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Abstract

The Chicago Department of Public Health (CDPH) con-
ducts routine food inspections of over 15,000 food es-
tablishments to ensure the health and safety of their
patrons. In 2015, CDPH deployed a machine learning
model to schedule inspections of establishments based
on their likelihood to commit critical food code viola-
tions. The City of Chicago released the training data
and source code for the model, allowing anyone to ex-
amine the model. We provide the first independent anal-
ysis of the model, the data, the predictor variables, the
performance metrics, and the underlying assumptions.
We present a summary of our findings, share lessons
learned, and make recommendations to address some
of the issues our analysis unearthed.

1 Introduction
The Chicago Department of Public Health (CDPH) conducts
routine, unannounced food inspections, also called canvass
inspections, of over 15,000 retail food establishments to en-
sure their compliance with the Chicago food code. Inspec-
tions ensure the immediate safety of restaurant customers
and employees (Jones et al. 2004). Inspections are also con-
sidered an important proactive measure in preventing food-
borne illness outbreaks (Irwin et al. 1989). Furthermore, in-
spections investigate restaurant safety beyond perceptions of
cleanliness and help the public learn which restaurants ad-
here to public health regulations (Jones et al. 2004).

CDPH inspects most food establishments twice a year,
with other establishments deemed as lower risk inspected
one a year or once every other year (Schenk Jr. et al. 2015).
In addition to routine canvass inspections, CDPH also con-
ducts license inspections for newly-opened businesses, com-
plaint inspections in response to submitted concerns or sus-
pected food poisoning, and re-inspections for issues arising
from canvass inspections that require correction.

In 2015, CDPH released the results of a partnership with
the Chicago Department of Innovation and Technology and
data scientists from Civic Consulting Alliance. This joint ef-
fort led to a machine learning model to predict which restau-
rants were likely to have critical food code violations in or-
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der to catch threats to public health earlier in each inspection
cycle. The model produces risk scores for each retail food
establishment and the Director of Food Protection considers
the risk scores from the model in addition to other expert
knowledge and operational constraints and then creates in-
spection schedules for the CDPH inspectors (“sanitarians”).
The City of Chicago released the training data and source
code for the model, allowing anyone to examine the model,
propose improvements, or adopt it in another city.

CDPH used only canvass inspections in the training and
testing sets in order to avoid sources of bias from complaint
inspections. In other geographic areas, researchers found
that residents are more likely to report food-borne illness in
restaurants serving Asian cuisine than those serving Ameri-
can cuisine, potentially skewing risk measurements (Irwin et
al. 1989). Nevertheless, the purpose of the CDPH model is
to prioritize the schedule of canvass inspections rather than
changing the frequency of inspections of any specific restau-
rant or type of restaurant.

In a simulation based on the testing set, the CDPH model
found restaurants with critical violations seven days earlier,
on average, and found 69% of restaurants with critical viola-
tions in the first half of inspections (Schenk Jr. et al. 2015).

In this paper, we provide the first independent analysis of
the CDPH model and data in detail, providing further trans-
parency into the model and its decision-making process. We
investigate the feature set, the model parameters, the per-
formance metrics, and the implicit and explicit assumptions
made by the model and CDPH. In addition to presenting our
findings in detail, we discuss best practices, challenges, and
our recommendations.

The rest of the paper is organized as follows. We provide
an overview of the data and the model in Section 2. We pro-
vide our detailed analysis in Section 3. We discuss lessons
learned about how artificial intelligence is used for govern-
ment in Section 4 and then conclude.

2 Data and Model Overview

In this section, we provide an overview of the Chicago food
code, the dataset and the features, and the predictive model.
For more details, refer to (Schenk Jr. et al. 2015), describing
the methodology used by CDPH.
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2.1 Dataset
The dataset used for training and evaluating the model con-
sists of records of routine canvas inspections performed by
sanitarians and digitized by CDPH. The input to the model
is a set of features regarding the retail food establishment,
the inspection, and environmental factors. The model output
aims to predict whether or not the retail food establishment
will be cited for a critical violation during that inspection.

CDPH chose to split the data into training and test sets
as follows: 17,075 inspection records from September 2011
through April 2014 are used for training and 1,637 inspec-
tion records from September 2014 through October 2014 are
used for testing.

Additionally, CDPH publishes records of all food estab-
lishment inspections on the City of Chicago data portal
(Chicago Department of Public Health 2018a). The public
dataset does not include some of the features present in the
training and testing data, but does include data not used in
the model, such as the name of the business and the nar-
rative report by the sanitarian that details any violations is-
sued. For our analysis of the model, we retrieved records of
50,462 routine inspections and 17,088 complaint inspections
from the public dataset ranging from January 2010 to June
2018. CDPH adopted a new food code in July 2018, so we
excluded records beyond that date.

The Target Variable Until July 2018, the Chicago food
code included three levels of violations: 14 critical viola-
tions, i.e. issues that pose immediate health hazards; 15 seri-
ous violations, i.e. issues that represent potential health haz-
ards; and 16 minor violations, i.e. issues that do not pose an
immediate threat to public health (Chicago Department of
Public Health 2019). Critical violations, while relatively in-
frequent, represent immediate health hazards. Table 1 shows
a description of these critical violations and their frequencies
and rates in the public dataset.

Table 1 shows that even the most common critical viola-
tion citation occurs only in less than 10% of canvass inspec-
tions. CDPH model uses a single binary target label indicat-
ing whether or not at least one of the 14 critical violation will
be cited and does not distinguish between different kinds of
critical violations. In the model training data, 14.1% of the
17,075 instances commit at least one critical violation.

Predictor Variables The inspections are described
through 16 features. Ten of the variables contain contextual
and environmental data about the inspection, while the
remaining six variables are sanitarian cluster variables that
indicate which sanitarian group last inspected the restaurant.
These features are:

1. Past Serious Violation: Whether or not the food establish-
ment was cited for a serious violation in the last inspec-
tion.

2. Past Critical Violation: Whether or not the food establish-
ment was cited for a critical violation in the last inspec-
tion.

3. Time Since Last Inspection: The time elapsed since the es-
tablishment’s last canvass inspection, in fractional years.

4. Age at Inspection: Whether or not the food establish-
ment’s business license was more than four years old at
time of inspection.

5. Alcohol License: Whether or not the establishment has a
license for alcohol consumption on premises.

6. Tobacco License: Whether or not the food establishment
has a license to sell tobacco.

7. Daily High Temperature: The daily high temperature, in
Fahrenheit, on the day of inspection.

8. Intensity of Local Burglaries: The number of burglar-
ies near the food establishment over the last 90 days,
smoothed with kernel density estimates.

9. Intensity of Local Sanitation Complaints: The number of
sanitation complaints near the food establishment over the
last 90 days, smoothed with kernel density estimates.

10. Intensity of Local Garbage Cart Requests: The number
of requests to replace missing or damaged garbage carts
by residents near the food establishment over the last 90
days, smoothed with kernel density estimates.

11. And 6 additional features relating to the sanitarian who
performed the last inspection. We discuss these features
in detail next.

Rank Code Count Rate Summary
1 V3 4418 0.093 Food Temperature

Requirement
2 V2 2233 0.047 Food Storage Facili-

ties
3 V8 1239 0.026 Rinse Cycle Sanitiz-

ing Solution
4 V12 1012 0.021 Adequate Hand

Washing Facilities
5 V11 895 0.019 Adequate Toilet Fa-

cilities
6 V6 826 0.017 Employee Hand-

washing and Hy-
giene

7 V9 307 0.006 Connection to City
Water Supply

8 V10 233 0.005 Sewage and Waste
Water Disposal

9 V4 227 0.005 Cross Contamina-
tion Prevention

10 V1 219 0.005 Food Source,
Spoilage, Labels

11 V13 90 0.002 No Rodents, Insects,
or Animals

12 V7 52 0.001 Wash and Rinse Cy-
cle Temperature

13 V14 37 0.001 Previous Serious Vi-
olation Corrected

14 V5 8 0.000 Personnel with In-
fections Restricted

Table 1: Frequency of critical violations in canvass inspec-
tions from the public dataset (January 2010 to June 2018).



Sanitarian Features The model used by CDPH includes a
separate variable for each sanitarian. To protect the identity
of each sanitarian, CDPH grouped the sanitarians into six
clusters based on their coefficients in the full model, gave
each cluster a color name, and provided the cluster name of
the sanitarian as the predictive feature. Table 2 shows the
cluster names, the number of inspections they performed in
the training data, and their hit rates (the frequency of inspec-
tions that found a critical violation).

Cluster Inspections Hit Rate
Purple 1174 0.406
Blue 2897 0.265
Orange 3769 0.136
Green 4595 0.095
Yellow 2762 0.058
Brown 1878 0.024

Table 2: The number of inspections and the critical violation
hit rates of sanitarian clusters in the training data.

2.2 Predictive Model
CDPH uses a logistic regression model with 16 predictor
variables and the target variable as described above. Table 3
shows the coefficients of the model for each of the predic-
tive variables. A positive weight indicates an increased like-
lihood of committing a critical violation, whereas a negative
weight indicates the reverse.

Feature Coefficient
Purple Sanitarian Cluster 1.555
Blue Sanitarian Cluster 0.950
Orange Sanitarian Cluster 0.202
Green Sanitarian Cluster -0.244
Yellow Sanitarian Cluster -0.697
Brown Sanitarian Cluster -1.306
Past Serious Violation 0.302
Past Critical Violation 0.427
Time Since Last Inspection 0.097
Age at Inspection -0.164
Alcohol License 0.411
Tobacco License 0.171
Daily High Temperature 0.005
Intensity of Local Burglaries 0.002
Intensity of Local Sanitation Complaints 0.002
Intensity of Local Garbage Cart Requests -0.004

Table 3: Logistic regression coefficients for each feature in
the CDPH model.

The most influential features according to coefficient
magnitudes are the inspector clusters, specifically the pur-
ple and brown clusters. The purple cluster, the cluster that
had the highest hit rate (Table 2) has a high positive weight
and the brown cluster, the cluster that had the lowest hit rate,
has a large negative weight. We analyze this result further in
the analysis section (Section 3).

The extant public health literature discusses a number
of these predictors. For example, veteran restaurant owners
tend to have greater knowledge of their municipal food code,
supporting the negative weight for age at inspection (Davies,
Brough, and Johnstone 2014). It has also been shown that
inspection frequency supports the positive weight for time
since last inspection (Bader et al. 1978).

The environmental features, such as intensities of the lo-
cal burglaries, sanitarian complaints, and garbage cart re-
quests, have the lowest weights. These variables were not
scaled, which might partially explain why they have smaller
coefficients.

(a) Cumulative number of restaurants found with at least one criti-
cal violation over time for various simulated schedules.

(b) Histogram of reduction in days to inspect restaurants with at
least one critical violation using the CDPH model schedule.

Figure 1: Performance metrics for the food inspection fore-
casting model.



2.3 Performance Metrics
CDPH considers three metrics when evaluating simulated
canvass inspection schedules:

1. Average of reduction in days to inspect restaurants with a
critical violation.

2. Standard deviation of reduction in days to inspect restau-
rants with a critical violation.

3. Fraction of restaurants with critical violations visited in
the first half of inspections.

The test set includes 1,637 labeled instances. Figure 1a
compares various simulated schedules for inspections in the
test set based on the cumulative number of restaurants found
with critical violations over time. The series “Usual“ repre-
sents the order of inspections in real life, “Random“ repre-
sents a random ordering of restaurants, “Worst“ represents a
schedule where all restaurants with a critical violation are
inspected at the end of the schedule, “Best“ represents a
schedule where all restaurants with a critical violation are
inspected at the start of the schedule, and “City Model“ rep-
resents the restaurants scheduled in decreasing order of the
models predicted probability of committing a critical vio-
lation. In the simulated evaluation, CDPH assumes that the
same number of canvass inspections can be conducted each
day. Figure 1b shows the distribution of values for reduction
in days to inspect restaurants with at least one critical viola-
tion in the simulated schedule using the CDPH model. Note
that some restaurants with critical violations are scheduled
for a later date than their actual inspection date.

According to these simulated metrics, the CDPH model
reduces the time to find restaurants with at least one critical
violation by 7.438 days on average with a standard deviation
of 25.156 days. The first half of inspections scheduled by the
CDPH model includes 69% of restaurants with at least one
critical violation. According to these simulated metrics, the
CDPH model accelerates the discovery of critical violations.
We further analyze these results in the next section.

3 Detailed Analysis of the Model and Its
Experimental Results

We analyzed the model, its weights, and the results of 50,462
canvass inspections and 17,088 complaint inspections from
January 2010 to June 2018 and present five main findings.

Finding 1. Using sanitarian clusters as predictor variables
unfairly changes predicted risk.

The most influential model feature is the sanitarian cluster
who conducted the most recent inspection. Figure 2 shows
the hit rates in Table 2 for each cluster and each critical vi-
olation code. The purple cluster appears to have the high-
est hit rates for V2, V3, V8, and V12. The purple and blue
clusters are the only groups of sanitarians where at least one
critical violation code has a hit rate higher than 10%.

The differences in cluster hit rates imply either or both of
the following:

• Sanitarians vary in “strictness,” citing food establishments
for critical violations at different frequencies.

Figure 2: Violation code hit rates by sanitarian cluster for
each critical violation code.

• Food establishments vary in levels of compliance and un-
derlying risk across sanitarian clusters.

In other geographic areas, the extant public health lit-
erature shows support for the former claim. Research on
food inspections in the Seattle-King County of Washing-
ton concludes that sanitarians are consistent in assessing
temperature-related violations but not in their overall inspec-
tion scores or when assessing combinations of violations
(Irwin et al. 1989). A study of 167,574 restaurant inspec-
tions in Tennessee from January 1993 to April 2000 found
high variance among the inspection results of 190 sanitari-
ans who had each conducted 100 inspections or more (Jones
et al. 2004). In Massachusetts, an independent state audit of
local food protection authorities found that inspectors were
qualitatively different in their interpretations of standard vi-
olations, and that they provided inconsistent follow-up in-
structions to restaurants (DeNucci 2007)

With regard to the Chicago case, shown in Figure 2, “pur-
ple” sanitarians have the highest average hit rate (0.406).
The indicator variable for the purple cluster has a coefficient
of 1.555 in the CDPH logistic regression model, meaning
that if a food establishment was last inspected by a purple
sanitarian, the modeled odds ratio of that food establish-
ment committing a critical violation for the next inspection
is 4.735, even if the food establishment had no critical or se-
rious violations in the previous inspection. In the two-month
test set of 1,637 food establishment inspections, the model
scheduled all 99 Chicago food establishments last inspected
by purple sanitarians (6.0% of the total test set) to be visited
among the first 234 inspections (14.3% of the total test set).
Of these 99 food establishments, 43 were cited for at least
one critical violation (43.3%).

In Chicago, it may be that food establishments inspected
previously by purple sanitarians have much higher underly-
ing risk compared to food establishments last inspected by
brown sanitarians; however, this variable aggregates com-
pliant food establishments with non-compliant food estab-
lishments solely on the basis of the type of sanitarian last
inspecting them. Given that food establishments have no
control over the sanitarian inspecting them, this information
should not factor into their risk score, let alone be the deter-
mining factor.



Finding 2. The time invariance assumption may not apply
to all food establishments.

The performance metrics measured by CDPH (please see
Section 2 for details) rest on the assumption that critical vi-
olations found during the two months of the test set are time
invariant, i.e., that any food establishment cited for a viola-
tion would also have been cited for a violation had it been
inspected on another day in the test period. The time in-
variance assumption also applies to food establishments not
cited for a violation.

(a) V2 hit rates before and after 2015.

(b) V3 hit rates before and after 2015.

Figure 3: Mean monthly hit rate for critical violation codes
V2 and V3 before and after 2015.

If the time invariance assumption does not hold, evaluat-
ing the performance of food inspection forecasting models
leads to a counterfactual analysis problem: Would a food
establishment have been cited for a critical violation if it
were inspected on another day? Counterfactual problems are
prevalent in machine learning, especially in applications of
civic technology. Decisions about bail bonds require judges,
or the algorithms that assist them, to predict what a defen-

dant would do if they were released before their trial (Klein-
berg et al. 2017). Choosing which reports of child abuse to
investigate further require hotline staff, or the algorithms
that assist them, to predict what would happen to a childs
case if no action were taken (Chouldechova et al. 2018)

We found that two temperature-related critical violations,
V2 and V3, appear to be more frequent in canvass inspec-
tions during the summer months, shown in Figures 3 (a) and
(b). On this basis, we analyzed 8,783 canvass inspections of
the 51 most common chain restaurants, controlling for each
restaurants associated chain. We found that monthly average
temperature was positively associated with V2 and V3.

Finding 3. Increases in critical violation citation rates may
not be due to the model.

The purpose of using the model is to catch critical viola-
tions earlier. However, since we do not know when a food
establishment would have been inspected if the model were
not in use, we cannot determine how early a violation was
identified. Instead, we compare hit rates1 before and after
January 2015, when CDPH started using the model.

Among canvass inspections, we found that the hit rates of
critical violations V2, V3, V6, V11, and V12 increased after
2015, while the hit rate of V4 decreased after 2015.

We assume there is a relationship between canvass and
complaint inspections: if the model helps CDPH catch vio-
lations earlier, then there will be fewer complaints related to
those issues. Thus, if the model does indeed identify criti-
cal violations earlier than previously, we would expect the
following:
• Monthly hit rates of canvass inspections remain the same

or increase after 2015
• Monthly hit rates of complaint inspections remain the

same or decrease after 2015
Contrary to our expectations, and shown in Figure 4, the

hit rates of both canvass and complaint inspections increased
after 2015. We offer two alternative explanations for the
changes in critical violation hit rates:
• Food establishment openings and closings have changed

the distribution of critical violations.
• Inspectors have become stricter on certain critical viola-

tion codes due to improved training.
Based on this, it is not clear whether or not the deploy-

ment of the model has been effective in discovering viola-
tions earlier.

Finding 4. Violation hit rate is not an ideal metric for in-
spection forecasting.

Routine food inspections serve to protect employees and
patrons from health hazards and to educate food establish-
ments on how to comply with the food code. However, hit
rates do not capture improvements to food safety across the
city or in individual food establishments. In the extant liter-
ature, there is disagreement regarding whether or not com-
pliance with food inspections reduces the risk of food-borne
illness outbreaks (Irwin et al. 1989; Cruz, Katz, and Suarez

1Even though we measure hit rates here, please see Finding 4
for why hit rate might not be an ideal metric.



Figure 4: Boxplots of monthly hit rates for each critical violation code, in canvass and complaint inspections, both before and
after the model deployment in 2015.

2001; Jones et al. 2004). Increased hit rate can be interpreted
both as a success and as a failure. It is a success because the
food protection program identifies violations. However, it is
also a failure because inspections are not achieving their pri-
mary purpose: to reduce violations and protect the public.

Moreover, researchers warn that machine learning appli-
cations in government should not predict an outcome that
the agency making the prediction controls, otherwise staff
may reinforce a feedback loop (Chouldechova et al. 2018;
Ensign et al. 2018). The CDPH model does not predict
whether or not a food establishment should be inspected but
rather it is simply used to prioritize the inspections; hence,
all establishments are inspected, lowering the risk of feed-
back loops. However, even though sanitarians do not know a
food establishments predicted risk score, if a food establish-
ment appears earlier in their schedule, they may realize that
it has been prioritized and be more strict in their evaluation,
fulfilling the predicted outcome.

Finally, hit rates may not offer suitable comparisons
of public health interventions. CDPH experimented with
FINDER, a system that flags food establishments by track-
ing symptoms of food-borne illness in search and location
data from Google users in Chicago (Sadilek et al. 2018). Be-
tween November 2016 and March 2017, FINDER achieved
a hit rate of 52.3% while canvass inspections had a hit rate
of 22.7%. FINDER appears superior by this measure, but
it only led to inspections of 132 food establishments, while
there were 9,495 canvass inspections over the same period.
The CDPH model must schedule all food establishments,
so its hit rate is naturally lower. More importantly, and not
captured by these respective hit rates, FINDER is a reactive
technique, while routine inspections are proactive in terms
of addressing health-related concerns.

Finding 5. The feature set is not sufficiently rich to predict
food safety issues.

Aside from the sanitarian clusters, the model uses ten
other variables as predictors of critical violations (please see
Table 3). The extant public health literature discusses a num-
ber of these predictors. For example, tenured restaurant own-
ers tend to have greater knowledge of the food code, sup-
porting the negative weight for age at inspection (Davies,
Brough, and Johnstone 2014), and it has been shown that
inspection frequency supports the positive weight for time
since last inspection (Bader et al. 1978).

Given that hazard analysis and critical control points
(HACCP) and microbiological tests provide much more
granular information about food protection risk factors
(Bryan, Bartleson, and Christopherson 1981; Kassa et al.
2001), we recommend the inclusion of features related to
equipment, training, storage, preparation, display, and ser-
vice. Based on the violation narratives from sanitarians, we
imagine new features might capture information such as:

• Ingredients of interest used by the food establishment
(e.g., cheese, lettuce, chicken, fish)

• Whether or not the food establishment stores food in a
display before being served directly to the customer

• Time since last pest control service visit

We also identified a positive association between certain
food chains and particular violation codes. With guidance
from subject matter experts and an extensive qualitative cod-
ing process, additional features can be identified that could
explain additional differences between food chains as well
as the reasons that certain chains are more likely to be asso-
ciated with specific food code violations.



4 Discussion
We reflect on several themes from the food inspection fore-
casting project that are relevant to others who use AI in gov-
ernment.

4.1 Open Source
The City of Chicago hosts the open source food inspec-
tion model on GitHub, a web-based service for sharing
data and code, providing documentation, triaging software
bugs, tracking releases, and discussing improvements to the
project remotely. Aside from the additional benefits of devel-
oping open source software (e.g., cost-effectiveness, com-
munity support, additional security, etc.), the sharing of data
and code on GitHub enabled outside researchers such as us
to scrutinize the performance and underlying assumptions
of the model. This scrutiny is important because problems
faced in the food inspections project may represent greater
risks to other government services powered by artificial in-
telligence.

We applaud CDPH staff for these efforts, and we encour-
age other public sector and government agencies to do the
same. Even when one has the best intentions in develop-
ing and deploying AI tools (e.g., being conscious of bias
and fairness, feedback loops, counter-factual analysis, etc.),
open-sourcing the tool facilitates public scrutiny and the ad-
dressing of potential problems with the AI tool.

4.2 Pragmatic Privacy
Informing the public about which restaurants are in compli-
ance with food safety regulations is a core goal of a food
inspection program (Jones et al. 2004). Provisioning open
source models and data aligns with this purpose so that citi-
zens may know which restaurants are safe and so that retail
food establishments can understand how they are being eval-
uated.

However, canvass inspections must be unannounced and
CDPH cannot release information about even the date ranges
for inspection cycles. At the same time, CDPH anonymizes
the activities of its sanitarians, releasing data about them
only as clustered groups of individual sanitarians. The opac-
ity of these two components exemplifies the pragmatic pri-
vacy of the open source model: it allows third-party users to
study a model nearly identical to the one used in production
without being able to perfectly predict its schedule or iden-
tify precisely which sanitarians will be sent to a particular
restaurant at some point in the future.

Based on our analysis, we recommend that future work
study the time invariance assumption and differences in crit-
ical violation hit rates between sanitarians. Both topics hinge
on data that is not publicly available, but this is not neces-
sarily a roadblock. External collaborators can analyze public
data to help prioritize areas for improvement or demonstrate
approaches on simulated data so that authorized representa-
tives can implement the methodology on the private data.

4.3 Collaborating with Government
Digital tools can be convenient, but we found in-person
meetings with stakeholders crucial to successful collabora-
tion. City of Chicago employees have a strong presence at

ChiHackNight, a civic technology meetup in Chicago that
served as the initial venue for us to interact with both gov-
ernment employees and citizen contributors who had previ-
ously or currently worked on the food inspection forecast-
ing project. Collaboration in this less formal, public setting
facilitated the scheduling of our follow-up meetings with
CDPH to share findings and offer recommendations.

In-person meetings make it easier for government stake-
holders to provide non-obvious context. For example, as
shown in Finding 3, we observed increases in the monthly
average hit rates of both canvass and complaint inspections,
and we were able to suggest directly to government stake-
holders that the increase was caused by other factors, such
as the opening and closing of restaurants since 2015 or in-
creased strictness in violation citations due to improved san-
itarian training programs. CDPH team members took par-
ticular interest in Figure 4 because they do not currently
compare hit rates in that way. After taking time to ask
follow-up questions, they shared that the change in hit rates
could be explained by changes the food inspection program
made based on feedback from the state department of public
health.

4.4 Changing Policy Context
In July 2018, the City of Chicago implemented an updated
food code with changes to the violation structure and pro-
vided public guidance on the open data portal (Chicago De-
partment of Public Health 2018b). This explicit schedule for
the sunsetting of the old food code allowed us to conduct
a hindsight analysis on a static dataset. However, the policy
change also creates dynamic elements that deserve attention,
namely whether or not the current food inspection model can
be generalized to the new food code, and how governments
can evaluate the impact of policy changes on AI early on
when data is limited.

AI solutions are typically introduced into an existing pol-
icy context and are evaluated for improved performance and
maintenance of the policy goals. In the case of Chicago’s
food inspection forecasting model, however, it is the incum-
bent policy while new policies are being introduced. CDPH
could retrain the model on the results of inspections un-
der the new food code. However, given that only one year
of results is currently available and that some restaurants
are inspected only once every 1-2 years, there might not be
enough data to model past critical/serious violations or to ac-
curately represent the distribution of Chicago restaurants. In
this case, CDPH should match former violation codes with
new violation codes to allow historical inspection results to
be used as training data, with the most recent year being used
for validation.

One improvement the new food code offers is that vi-
olations will be explicitly marked as in or out of compli-
ance, which should improve consistency across sanitarians
and improve the quality of the data for machine learning
(Chicago Department of Public Health 2018b).

5 Conclusion
With a limited number of sanitarians, the Chicago Depart-
ment of Public Health (CDPH) uses the food inspection



forecasting model as a way to prioritize food establishment
inspections and catch critical food code violations earlier.
CDPH made the code, the model, and the data publicly avail-
able on GitHub, which we analyzed in this paper.

Our investigation resulted in several findings and recom-
mendations. We found that the increased hit rates by the
sanitarians might not be due to the model, that using sani-
tarian information as a predictive variable unfairly changes
the predicted risk, that the time invariance assumption might
not hold, that the hit rate is not an ideal metric for evaluat-
ing model success, and that feature set is not sufficiently rich
enough to predict violations at the establishment level.

We recommended CDPH to investigate differences in vi-
olation citations across sanitarians and stop using sanitar-
ian cluster as a predictor because it unfairly increases the
risk scores of food establishments, even if they passed their
last inspection. We further recommended that new metrics of
success, instead of hit rates, should be adopted, and creation
and use of additional features should be investigated.
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