Furthermore, note that during active inference, the model is already trained and

deployed and the newly collected data is not utilized to update the model (unless one

combines active learning and active inference). Hence, during prediction, a GP model

cannot utilize newly observed readings to reduce prediction error on the remaining

ones, as the model is static, and the only input to GP is the features X and not Y ,

as GP per sensor is not a joint prediction model.

4.2.1.2 Linear Chain Graphical Model. To overcome the downside of GP

not being able to incorporate an observed reading at inference time, we propose an

alternative baseline model: a linear chain graphical model (LC). In the LC model,

we represent each sensor as a separate linear Gaussian Bayesian network. That is, a

sensor’s reading is a linear Gaussian random variable, of which the unique parent is

itself from previous time step. This model utilizes temporal correlations via making

use of an earlier observation Y s
u of the same sensor s in predicting its reading in the

current time slice, Y s
t (u < t). The disadvantage of this model is that it does not
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capture spatial correlation. The advantages are: i) it requires much fewer parameters

than dGBn, and ii) and exact inference via Kalman filters [65], is much faster than

the exact inference for dGBn.

4.2.2 Active Inference Baselines.

4.2.2.1 Random Selection (RND). At each prediction time t, random selection

chooses B random sensors for observation. Then, the observed readings for these

sensors at time t and all the past observed readings are used during inference to

predict the sensor readings for the unobserved ones at time t.

4.2.2.2 Sliding Window Selection (SW). First, we shuffle sensors and fix an

order. Then, for prediction at time t = 0, we observe the first B sensors. For t = 1,

we “slide the window” and observe the second set of B sensors, and so on. This is

equivalent to a fixed-and-equal frequency schedule.

4.2.2.3 Maximum Variance Selection (MV). For each candidate variable, this

method calculates variance conditioned on previous time observations if any. Then it

selects top B variables with highest conditional variances. The motivation is similar

to our EVR approach, in the sense that the variance is an approximation to error.

Therefore, this method always selects variables with highest variance to reduce error.

Yet, the major difference with our EVR approach is that MV focuses on high-variance

variables, regardless of their impact on other variables, whereas EVR aims to reduce

the overall expected variance, and hence takes a variable’s expected impact on others.

4.2.2.4 Iterative Maximum Variance Selection (iMV). This is similar to MV,

except instead of picking top B variables with highest variance at once, we iteratively

pick top variance variable, and pick the next one conditioned on the fact that the

previous one is observed, and so on, until B variables are picked. Even though this

approach does not consider the expected impact of a variable on others directly, its
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impact on others is implicitly taken into account via picking variables iteratively.

Still, unlike EVR, this approach does not consider a variable’s impact on others when

choosing it.

4.2.2.5 Cheating Error Reduction (CER). This strategy’s main purpose is

to give us an idea about how good the various active inference approaches’ results

are. As such, this method cheats, and iteratively picks the variable that reduces the

actual error the most. Note that, even though this method cheats and picks the best

variable, it is still a greedy approach and it is not guaranteed to result in the best

set, S∗. Still, the other iterative approaches also have to deal with the greedy nature

of the problem, and hence, CER serves as a reasonable lower bound.

4.3 Experimental Evaluation

4.3.1 Data. In this study, we used three datasets derived from two data sources:

Intel Research Lab Data [39] and weather data from the Weather Underground web-

site, which we collected.

4.3.1.1 Intel Research Lab Sensor Data. This data consists of temperature

(◦C), humidity, light, and voltage readings collected from 54 sensors. These sensors,

placed in an office environment, were employed for sensing the environment in various

frequencies for about 10 days. The data is collected and used by Deshpande et al.

[39].

Because LC and dGBn are state-space models, the time stamps in these models

are discrete. Therefore, we need to discretize the time stamps in the data as well. We

created time bins that consist of 30-minute intervals. We discarded sensors that had

missing readings (4 of the 54 sensors were discarded) and when a sensor had more

than one reading that fell into one bin, the average reading in that bin is used for the

experiment.
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On this data, we focused on two types of measurements: temperature and

humidity. Using these two types, we created two datasets. For training and testing,

we focused on 12pm-6pm time interval, as this interval showed greater diversity in

the readings. We used three days of data for training and one day of data for testing.

In the end, we obtained 3 days × 6 hours × 2 bins/hour = 36 time points, per sensor,

for training, and 1 day × 6 hours × 2 bins/hour = 12 time points, per sensor, for

testing.

4.3.1.2 Weather Underground Data. We fetched temperature (◦F) measure-

ments from the Weather Underground website, a weather portal dedicated to forecast

and reporting2. We collected temperature readings from January 1st, 2015, to March

31st, 2015, for the most crowded airport of each of the 50 states of the U.S.A. Similar

to Intel sensor data, we discretized the time of the reading, via creating bins and av-

eraging multiple readings of a sensor (airport) per bin. For this dataset, we used bins

of 12am-6am (night), 6am-12pm (morning), 12pm-6pm (afternoon), and 6pm-12am

(evening) bins. We used January as our training set and the second week of February

as our test set3. This resulted in 28 days × 4 bins/day = 102 time points, per sensor,

in the training set and 3 days × 4 bins/day = 12 time points, per sensor, for the test

set

4.3.2 Evaluation Methodology. Our main goal is to have a system that can save

battery by putting some sensors to sleep but still is as close as possible to the system

that runs on full frequency. That is, the gold standard is the system that runs on full

frequency. We therefore computed the error over the entire system, including both

predicted and observed readings. The observed readings have 0 error because they

2https://www.wunderground.com/

3We left one-week gap between the training and testing set deliberately to test
the models on similar but different patterns
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represent the gold standard4. Therefore, the system that runs on full frequency has 0

error, albeit terrible battery consumption. Alternatively, a system where all sensors

sleep and no sensor communicates their readings would result in the highest error,

albeit the perfect (zero) battery consumption. We evaluated our approach and the

baselines on several battery budget levels, measured as percentage of sensors that are

allowed to communicate their readings at each time step, where the budget ranged

from 10% to 50%.

For random selection (RND) and sliding window (SW) active inference ap-

proaches, we repeated the experiments 5 times, using different seeds, and report the

average errors over trials. The other active inference approaches, i.e., MV, EVR, and

CER, do not require us to repeat the experiments as they do not have any variability

in their choice of sensors.

On all three models, Gaussian process (GP), linear chain model (LC), and

dynamic Gaussian Bayesian network (dGBn), we experimented with random selection

(RND), sliding window (SW), and maximum variance selection (MV), which are all

baseline active inference approaches. For the dGBn model, we also experimented with

iterative maximum variance selection (iMV) and expected variance reduction (EVR).

As GP and LC do not incorporate dependencies across sensors, iMV and EVR are

equivalent to MV on these models. Finally, we additionally tried the cheating error

reduction (CER) method on dGBn, to serve as a reasonable lower bound. Hence we

ran experiments with the following model and method combinations: GP with RND,

SW, and MV; LC with RND, SW, and MV; and dGBn with RND, SW, MV, iMV,

4We are not claiming that the sensor readings are noise-free. What we are
targeting is to have a system that can skip some readings to save battery and still
produce the same data that would have been produced if it was run on full frequency.
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EVR, and CER.

4.3.3 Experimental Results. We calculated both Mean-squared error (MSE)

and mean-absolute error (MAE) for our evaluations. For each experiment, we first

present MAE then we present MSE results.

We next present the MAE and MSE results on the Intel Temperature, In-

tel Humidity, and Weather Underground datasets. We first compare the underlying

models (Gaussian processes (GP), linear chain graphical model (LC), dynamic Gaus-

sian Bayesian network (dGBn)) when using the common baseline active inference

approaches (random selection (RND), sliding window selection (SW), and maximum

variance selection (MV)). Then, we fix the model to dynamic Gaussian Bayesian net-

work and show how expected variance reduction (EVR) performs compared to the

other active inference approaches.

4.3.3.1 Predictive Model Results. Tables 4.2, 4.3, and 4.4 compare the pre-

dictive models by their MAEs, on Intel temperature, Intel humidity, and Weather

Underground datasets, respectively. Similarly Tables 4.5, 4.6, and 4.7 compare the

predictive models by their MSEs.

All tables have the same layout: rows correspond to underlying models, grouped

by baseline active inference approaches. Columns correspond to budgets, ranging from

10% to 50%. All values are MAEs, therefore the lower the better. The lowest MAE

in each cell is marked with a bold font.

According to MAE results, for all three datasets, and across all three baseline

active inference approaches, dGBn outperform other models on almost all cases (42

out of 45 cases).

The following three tables present the same comparison by MSE results. We

obtain a similar aftermath. Out of 45 cases dGBn outperforms the baseline models
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Table 4.2. MAE results of predictive models coupled with three baseline active in-
ference approaches on Intel temperature dataset. dGBn performs the best on all
cases.

Budgets

Methods Models 10% 20% 30% 40% 45%

RND

GP 1.66 1.47 1.29 1.10 0.92

LC 1.54 1.28 1.02 0.80 0.62

dGBn 0.91 0.66 0.50 0.38 0.30

SW

GP 1.66 1.47 1.29 1.11 0.92

LC 1.53 1.13 0.81 0.60 0.43

dGBn 0.90 0.62 0.50 0.39 0.30

MV

GP 1.75 1.63 1.36 1.23 1.04

LC 1.44 1.13 0.86 0.68 0.53

dGBn 1.39 0.91 0.66 0.46 0.33

Table 4.3. MAE results of predictive models coupled with three baseline active infer-
ence approaches on Intel humidity dataset. dGBn performs the best on all cases.

Budgets

Methods Models 10% 20% 30% 40% 45%

RND

GP 3.45 3.07 2.68 2.30 1.92

LC 3.31 2.66 2.07 1.55 1.18

dGBn 2.44 1.84 1.44 1.12 0.84

SW

GP 3.45 3.07 2.70 2.31 1.92

LC 3.43 2.26 1.53 1.10 0.74

dGBn 2.45 1.85 1.45 1.13 0.83

MV

GP 3.58 3.28 2.94 2.51 2.17

LC 3.73 2.79 2.38 1.84 1.46

dGBn 1.47 2.20 1.65 1.47 1.64

in 41 cases. This is not a surprising result, given that dGBn is able to capture

both temporal and spatial correlations whereas GP and LC captured only temporal

correlations. On the other hand, these results also show that the structure and

parameter learning approach we used, as described in Section 4.1.2, is able to learn a



80

Table 4.4. MAE results of predictive models coupled with three baseline active infer-
ence approaches on Weather Underground dataset. dGBn performs the best on all
cases.

Budgets

Methods Models 10% 20% 30% 40% 45%

RND

GP 10.10 8.97 7.83 6.67 5.61

LC 9.06 7.08 5.62 4.41 3.45

dGBn 5.21 4.00 3.11 2.50 1.88

SW

GP 10.14 9.01 7.88 6.72 5.62

LC 8.51 6.18 4.92 3.83 2.84

dGBn 5.49 4.05 3.02 2.38 1.87

MV

GP 10.41 9.44 8.59 7.60 6.59

LC 8.81 6.61 4.91 3.76 2.65

dGBn 6.25 4.67 3.64 2.77 2.09

reasonable model that did not overfit or underfit significantly.

Table 4.5. MSE results of predictive models coupled with three baseline active in-
ference approaches on Intel temperature dataset. dGBn performs the best on all
cases.

Budgets

Methods Models 10% 20% 30% 40% 45%

RND

GP 4.81 4.25 3.74 3.18 2.69

LC 4.64 3.72 2.75 1.99 1.49

dGBn 2.00 1.23 0.93 0.63 0.47

SW

GP 4.85 4.29 3.80 3.22 2.69

LC 4.68 3.01 1.77 1.19 0.72

dGBn 1.94 1.09 0.83 0.64 0.50

MV

GP 5.26 5.03 4.01 3.81 3.30

LC 3.77 2.64 1.77 1.29 0.89

dGBn 3.60 1.93 1.14 0.71 0.42

Because dGBn had the best performance across the board, next we fix the
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Table 4.6. MSE results of predictive models coupled with three baseline active infer-
ence approaches on Intel humidity dataset. dGBn performs the best on all cases.

Budgets

Methods Models 10% 20% 30% 40% 45%

RND

GP 18.38 16.34 14.33 12.19 10.21

LC 18.59 13.91 9.87 6.70 4.73

dGBn 12.11 7.79 5.48 4.01 2.67

SW

GP 18.46 16.38 14.46 12.33 10.30

LC 19.73 9.86 5.36 3.30 1.84

dGBn 11.89 8.03 5.49 4.06 2.51

MV

GP 19.65 18.37 16.55 14.07 12.62

LC 24.02 17.64 13.28 8.97 6.70

dGBn 10.70 9.90 7.23 7.00 10.47

Table 4.7. MSE results of predictive models coupled with three baseline active infer-
ence approaches on Weather Underground dataset. dGBn performs the best on all
cases.

Budgets

Methods Models 10% 20% 30% 40% 45%

RND

GP 151.09 133.99 116.83 99.37 83.96

LC 139.51 100.99 76.11 56.15 42.38

dGBn 51.75 37.17 26.91 20.65 14.29

SW

GP 151.87 135.08 118.07 100.58 84.44

LC 127.52 82.10 60.45 45.03 30.42

dGBn 57.37 37.55 24.30 18.11 13.66

MV

GP 159.34 147.21 137.10 123.43 108.77

LC 134.57 89.77 58.92 40.61 23.92

dGBn 68.25 42.85 29.87 20.81 15.30

model to dGBn and we various active inference approaches.

4.3.3.2 EVR Results. Tables 4.8, 4.9, and 4.10 compare all active inference ap-

proaches, i.e., RND, SW, MV, iterative maximum variance selection (iMV), expected

variance reduction (EVR), and cheating error reduction (CER) by MAE, on the Intel
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Temperature, Intel Humidity, and Weather Underground datasets respectively. The

underlying model on all cases is dGBn, as it was shown to be the best performing

predictive model. In all cells, the lowest MAE is marked with a bold font, except

CER’s, as it is a cheating strategy, whose purpose is to provide a reasonable lower

bound. All CER scores are greyed out.

These results show that RND and SW are very competitive approaches. MV on

the other hand, performs rather poorly in general. This result confirms that focusing

on top B high variance variables without taking into account how they will affect

other variables is obviously not a good strategy. iMV performs much better because,

even though it does not take into account a variable’s impact others explicitly, the

iterative nature of it prevents us from picking correlated high variance variables. EVR

outperformed all other methods on 13 out of 15 cases because it explicitly takes into

account the expected impact of a variable on the rest.

In all 15 cases, EVR showed outperformed the other active inference ap-

proaches. In fact, EVR achieved very close results to CER, demonstrating EVR’s

effectiveness.

Table 4.8. MAE of EVR and the baseline active inference approaches on dGBn on
Intel temperature dataset. EVR performs the best in all cases.

Budgets

10% 20% 30% 40% 45%

M
et

h
o
d
s

RND 0.91 0.66 0.50 0.38 0.30

SW 0.90 0.62 0.50 0.39 0.30

MV 1.39 0.91 0.66 0.46 0.33

iMV 0.72 0.55 0.42 0.27 0.31

EVR 0.65 0.49 0.39 0.31 0.23

CER 0.54 0.44 0.34 0.26 0.21

The following tables, 4.11, 4.12, and 4.13, show MSE results to compare active
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Table 4.9. MAE of EVR and the baseline active inference approaches on dGBn on
Intel humidity dataset. EVR performs the best in all cases.

Budgets

10% 20% 30% 40% 45%

M
et

h
o
d
s

RND 2.44 1.84 1.44 1.12 0.84

SW 2.45 1.85 1.45 1.10 0.74

MV 2.47 2.20 1.65 1.47 1.46

iMV 2.29 1.39 1.23 0.76 0.63

EVR 1.94 1.38 0.97 0.85 0.63

CER 1.66 1.39 1.05 0.76 0.56

Table 4.10. MAE of EVR and the baseline active inference approaches on dGBn on
Weather Underground dataset. EVR performs the best in all cases.

Budgets

10% 20% 30% 40% 45%

M
et

h
o
d
s

RND 5.21 4.00 3.11 2.50 1.88

SW 5.49 4.05 3.02 2.38 1.87

MV 6.25 4.67 3.64 2.77 2.09

iMV 5.78 4.33 2.82 2.28 1.73

EVR 4.82 3.39 2.79 2.06 1.55

CER 3.52 2.67 1.91 1.43 1.05

inference methods on dGBn. These results, similar to MAE results, show that EVR

is the best method in 10 cases out of 15. In 1 case, it is slightly better then the closest

following method, iMV. In two cases,EVR and iMV tie, being the best method. One

interesting result is that on all three datasets, EVR outperformed CER when the

budget is 50%. This is simply because CER does not guarantee an optimal solution

although it cheats, and EVR, by targeting the overall variance, yields a better error

reduction than CER.

4.4 Chapter Conclusion

In this chapter, we tackled the problem of battery consumption of wireless
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Table 4.11. MSE of EVR and the baseline active inference approaches on dGBn on
Intel temperature dataset. EVR performs the best in all cases.

Budgets

10% 20% 30% 40% 45%

M
et

h
o
d
s

RND 2.00 1.23 0.93 0.63 0.47

SW 1.94 1.09 0.83 0.64 0.50

MV 3.60 1.93 1.14 0.71 0.42

iMV 1.24 0.80 0.58 0.48 0.38

EVR 0.95 0.73 0.62 0.47 0.24

CER 0.73 0.57 0.51 0.38 0.32

Table 4.12. MSE of EVR and the baseline active inference approaches on dGBn on
Intel humidity dataset. EVR performs the best in all cases.

Budgets

10% 20% 30% 40% 45%

M
et

h
o
d
s

RND 12.11 7.79 5.48 4.01 2.67

SW 11.89 8.03 5.49 4.06 2.51

MV 10.70 9.90 7.23 7.00 10.47

iMV 9.13 4.37 4.15 1.72 1.36

EVR 7.72 4.61 2.77 2.36 1.52

CER 5.61 4.42 3.26 1.99 1.58

Table 4.13. MSE of EVR and the baseline active inference approaches on dGBn on
Weather Underground dataset. EVR performs the best in all cases.

Budgets

10% 20% 30% 40% 45%

M
et

h
o
d
s

RND 51.75 37.17 26.91 20.65 14.29

SW 57.37 37.55 24.30 18.11 13.66

MV 68.25 42.85 29.87 20.81 15.30

iMV 62.01 38.18 19.64 15.41 11.03

EVR 43.79 27.38 19.75 14.11 9.98

CER 29.15 20.35 12.57 8.92 5.44
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sensor networks (WSNs) that run on full capacity. For this purpose, we proposed a

simple solution: At every time step, we will collect readings from a selected subset

of sensors, and we will predict the others. This way, we can turn off the sensors that

we did not reach out and they can save their batteries. This simple solution raises

two important questions: (i) How can we predict the offline sensors with maximum

accuracy, possibly using all the past data and all the readings that we collect at the

current prediction time? (ii) If we are allowed to select sensors for reading collection

at every prediction time step, given the number of sensors to reach out, how can we

select the subset that reduces the overall prediction error the most?

For the first question, we proposed a dynamic Gaussian Bayesian network

(dGBn), where all readings at each time step are represented as linear Gaussian dis-

tributions. We selected two baseline models to evaluate our dGBn model: a Gaussian

process (GP) and a linear chain graphical model (LC). dGBn makes use of both spa-

tial and temporal correlations, whilst LC can only use temporal correlations, and GP

can use none.

For the second question, we proposed expected variance reduction (EVR) method.

We compared our method with several baseline methods: random selection (RND),

sliding window selection (SW), maximum variance selection (MV), iterative maxi-

mum variance selection (iMV), and cheating error reduction selection (CER). Our

selection method, EVR, exploits the variance similar to MV and iMV. However, the

latter two find the readings with the maximum variance and select them, while our

method finds the readings that would yield the maximum change in overall variance

once observed.

Our empirical study shows that in the predictive model comparison, dGBn

performs the best when any of the three baseline selection models, RND, SW, and MV,

is used. In addition, we found that our active inference method, EVR, outperforms all
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other methods on dGBn, except CER, which is used to explore the ceiling performance

for an active inference method.
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CHAPTER 5

ACTIVE INFERENCE FOR FEED-FORWARD NEURAL NETWORKS TO
REDUCE BATTERY CONSUMPTION IN WIRELESS SENSOR NETWORKS

In this chapter, we will illustrate the third phase of our research which is

a sequel of the previous Chapter 4. Similar to the active inference for dyanmic

Bayesian networks (DBNs) for battery saving on wireless sensor networks (WSNs),

in this phase, we try to solve battery consumption problem, utilizing a predictive

model, and actively collecting information from the domain to boost the model’s

prediction performance. However, we do not use DBNs. Instead, we use feed-forward

neural networks as predictive models, and we develop active inference for feed-forward

neural networks.

We first present an introductory description of the problem followed by our

motivation. Then we describe our approach tailored regarding the constraints of

the problem. Next, we present our results, and conclude the chapter with a short

discussion.

5.1 Problem Description and Motivation

In Chapter 1, we shortly discussed the advantages of Dynamic Bayesian net-

works (DBNs) as predictive models in spatio-temporal domains. First and foremost,

they are probabilistic models, and their outputs are probability distributions. One

can easily devise uncertainty formulation using estimated probability distributions,

if one does not want to straightforwardly utilize the variance of the distribution as

the uncertainty. Also, DBNs are multi-label, i.e. multiple output predictive models.

Inputs to DBNs are used in predicting all outputs at once, and predictions are not

independent. Therefore, true labels provided to one or several outputs can be used
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to make predictions on others with lower uncertainty. Another advantage of DBNs is

to factorize large joint probabilities into conditional probabilities simplified by con-

ditional independencies. Therefore, learning parameters of a DBN, that is learning

conditional distributions are much more affordable than learning joint probabilities.

Nevertheless, DBNs have certain limitations. Unfortunately, even factorizing

joint probabilities into conditional probabilities by conditional independencies, do

not make inference easy. Typically, exact inference on DBNs is intractable. There

are few exceptions, such as linear chains, HMMs, or Gaussian DBNs. Approximate

inference techniques, although tractable, are computationally expensive. For example,

Gibbs sampling, or more generally Metropolis-Hastings (MH) algorithm are Markov

chain Monte Carlo (MCMC) methods, and usually require a long sampling process

to converge. Even if one is willing to afford the computational overhead of MCMC

methods, then one needs to deal with some meta-parameters of MCMC methods. As

we have seen in Chapter 4, MH algorithm has meta-parameters such as the burn-in

period, the sample size, and proposal distributions.

To alleviate this problem, we decided to model the domain with linear Gaus-

sian distributions. Notice that Gaussian DBNs allow tractable exact inference. Yet,

assuming random variables Gaussian is usually a strong assumption, and inferences

may lead to inevitable errors, even though exact inference is used.

Moreover, this solution bears another problem. Note that linear Gaussian

distributions are conditional distributions that makes the target variable as the lin-

ear combination of its parents. Therefore, this model is limited to domains where

variables have linear correlations.

5.2 Approach

As a consequence, by using dynamic Gaussian Bayesian networks (dGBns), we
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are limited to represent correlations as linear functions, which yields inevitable errors.

Further more, inference is not easy. We might be interested in predictive models that

are faster in inference and capable of representing non-linear correlations, such as

neural networks.

5.2.1 Neural network modeling. As mentioned in Section 2.4 et seq., first

neural networks were proposed as early as in 1950s, in the form of perceptrons [110].

Since then, many architectures have been proposed. In our problem definition, we

use feed-forward neural networks (FFNNs) in the following setting:

X̂t = f(Xt−1) (5.1)

In Equation 5.1, f(·) is our FFNN. X̂t, the output of our FFNN is the vector

of random variables that we are trying to predict at the current time. In our WSN

setting, they correspond to the sensor readings at time, t. Xt−1, the input to our

FFNN is the vector of random variables at time, t− 1. In this setting, the predictive

model predicts the current time sensor readings based on the previous time sensor

readings.

5.2.2 Active Inference for neural networks. In this problem setting, we

are trying to predict random variables’ current time values using their previous time

values, partly observed, partly predicted, and partially observed values at the current

time step. Partial observation corresponds to collecting readings from a subset of the

sensors, given a budget B. Active inference tries to answer two questions: (i) How to

integrate partial observations into predictions? (ii) Which subset should be selected

for observation collection? In this chapter, we limit our study to the first question

and leave the second question as a future work.

Unlike active inference for DBNs, active inference for neural networks are not
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straightforward due to a fundamental problem: On DBNs, we have seen that the true

value acquired for a variable at a specific time can be injected into the model as an

evidence, and predictions can be updated accordingly. However, on neural networks,

this task is not straightforward. As given in Equation 5.1, an output value, X i
t is a

function of any input value Xj
t−1, where i and j are not power but indices in their

respective vectors. Yet, a feed-forward neural network does not establish a function

between output values. Therefore, for all pairs (X i
t , X

j
t ), such that i 6= j, we do not

have a function g(·) such that X i
t = g(Xj

t ).

One can propose to train a model that can predict X i
t using a subset of Xt.

However, there are two essential problems in this approach: (a) based on the obser-

vations we acquired for a subset, we can predict Xj
t , but at the same time, our neural

network will have a prediction for Xj
t . There is unfortunately no practical way to

combine these two distinct predictions. (b) We need virtually infinitely many predic-

tive models to cover all subsets as input. For example, suppose we have N variables.

Depending on our budget, we can have the number of subsets, (S) can be in O(2N).

As we will need to train a model per subset, Sk, we will need models in exponential

order.

We used two distinct methods to integrate observed values into predicted val-

ues. Our first method is Tan and Mayrovouniotis’s input training. Our second method

is Newton-Meade optimization.

5.2.2.1 Input training. To integrate the observed values into predictions for the

unobserved variables at the output, we adopt and extend the input training method

proposed by Tan and Mayrovouniotis [135]. In their study, Tan and Mayrovouniotis

proposed an autoassociative neural network to reduce the dimensionality of a data set.

Their topology was composed of three layers: one input, one hidden layer, and one

output. They used the input values as the output values. The hidden layer was smaller
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than the input and the output layers, in number of units. After training, they split the

model into two: the input and the hidden layer, and the hidden layer and the output

layer. They used the first half to project an instance to a compact representation.

Then they used the second half to fine tune the compact representation with the

original representation.

X̂i = g ◦ f(Xi)

Ŷi = f(Xi) (5.2)

X̂i = g(Ŷi)

In Equation 5.2, g ◦ f(·) is the autoassociative neural network, f(·) is the first

half of the network, g(·) is the second half. Xi is the input to the network, X̂i is the

output of the network, and finally Ŷi is the output of the hidden layer, therefore the

compact representation of the input. Note that on the new instances, the error on

X̂i will be larger than the error on the instances from the training set. The authors

conjecture that, the compact representation is not precise and yields this error. A

more precise compact representation would have much smaller error.

Inspired by the backpropagation in training of the model, in order to reduce

the error on X̂i, they update Ŷi with backpropagation, as in Equation 5.3. They

apply gradient descent to optimize the compact representation.

Ŷ +
i = Ŷi + η

∂ Err(Xi, X̂i)

∂Ŷi
(5.3)

Following a similar approach, we used input training to adjust the input to

optimize the observed variables at output. We make the assumption that this ad-

justment will also minimize the error on the unobserved variables. There are several
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difference between Tan and Mayrovouniotis’s input training and our input training.

First, they apply input training on a single layer neural network. In our design, the

network can be as complex as needed, as long as backpropagation can be applied.

In our experiments, we used a feed-forward neural network model, composed of two

hidden layers. Therefore, we were able to apply input training on a more complex

model, through hidden layers.

Second, unlike Tan and Mayrovouniotis, in our input training, we do not utilize

the error at each output, simply because we do not have ground truth for any output

unless it is selected for observation. Therefore, we calculate the error gradient only

on the observed subset of the output. Then the gradient of the error is propagated

back.

X̃+
t−1 = X̃t−1 + η

∂ Err(X∗Stt , X̂Stt )

∂X̃t−1

(5.4)

Equation 5.4 formulates input training by gradient descent. St is the set

of observed variables at time step, t. The two accents, ˜ , and ˆ indicate predicted

values and combination of predicted and true values respectively. The superscripts,

∗ and + indicate the true values and values following the update. Hence, X̃t−1 is the

input vector for our model to make prediction for time step, t. This vector is the

combination of the predicted values, X̂ S̄tt and true value X∗Stt . Note that the vector

of true values here is superscripted with S̄t, which is the complement of the set of

observed variables, i.e. the set of unobserved variables.

In Equation 5.4, Err(X∗Stt , X̂Stt ) calculates the error over only observed vari-

ables by comparing their true values with their predicted values. The gradient of this

error is calculated with respect to the input which is the combination of the prediction

at the previous time step and the true values of the variables observed at the previous
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time step. η is the learning rate. In our experiments, after trying several different

values, we selected η = 1. The number of iterations for gradient descent is 2000.

argmin
Xt

Err(X∗Stt , X̂Stt ) ≈ argmin
Xt

Err(X∗S̄tt , X̂ S̄tt ) (5.5)

Finally, we postulate that adjusting the input variables to minimize the predic-

tion error on observed variables, St, will minimize the prediction error on unobserved

variables, S̄t. We formally show this in Equation 5.5.

5.2.2.2 Optimization by Nelder-Mead method. Nelder-Mead, an optimiza-

tion method proposed by Nelder and Mead in 1965, does not require to calculate

the gradient of the function to be optimized, but it proceeds with calculating the

function on multiple instances and then makes decision [93]. Details of Nelder-Mead

optimization method have been discussed in Appendix A.

5.3 Empirical Evaluation

5.3.1 Error Dissection. In this section we aim to analyze the prediction error by

dissecting it into errors of different types. In our problem setting the input is partially

observed. We denote it X̃t−1. The error of the prediction of the output, Err(X∗t , X̂t)

can be decomposed into two errors:

Err(X∗t , X̂t) = Erra(X
∗
t , X̂t) + Errb(X

∗
t , X̂t) (5.6)

5.3.1.1 Error by unobserved input. The first part of the error, Erra, the

accumulating error, stems from the predicted values in the input. Since, the input

includes labels predicted in the previous time step, t − 1, the overall error at the

output is partly due to the unobserved values in the input. Because of the sequential

predictions, this partial error is not only transferred to future predictions, but also
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accumulated by the addition of a new Erra at each time step.

5.3.2 Model Bias. Yet, the overall error is not limited to the accumulating

error, Erra. It also includes an error generated by the model. We call this error the

model bias, and denote Errb. We conjecture that the model will have an error in the

prediction even if it was given a completely observed input.

Errb(X
∗
t , X̂t) = Err(X∗t , f(X∗t−1)) (5.7)

Equation 5.7 formally defines the model bias. X∗t is the vector of true labels

at time, t. f(·) represents the predictive model, our neural network in this context.

Therefore, f(X∗t−1) is the prediction of the model at time, t. To represent the predic-

tions at time t, we deliberately used f(X∗t−1) to highlight that the prediction is made

using true values at the input. An optimal model would have null error. However, in

reality, all machine learning models are expected to be suboptimal, which also means

that the model is expected to make some error on each instance that was not in the

training set.

To explore the existence of the model bias, we ran several experiments on Intel

temperature data. In Figure 5.1 and Figure 5.2, we show the existence of the error

by model bias via comparing three scenarios. In the first scenario, we predicted 45

time steps. We provided the model with a fully observed input for the first time step

prediction. In the following time steps, the model had no observation at all. Then

the error of the model is calculated by MAE at each time step. The corresponding

curve is represented with blue color and label “no obs”. In the second scenario, the

same model is used to make prediction for the same time steps. The only difference

with the previous scenario is that we provided full observation at the input for each

prediction. This satisfies Equation 5.7. In the third scenario, we have the same setting
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Figure 5.1. MSE along 45 time steps in three scenarios: (i) no observation at input,
(ii) the input is fully observed (iii) Nelder-Mead optimization applied on the input
using the fully observed output

except that we used our optimization techniques to optimize the input at time step

using fully observation at the output.

In Figure 5.1, we used Nelder-Mead optimization for the third scenario. In

Figure 5.2, we used input training for the third scenario. Both figures show that when

no observation is provided at the input, the model tends to make large error. MSE

goes as high as 50, and generally it is above 10. When we provide full observation,

maximum MSE obtained is below 20, and generally MSE is below 5, close to 0 most of

the time. This comparison shows that the predictions are far from being reliable when

no observation is provided. When we provide full observation, the models reduces

the error significantly. However, even in that case, the error occurs in most of the

cases. Therefore, the model has a bias. The third curve has almost 0 MSE, proving

that optimization can reduce the bias of the model.
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Figure 5.2. MSE along 45 time steps in three scenarios: (i) no observation at input,
(ii) the input is fully observed (iii) Input training applied on the input using the
fully observed output

Figure 5.3 and Figure 5.4 show the same curves of the second and the third

scenarios of Figure 5.1 and Figure 5.2. As the curve for the first scenario does not

exist, the scale changed. In this scale, the difference between the second and third

scenarios are more visible. In both figures, we can see that the model has bias that

appears as the error when the model is fed with full observation. However, the error

almost disappears when the input is adjusted to optimize the prediction with respect

to the output given as fully observed.

5.3.3 Overfitting of Optimization on Unobserved Output. We use input

training or Nelder-Mead optimization method to find the input vector that minimizes

the error on unobserved outputs. However, as we do not have values for unobserved

outputs, we cannot calculate the error, therefore, we cannot search for the input

vector that minimizes the error. Nevertheless, we conjecture that minimizing the
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Figure 5.3. MSE along 45 time steps in the last two scenarios of Figure 5.1: (i) the
input is fully observed (ii) Nelder-Mead optimization applied on the input using
the fully observed output

error on the observed output variables reduces the error on the unobserved output

variables. This approach will succeed to the extend it can generalize.

A potential generalization problem may occur in this approach. We optimize

the input with respect to the subset of observed variables at the output. However, the

target is the unobserved variables. Reducing the error on observed ones by adjusting

the input may help reduce the error on the unobserved ones up to a level, then after-

wards, it may hurt. This phenomenon is observed in supervised learning. Training

to much on a training set can lead to a generalization problem by for example overly

complicating the model. The model can then poorly perform on unseen instances.

This problem is called overfitting.

Sarle investigates the overfitting on neural networks [118]. He likened this

problem to undersmoothing in non-parametric methods, indicating that it may have
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Figure 5.4. MSE along 45 time steps in the last two scenarios of Figure 5.2: (i)
the input is fully observed (ii) Input training applied on the input using the fully
observed output

more severe consequences such as wild predictions far beyond the range of the data.

In this section, we explore the overfitting problem in optimizing the predictions

of the unobserved variables. We run experiments on Intel temperature dataset. We

use the previously discussed feed-forward neural network to make predictions at 44

time steps. The first prediction is fed with full observation at the input. Therefore,

we do not run optimization for time step, t = 0, then we run prediction for the

following 44 time steps. We kept the observation rate at 10%, that is we allow five

sensors to be observed at each time step. We use random selection to detect sensors

to be observed, as described in Chapter 4. Therefore, we run five trials with different

seeds. At each time step, t, we used the final prediction from the previous time step,
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t − 1, as the input to the current time prediction. We represent this input as X̃t−1

since it is obtained by combining the predicted values for all variables, X̂t−1 and

observed values for selected variables, St−1. Before the final prediction at time step,

t, we adjust the input, X̃t with respect to the observed variables at the output, St.

While adjusting the input, we include the observed variables, St−1, since they do not

need to be fixed while predicting values at time step, t− 1.

We use both aforementioned optimization techniques, input training, and

Nelder-Mead optimization. We start by discussing the input training results.

Figure 5.5 shows the overfitting occurring in the time step, t = 5. In the figure,

plots on the left show MSE on the observed output variables, while plots on the right

show MSE on the unobserved output variables. Each row of plots corresponds to a

trial. We draw MSE on observed and unobserved variables on different xy-planes,

simply because their scales are different. Plotting on the same plane squash them

into a narrow stripe and make the change much less visible. In each plot, the y-axis

represents MSE, and the x-axis represents iterations. We show only the first 200

iterations, though in experiments, the training continues as far as 2000 iterations.

The curves on the left starting with a drastic fall quickly becomes flat near 0. This

behavior proves that the optimization quickly converges to the true values of the

observed output variables.

The curves on the right show the progress of MSE on unobserved output

variables for the same iterations. It is interesting to see that in three of the five trials,

MSE on unobserved variables decreases very quickly, even more quickly than MSE on

observed variables, then starts climbing. In two of these, MSE exceeds the original

level of error after climbing. In the third, it almost reaches the original level. In

the fourth trial, though MSE does not resume to the original, it increases. Only in

the fifth trial, MSE on unobserved variables does not increase. This shows that the
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gain on the error reduction on the unobserved variables can easily be reverted with

further training after first several iterations, while MSE on the observed variables

keep reducing. We interpret this phenomenon as an obvious example of overfitting.

To visualize the overfitting, we plot MSE on unobserved variables with respect

to MSE on observed variables for certain time steps, in Figure 5.6. In this figure, rows

correspond to three selected time steps in which overfitting is quite visible. Columns

correspond to trials. On each plot, x-axis is the MSE on observed variables, y-axis

is the MSE on unobserved variables. On each plot, there is one curve which shows

the change of MSE on unobserved variables while MSE on observed variables are

decreasing. In 13 out of 15 cases, MSE on unobserved variables keeps decreasing

up to a point while MSE on observed variables decreases. Yet, at one point, which

varies among cases, MSE on unobserved variables starts climbing. In many cases, it

climbs to a higher level than its original value. In few cases, it climbs moderately

or slightly little, arguably due to the fact that MSE on observed variables does not

further decrease.

In a more realistic training design, instead of running the training for a con-

stant number of iterations, we shall do it until the measured error goes below a

predefined error threshold, ε, and limit the iterations with a predefined number of

iterations only if the error never goes below ε. Note that we can compare only MSE

on observed variables to ε. To analyze the existence of overfitting, we shall analyze

MSE on unobserved variables for different ε values. We tried ε between 0 and 0.2,

inclusive, with the step size, 0.0005.

In Figure 5.7, we display three selected time steps. The variation of MSEs

on both observed and unobserved variables with respect to an error threshold, ε

are displayed. In all cases, as the threshold is lowered, MSE on observed variables

monotonically decreases. However, in nine cases, MSE on unobserved variables first
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decreases then starts climbing. According to these results, nine cases show explicit

overfitting. We refer the reader to Appendix B to examine all 44 time steps.

These plots, which are organized in different aspects, reveals that our input

training optimization can overfit and considerably hinder the prediction performance.

5.3.4 Regularizing Optimization against Overfitting. There are a few po-

tential remedies for overfitting. Arguably the most crude approach is to set a lower

iteration number to stop the gradient descent search in input training, or the simplex

search in Nelder-Mead optimization. Yet, this approach is a blind technique that may

cause some undesirable consequences on both directions of the underfitting-overfitting

route. In other words, a lower limit for iteration can usually result an underfitting.

Moreover, there is no guarantee that the optimization will not occasionally overfit.

A second approach can be to split observed variables, St into two distinct

subsets, Pt and Vt then using Pt for optimization target and Vt as the reference for

validation, as in Equation 5.8 and in Equation 5.9.

St = Pt ∪ Vt (5.8)

Pt ∩ Vt = ∅ (5.9)

We conjecture that if there exists a correlation between St and S̄t that the

optimization can exploit to reduce the prediction error on unobserved variables, S̄t

by fitting the input in a way that the prediction error on observed variables, St,

are minimized, then a similar correlation can exist between the subset of observed

variables referred for validation, Vt, and the set of unobserved variables, S̄t.

argmin
Xt

Err(X∗Pt
t , X̂Pt

t ) ≈ argmin
Xt

Err(X∗Vtt , X̂Vtt ) (5.10)
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Equation 5.10 is similar to Equation 5.5 in the sense that optimizing pre-

dictions with respect to the subset, Pt, of observed variables, St approximates the

optimization of the subset, Vt, of the observed variables. Here, Pt represents the sub-

set of observed variables that are used in the optimization as the target in minimizing

the error. Vt is the subset of observed variables that are used measure the error. As

this subset is observed, the error can indeed be calculated in parallel through op-

timization. The error on these observed variables, Err(X∗Vtt , X̂Vtt ), is expected to

reduce up to a point, then to start increasing afterwards.

argmin
Xt

Err(X∗Vtt , X̂Vtt ) ≈ argmin
Xt

Err(X∗S̄tt , X̂ S̄tt ) (5.11)

Similar to our postulate described in Equation 5.10, we postulate that mini-

mizing the error on a subset of observed variables, will also minimize the error on un-

observed variables, as mathematically formulated in Equation 5.11. In this equation,

Vt represents observed variables spared for validation through optimization process,

and S̄t represents all unobserved variables.

We conducted a set of experiments to investigate whether our postulate holds.

On Intel temperature data set, using FFNN, we ran sequential prediction over 44

time steps, starting with a complete observation, and 30% observation at each time

step. We used random selection. At each time step, we split observed variables into

two sets, Pt and Vt, as described above. As we used random sampling, we ran 5 trials.

In Figure 5.8, we show plots for three selected time steps, 7, 19, 29. In this

figure, each row corresponds to a time step, each column corresponds to a trial. The

y-axis is MSE, the x-axis is the error threshold, ε. In each plot, the magenta curve is

MSE on validation set, Vt, the blue curve is MSE on optimization set, Pt. In 14 out of

15 cases exhibited in the figure, MSE on Vt goes down so long as we reduce ε. Yet, it
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starts climbing if the optimization continues to reduce the error on Pt. Therefore, we

can use half of the observed subset for validation, and thus we can prevent overfitting.

In Appendix C, we share the same plots as in Figure 5.8 for all 44 time steps.

5.4 Chapter Conclusion

In this chapter, we first discussed the drawbacks of dynamic Bayesian networks

in sequential prediction. Then, we proposed neural networks as a surrogate predictive

model addressing the disadvantages of dynamic Bayesian network models. Next, we

tackled the problem of observation integration into predictions in neural networks. We

proposed two approaches to integrating true values acquired from variables observed

at the current time step, which is also the time step that we make prediction. Both

methods aim to minimize the error on observed variables by adjusting the input. For

both approaches, we assume that input values that minimize the error on observed

variables will also converge the error on unobserved variables to minimum.

The first method is input training. We used the backpropagation to update

the input values unlike the conventional backpropagation which is used to update the

model parameters.

The second method is Nelder-Mead optimization algorithm. We confirmed

that problems that we saw in active inference using input training also exist in active

inference using Nelder-Mead algorithm.

We first address model bias in the overall error. We show that the model

bias exists and can be reduced to zero or near zero using input training or Nelder-

Mead algorighm. Then we showed that overfitting can hurt active inference. We first

empirically showed the existence of overfitting. Then we proposed a method to deal

with overfitting.
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Figure 5.5. MSEs on observed (blue) and unobserved (orange) variables for the first
200 iterations of gradient descent in input training. Each row corresponds to a
trial.
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Figure 5.6. MSE on unobserved variables with respect to MSE on observed variables.
X-axis is MSE on observed variables, and y-axis is MSE on unobserverd variables.
Each row corresponds to a selected time step. Each column corresponds to a trial.

Figure 5.7. MSE on observed (blue) and on unobserved (orange) variables. X-axis is
the error threshold, ε, set for the termination of gradient descent.
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Figure 5.8. MSE on observed variables that are spared for optimization (blue) and
on observed variables that are spared for validation (magenta). X-axis is the error
threshold, ε, set for the termination of gradient descent.
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CHAPTER 6

CONCLUSION

In this research, I explored active inference for predictive models of spatio-

temporal domains. As spatio-temporal domains, I investigated two domains: tissue

engineering and wireless sensor networks. In both domains, I developed predictive

models, and to be used in conjunction with models, I proposed active inference meth-

ods.

Active inference helps a predictive model to make better predictions, in predic-

tion time. There are a few prerequisites to enable active inference help the predictive

model. The first and foremost, active inference optimizes information acquisition. In

this research I narrowed down information acquisition to label acquisition. There-

fore, one can use active inference only when information acquisition is allowed during

prediction. In many machine learning applications, once the model is deployed for

inference/prediction, information acquisition is not allowed or simply not possible.

The second prerequisite is that the domain should support correlations between in-

stance labels. Thereby, being aware of labels of related instances, a predictive model

can potentially make a more accurate prediction for the label of an instance. The

third prerequisite is that the predictive model should be capable of exploiting the

correlations during prediction.

In three different chapters, Chapter 3, Chapter 4, and Chapter 5, I described

the active inference methods that I developed based on the predictive model require-

ments and domain mechanics. In each phase, I first defined domain variables that need

to be predicted, based on the problem definition. Then I explored spatio-temporal

correlations existing in the domain. Next, I proposed a predictive model that can
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utilize those correlations in predictions. Considering the model capabilities, I devel-

oped an active inference method that targets the prediction uncertainty. Finally, with

empirical studies, I showed that the proposed active inference method increases the

prediction performance of the predictive model.

6.1 Contributions

This research has three phases: (i) Active inference for dynamic Bayesian

networks in an application of tissue engineering, (ii) Active inference for dynamic

Bayesian networks for battery saving in wireless sensor networks, and (iii) Active

inference for neural networks for battery saving in wireless sensor networks.

In the first phase, which is described in Chapter 3, I explored the tissue en-

gineering domain for the purpose of vascularization prediction. The problem that I

attempted to solve is to find out blood vessel development probabilities for atomic

regions in a tissue development site. After gridding the site into regions, I modeled

the regions in a dynamic Bayesian network, which then I used to predict the proba-

bility of being invaded by blood vessels at each time step. Using this model, one can

predict the outcome of a wet tissue engineering experiment in terms of blood vessel

development in the tissue development site.

Following the modeling step, I focused on the problem of finding the optimal

time to stop the wet experiment. For this purpose, I proposed a new formulation

of uncertainty of the prediction of the blood vessel development at the finale of the

experiment. This uncertainty formulation is a function of evidence, in the form of

observation, provided to the DBN model at a certain time after the experiment has

started. I showed that the uncertainty depends not only on the observed values, but

also on the time through the process of the experiment. Then I explored the trade-off

of stopping the wet experiment early and making observation to update the model’s
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prediction about the outcome with a high uncertainty versus stopping the experiment

later to reduce prediction uncertainty but paying higher costs of experimenting and

losing valuable time while waiting.

Finally, based on the uncertainty formulation and considering the trade-off, I

tried to detect the optimal time to stop a wet experiment given the highest uncertainty

level that is affordable, and initial experiment observations. I compared the results

with simulations, and actual wet experiments results, and proved the validity of my

model.

In the second phase of my research, which is described in Chapter 4, I focused

on battery consumption problem in wireless sensor networks. I proposed a simple

yet effective solution: Given a wireless sensor network, one can use a predictive

model to predict readings for some sensors, rather then collecting readings from all of

them. This way, one can save energy on those that are kept silent. I tried to answer

two questions on this approach: (i) Which predictive model can one use to predict

readings? (ii) Given an overall saving, which readings should one collect at each time

step to increase prediction performance?

For the first question, I proposed a dynamic Bayesian network in which all

readings are represented as linear Gaussian distributions. The topology was learned

by L1 regularization and the parameters are learned by maximum likelihood esti-

mation. For the second question, after exploring some generic variance-based active

inference methods, I developed expected variance reduction method. On an empir-

ical study, I showed that using baseline active inference methods, the DBN model

outperforms the baseline predictive models by exploiting both spatial and temporal

correlations. Also, I showed that on DBN, the proposed active inference method,

the expected variance reduction, outperforms all baseline active inference methods.

I conducted the empirical study on three data sets, one of which I scraped from the
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web and preprocessed.

In the third phase of my research, as described in Chapter 5, I focused on

certain weaknesses of DBNs modeling WSNs. The complexity of inference, the re-

quirement of linearity on the correlations given Gaussian assumption are some issues

to name. In the same domain as the second phase, to replace DBNs, I proposed using

neural networks. I trained a FFNN to predict sensor readings. The choice of using

FFNN, while answering the first research question in the second phase, bears a follow-

up question: How can one integrate observations into predictions in a FFNN, where

the output is the current time readings and the input is the previous time readings?

I proposed to use input training in conditioning the input to match the predictions to

the observed values, based on the assumption that matching a subset of variables at

the output will match the remaining outputs. I compared the performance of input

training with the performance of a well known optimization method, Nelder-Mead.

In empirical studies, I noticed two problems: (i) the model bias, and (ii) the

overfitting of optimization. Input training, as well as other optimization methods can

overcome the error due to the model bias. For the overfitting problem, I proposed

splitting observations into two subsets: target subset, and validation subset. Input

training can be controlled through watching error progress on the validation set, while

optimizing on the target set. I empirically showed that this approach can solve the

overfitting problem.

6.2 Future Directions

This research can be extended in a few different directions. I discuss these

directions next.

6.2.1 Integrating Reinforcement Learning with Active Inference. In the

second and third phases of this research, the goal was to find the most useful variables
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for the prediction of other variables’ values at the current time. However, one might

easily face a problem where the objective can include benefits of active inference not

only at the current time but also in the future. For such a specification, decision-

making of the current time should take into account succeeding decision-makings.

Therefore, the uncertainty of decision-makings, which can also be named actions,

and contributions following the actions, which can also be named rewards should be

considered as part of the current time decision-making. Once the active inference is

formulated this way, many reinforcement learning techniques can easily be applied,

such as temporal difference learning.

6.2.2 Active Inference For Human Contribution. Active inference for predic-

tive models of spatio-temporal domains will have a greater impact in domains where

information collection is more costly. For example, in a domain where human contri-

bution, such as crowd-sourcing, is required, the performance of active inference will

become paramount.

One such domain is social media. Some objectives related to social media

data require human effort, for example, assessing political inclination on social me-

dia. Suppose that one aims at devising regional public opinion on a certain political

topic. In the case that we have such multiple regions, and that we would like to

track the trend of public opinion through a certain period of time, it will be quite

costly concentrating human effort directly on the social media data to devise public

opinion. We may wish to use a predictive model that can exploit spatio-temporal

correlations existing between regions and also that can incorporate collected evidence

into its predictions. Thereby, we can design an active inference method that will col-

laborate with this predictive model, that will account the cost of human effort, and

the expected contribution of acquiring actual public opinion from each of the regions

with the help of human analysis, and that can finally select the most useful locations
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to concentrate the human effort on.

6.2.3 Transparent and Interactive Inference. In the previous future direction,

we discussed the potential impact of active inference in domains where human contri-

bution increases information gathering costs and introduces arguably more complex

constraints.

As a further stage, one can make use of human contribution not only in infor-

mation acquisition, such as labeling in this case, but also to make active inference more

efficient, by rendering human decision-making part of the active inference decision-

making process. The first step in this direction is providing an interface to the human

to make the decision-making of active inference more transparent. For example in

the domain of wireless sensor networks, considering that the goal is reducing the bat-

tery usage, the human can decide to focus on some specific sensors in certain time

steps after seeing that those sensors are being omitted for a long time. Therefore,

the interface should display which sensors have been chosen in the past and which

sensors are selected for the current prediction. The interface should also inform the

user about the reason behind the selection of the sensors to be accessed.

After transparency, the following step is rendering active inference interactive.

The goal here is to make the user more involved into the decision-making process

of selecting information sources for observation. In the domain of wireless sensor

networks, this translates to providing the human with an active role in the decision

of which sensors should be selected for retrieving their readings.
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FORMAL DESCRIPTION OF NELDER-MEAD OPTIMIZATION METHOD
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In a n dimensional search space, it always keeps n+ 1 instances. It iteratively

searches the optima through the search space. At each iteration, it evaluates the

current status, and then proceeds with one of the four options: (i) reflection, (ii)

expansion, (iii) contraction, and (iv) shrink. For each option, the algorithm uses a

separate parameter.

Suppose we are minimizing a function, f(·). We start off by selecting a simplex,

which is a set of n+ 1 instances from the n dimensional search space. Then we start

search loop. At each iteration of the loop, the algorithm starts with ordering initially

selected n+1 instances: f(x1) < f(x2) < · · · < f(xn+1). Then calculates the centroid,

xc of all instances except xn+1, as this instance resulted the worst value of the function

among all instances. Then we reflect xn+1 with respect to x0, and fix the point in the

space, namely point xr. It is calculated as:

xr = x0 + α(x0 − xn+1) (A.1)

where α is the step size for the reflection, and it is usually set to 1. Reflection:

Next, we compare f(xr) with the best point, x1, the second worst point, xn, and the

worst point, xn+1. If f(x1) < f(xr) < f(xn), that is, if the reflection point is worse

than the best point in the current simplex, but better than the second worst, then we

discard the worst point, xn+1 from the simplex and include the reflection point, xr.

Expansion: If this case does not hold, then we check whether f(xr) < f(x1) holds,

that is if the reflection point is better than the best point, the reflection is expanded,

that is the reflection point is dragged further away from the centroid. Then the new

point is included to the simplex and the worst point is discarded. The expansion

point, xe is calculated as following:

xe = x0 + γ(xr − x0) (A.2)
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Contraction: If that is not the case either, then f(xr) > f(xn), that is the reflection

point is worse than the second worst. We compare the reflection point, xr, with the

worst point, xn+1. If f(xr) < f(xn+1), that is the reflection point is better than

the worst point, we contract the reflection point, that is we drag the reflection point

towards the centroid.

xc = x0 + ρ(xn+1 − x0) (A.3)

Shrinking: Finally, if the reflection point is worse than the worst point of the simplex,

then we shrink the simplex towards the best point. That is, we update each point in

the simplex except the best point, following this equation:

xi = xi + σ(xi − x1) (A.4)

In these equations, α, γ, ρ, σ are update coefficients. Usually, their values are set such

that α = 1, γ = 2, ρ = 0.5, σ = 0.5
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OVERFITTING RESULTS
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Figure B.1. MSE on observed variables (blue) and MSE on unobserved variables
(MSE) over the first 15 time steps with respect to ε. Each row corresponds to a
time step, each column corresponds to a trial.
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Figure B.2. MSE on observed variables (blue) and MSE on unobserved variables
(MSE) over the second 15 time steps with respect to ε. Each row corresponds to a
time step, each column corresponds to a trial.
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Figure B.3. MSE on observed variables (blue) and MSE on unobserved variables
(MSE) over the last 14 time steps with respect to ε. Each row corresponds to a
time step, each column corresponds to a trial.
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APPENDIX C

OVERFITTING REGULARIZATION RESULTS
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Figure C.1. MSE on observed variables spared for optimization (blue), MSE on
observed variables spared for validation (green), and MSE on unobserved variables
(orange) over the second 15 time steps with respect to ε.
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Figure C.2. MSE on observed variables spared for optimization (blue), MSE on
observed variables spared for validation (green), and MSE on unobserved variables
(MSE) over the second 15 time steps with respect to ε. Each row corresponds to a
time step, each column corresponds to a trial.
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Figure C.3. MSE on observed variables spared for optimization (blue), MSE on
observed variables spared for validation (green), and MSE on unobserved variables
(MSE) over the last 14 time steps with respect to ε. Each row corresponds to a
time step, each column corresponds to a trial.
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