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Abstract In temporal domains, agents need to actively gather information to make more informed decisions
about both the present and the future. When such a domain is modeled as a temporal graphical model, what
the agent observes can be incorporated into the model by setting the respective random variables as evidence.
Motivated by a tissue engineering application where the experimenter needs to decide how early a laboratory
experiment can be stopped so that its possible future outcomes can be predicted within an acceptable uncertainty,
we first present a dynamic Bayesian network (DBN) model of vascularization in engineered tissues and compare
it with both real-world experimental data and agent-based simulations. We then formulate the question of “how
early an experiment can be stopped to guarantee an acceptable uncertainty about the final expected outcome” as
an active inference problem for DBNs and empirically and analytically evaluate several search algorithms that

aim to find the ideal time to stop a tissue engineering laboratory experiment.
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1 Introduction

People lose tissue due to injuries, treatments, and illnesses. The body can heal itself when the tissue loss is minor.
When the tissue loss is severe, however, the body cannot completely heal itself on its own and a potential solution
is to replace the lost tissue by artificially engineering it by seeding cells and biomaterials [28]. The formation of
tissue needs vascularization to support cells by bringing nutrients and oxygen to them and collecting debris from
them, and a scaffold that provides structural and biochemical support to the newly formed tissue. Tissue engi-
neering is an active research area where researchers conduct in vitro (outside of a living organism) and in vivo
(within a living organism) experiments to gain an understanding of healthy tissue growth and vascularization.

A crucial component of tissue engineering is proper formation of blood vessels (vascularization) that support
life of the cells. In this article, we introduce a dynamic Bayesian network (DBN) model of vascularization in
engineered tissues. The DBN enables tissue engineering researchers to perform spatio-temporal reasoning about
tissue formation process and allows them to try various experimental settings on computer first, before trying
the most promising settings in the lab. Furthermore, DBNs enable researchers to “inject” information into the
reasoning process by providing values of some of the random variables as evidence. This is especially helpful
when the researchers analyze the lab experiment as it progresses and provide the latest status of the experiment as
evidence to the DBN, enabling more accurate predictions for future time steps. The ability to inject information
into the system is also helpful for what-if analyses such as “what if I introduce more nutrients into the tissue
right now?”

The laboratory experiments require expensive materials and they take time, usually weeks to months. There-
fore, tissue engineers would like to i) conduct only the most promising experiments to save cost and time, and ii)
stop an experiment early to save time and make predictions as to how it would continue hadn’t it been stopped.
When an in-vivo laboratory experiment is stopped to collect data, usually a lab animal is sacrificed and the tissue
is dissected for analysis; hence a stopped experiment cannot resume where it left off. Typically, many animals
are used in an experiment and each animal is sacrificed at a specific time during the course of the experiment to
analyze the status of an experiment at that particular time.

Researchers need to determine the ideal time to stop an experiment: stopping too early makes the uncertainty
in predictions about the future progress of the tissue unacceptably large whereas stopping the experiment later
than necessary costs valuable time and resources. We formulate this question as an active inference problem
[8]] for DBNs, where limited information about the statuses of a subset of the random variables can be gathered
at inference time to decrease prediction uncertainty for future time slices. The decision question is then when
is the ideal time, t* to stop an experiment and gather information to guarantee an acceptable uncertainty for
a target time slice in the future. The algorithmic question is how to compute this ideal time ¢* with minimum
computational cost possible. We tackle both questions in this article.

In collaboration with tissue engineering researchers, we developed the first prototype of our DBN model of
vascularization in [26]. In this article, we build on this prototype and we significantly expand it. Our additional
contributions in this article are:

We present an improved and more realistic DBN model of vascularization.

We provide real-world experimental results [1]] supporting the DBN predictions.
We compare our DBN model to the agent-based model of Artel et al [2].
We formulate and present results for active inference for DBNs.

We perform an analytical evaluation, providing closed-form solutions whenever possible, for the computa-
tional cost of several search algorithms applied to active inference.

The main contributions of this paper revolve around the tissue engineering application. However, the active
inference formalism we provide for DBNS in this study is general enough that it is potentially applicable to other
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real-world temporal domains. We discuss in Section [6] the necessary conditions under which the formulations
and the solutions in this article could be utilized for those domains.

The rest of the article is organized as follows: we first provide background information on tissue engineering
and active inference in Section[2] Then, we detail our DBN and active inference approach in Section 3] followed
by a discussion of our experimental findings in Section [d] Next, we analytically evaluate several search algo-
rithms for active inference in Section[5] Finally, we discuss the limitations of our work and potential applications

to other domains in Section [6] related work in Section [7}and then conclude in Section 8]

2 Background and Motivation

In this section, we provide a brief background on the tissue engineering process and active inference.

2.1 Tissue Engineering

Although the human body has a great capability to heal, sometimes the tissue loss is so severe that the body
cannot heal completely. For such cases, the missing tissue is replaced with autologous tissue or donor tissue.
These approaches are limited, and tissue engineering offers a potential alternative of growing new tissue using
cells on biomaterial scaffolds[6,30,[31]]. The process starts with a small number of cells seeded into a biomaterial
scaffold, the structure that holds the newly formed tissue together. If stem cells are used, they differentiate
into specific tissue cells and the tissue cells multiply to fill the space. At the same time, blood vessels from
surrounding tissue grow into the scaffold, carrying oxygen and nutrients to the cells and removing carbon-
dioxide and other waste from them. The scaffold that holds the tissue cells degrades over time, allowing the
cellular matrix to develop with the blood vessels to generate a fully functional tissue.

In this article, we focus on the vascularization aspect of the tissue engineering process, which is illustrated
in Figure |1} When a tissue cell is far from the service range of a blood vessel, it cannot receive the oxygen
and nutrients it needs; hence, it enters into a “distressed” phase, called hypoxia. Such a cell signals its distress
by releasing solubale chemical signals such as vascular endothelial growth factor (VEGF). VEGF diffuses into
the region and upon binding the outer layer of a blood vessel, this chemical initiates the process of sprouting
a new blood vessel. The tip of the new blood vessel sprout, called the Tip Cell, grows stochastically in the
direction of the VEGF. Stalk Cells proliferate behind the Tip Cell forming a new blood vessel as it
elongates. When two different blood vessel sprouts meet, they connect (anastomosis) and the blood circulation
starts through the newly formed blood vessel loop.

The vascularization process is both a temporal and stochastic process. Over time, the tip of the blood vessel
elongates stochastically in the direction of the VEGF gradient, searching for the distressed cell. The direction
that the blood vessels grow through is stochastic because i) the blood vessels tend to do some exploration in their
search for the distressed cell, ii) scaffold structures can sterically hinder movement of the cells up the gradient,
and iii) there are other unaccounted and unknown factors besides VEGF that affect vascularization. Because the
process is both temporal and stochastic, we model the process using a dynamic Bayesian network, which we
explain in detail in Section 3.1}

2.2 Active Inference

As was discussed in the introduction section, tissue engineering researchers conduct costly (time and material)

experiments in the lab and because experiments take a long time researchers often need to stop the experiments
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Fig. 1 Illustration of vascularization, including Tip Cell, Stalk Cell, and anastomosis. Figure courtesy of Mehdizadeh et al [33].
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early and make predictions about their future state. Once an experiment is stopped, because the tissue is dissected,
the experiment cannot resume and hence researchers need to determine the ideal time to stop an experiment so
that reliable predictions about its future states can be made. We formulate this question through active inference
for dynamic Bayesian networks.

Active inference [8]] deals with the problem of selective gathering of information for some of the variables
of a model with the objective to improve prediction for the remaining variables. The main task is to gather more
information at inference time to increase the predictive performance of the underlying model. The underlying
models tend to be graphical models or relational models where observing the values of a subset of random
variables helps with the prediction for the remaining variables. For example, Chen et al [15] manually analyze
a few short segments of a video and let the underlying model condition on the observed information to improve
prediction on the remaining segments of the video.

In this article, information on the initial settings of an experiment is provided by the tissue engineering
researchers; hence, the random variables for the initial time, ¢ = 0, are observed. Stopping an experiment at time
t and dissecting the tissue is equivalent to observing the values of the random variables at time ¢. The researchers
would like to predict the status of the experiment at a future time 7'. Hence, the active inference problem here
is how early can we stop the experiment (i.e., what is the smallest value of ¢) so that the uncertainty of our
prediction about time 7" is acceptable, i.e., less than a provided threshold?

Active inference has been discussed in the context of iterative classification algorithm [9], pairwise Markov
Random Fields [8], and Hidden Markov Models [27, [14]. Motivated by the real-world application of tissue engi-
neering, we formulate and tackle the active inference problem for dynamic Bayesian networks in this article. We
next introduce our DBN model of vascularization and then present the active inference problem more formally.

3 Modeling Approach and Problem Formulation

In this section, we first describe our DBN model for vascularization and then we discuss the active inference
formulation for DBNs.

3.1 DBN Modeling of Vascularization in Tissue Growth

In a typical tissue engineering laboratory experiment, there are many factors considered: the shape and porosity
of the scaffold, seed cells that are in various cycles of their lives, and the distribution of the VEGF that is released
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by distressed cells, etc. In this article, we focus on the following question: given a group of distressed cells that
signal their distress through VEGF, which we simply refer to as the VEGF sources (VS), and the closest host
blood vessel, how likely are the VSs to be reached by new blood vessels that sprout from the host blood vessel?

In this article, we zoom in the region that is not vascularized yet. Hence, given one or more VSs and a host
blood vessel, we model the vascularization using random variables that represent each location in a tissue grid as
Empty (E), the tip of a new blood vessel Tip Cell (TC), or the body of the blood vessel Stalk Cell (SC).
‘We manually construct the DBN structure basing it on our experimental and simulation expertise and evidence.
We experiment with numerous parameter settings allowing us to try various real and hypothetical scenarios. We

next describe the structure and the parameters for the DBN.

3.1.1 The DBN Structure

In vascularization, at each step in time, the tip of a blood vessel elongates stochastically in the direction of the
gradient of the VEGF, forming the body of the blood vessel. This corresponds to the following transition in
our DBN: a location that is TC at time ¢ becomes SC at time ¢ + 1 forming the body of the blood vessel, and
the location in the direction the blood vessel elongation becomes the new TC. Given a 2D grid of the space,
following the assumptions made in [33]], we assume that the VSs are located at north whereas the host blood
vessel is located in south, and hence the blood vessel elongates towards north-east (NE), north (N), or north-west
(NW). FigureZillustrates the tissue grid, the dependencies between the random variables, and the corresponding
2-slice DBN.

Lt L(t+1)
t (t+1)
Lyy Ly,
| ——=
L
______——::::,,,——" =
t t t t+1 t+1 t+1
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(@) (b)

Fig. 2 a) The tissue grid. The status of a location at time ¢ + 1 depends on the previous time ¢ statuses of itself and its neighbors at its
south-west, south, and south-east. b) The corresponding 2-slice DBN.

In this DBN, the status of a location at time ¢ + 1, Ltt!, depends on the statuses of itself, L, , and the

Ty xy°
neighbors at its south-west (SW), Lfm_l)(y_l), south (S), Lfc(y_l), and south-east (SE), LEI+1)(y—1)’ at previous

time ¢. We simply refer to these neighbors generically as L%, L% and L% ;. We next describe the parameter
settings, i.e., the conditional probability densities (CPDs), for this DBN.

3.1.2 The DBN Parameters

The typical vascularization process is as follows: a Tip Cell elongates stochastically in the direction of the
VEGF source, VS, occupying an Empty location and forming the body of the blood vessel (Stalk Cell)
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during the process. Upon touched by VEGEF, the body of the blood vessel might sprout a new blood vessel, i.e.,
aStalk Cell mightturnintoa Tip Cell. Hence, if a location is

— aTip Cell attime t, it elongates at time ¢ + 1 to an Empty location at one of its NW, N, or NE location,
and leaves a Stalk Cell behind.

— aStalk Cell attime ¢, it either remains a Stalk Cell orturnstoanew Tip Cell to sprout a new
blood vessel at time t + 1.

— Empty at time ¢, whether it remains Empty or gets occupied by Tip Cell at time ¢ 4+ 1 depends on
whether there was a Tip Cell that can elongate to this location from at least one of its SW, S, and SE
locations at time ¢.

Lt
TC Ssc E
TC SsC E Noisy-OR with
e |1=2¢] € parameters
AO! ASW' AS! ASE
TC SC E

4 1—-y—e€ €

Fig. 3 The tree CPD representation for P(L+V|Lt, LY o Lt LY ).

These transitions are best represented through a tree-CPD, which is shown in Figure[3] In this representation,
we present the parameters in the order of (TC, SC, E). More formally, the probability of L(**!) being TC, SC or
E, given L) = TC is:

- P(LMHY =TC|Lt = TC, LYy, LY, Ly p) = P(LUHY) = TC|Lt = TC) = ¢
- P(L<f+1) = SC|L! = TC, LYy, LY, Ly ) = P(LUHY) = SC|Lt = TC) = 1 — 2¢
P(LUHY = E|Lt = TC, Ly, LY, LY ) = P(LUFY) =E|L' = TC) = ¢

That is, a TC at time ¢ is most likely turn into a SC at time ¢ 4 1. Likewise, the probability of L(**+1) being TC,
SCor E, given L) = sC is:

- P(LUHY = TC|L! = sC, LYy, LY, Ly ) = P(LUHY) = TC|L! = SC) = v
- P(LMHY =sc|Lt = SC, LYy, LYy, Ly ) = P(L4HY) =SC|Lt =sC)=1—v —¢
- P(L™Y = E|L* = SC, LYy, LY, L) = P(LUHY =E|L! =5C) = ¢

That is, a SC at time ¢ can become active with probability -y at time £+ 1, can stay as SC with probability 1 —y—e,
or can become E with a noise parameter of e.

Finally, probabilities of L(*+1) being TC, SC or E, given L(*) = SC are computed with a noisy-OR function,
and values are given in the compact form (TC, SC, E) Probabilities of L(**1) given L®) = E:

- P(LUHD|LY = E, LYy, L, LY ) = noisy-OR(Lky,, Ly, L )
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Whether an E location at time ¢ gets occupied with the tip of a blood vessel (TC) at time ¢ + 1 is modeled as
a noisy-OR of its parents located at its SW, S, and SE neighbors: P(L(**Y) = TC|L! = E, L%,,,, L%, LL,) is a
noisy-OR of LYy, L%, L% ., with parameters Ao, Asw, As and Agg. Ao is a leak parameter, and Ay, Ag and
As g represent the possibility that a TC in the SW, S, or SE will elongate to this location.

Noisy-OR is probabilistic generalization of logical OR, where an effect can be caused by the presence of one
or several of its causes [24]. For example, fever can be caused by several diseases, such as cold, flu, infection,
etc. Moreover, the effect can occur without any explanation as well, which is called the leak. Typically, the
probability of false is computed, where none of the causes are present and probability of true is simply calculated
by subtracting it from 1. That is, P(Ef fect = false) = (1 — Xo) [[(1 — \;)¢, where C; are boolean variables
representing whether cause 7 is present and )\; is the probability that cause 7 can cause the effect independently,
and )\ is the probability that the effect can happen without any accounted factors, i.e., the leak parameter. This
Noisy-OR approach fits our case because the probability that an empty location at time ¢ is occupied with a TC
is a noisy-OR of any one of its S, SE, and SW TC neighbors elongating to this location.

In our model, the magnitude of Agy/, Ag and Agg are determined by i) how far the VEGF can travel before
it completely dissipates and ii) the magnitude of the VEGF gradient. If the VEGF cannot reach a TC, then TC
follows a path uniformly at random, exploring its surroundings. If TC is reached by VEGEF, then the closer the
TC to the source of VEGF , VS, the higher the VEGF gradient, and hence the A values become more skewed
towards the VS. The further away from the VS, the more uniform the A values get.

More formally, let d, be the distance of location L, to VS and let dy represent the maximum distance
that the VEGF can travel before it dissipates (or becomes negligible). If d,, > dy, then because VEGF cannot

reach L, the tip cell at L, has no clue as to whether it should grow towards NW, N, or NE, and hence it has

TY>s
equal probability in either direction: A(z_1)(y+1) = A@)(y+1) = Nat+1)(y+1) = % If dyy < dy, then the A

values become skewed towards VS. Without loss of generality, assume that the VS is located at NE with respect

to xy. Then Az _1)(y+1) = A@)(y+1) = %, Aa+1)(y+1) = % +(1- Zij’), and hence the TC has a higher

probability moving NE.

It is important to note that the A formalism discussed above is only an approximation to the reality. The
VEGF gradient is one of many factors that affect the direction of the blood vessel growth. Hence, the proba-
bilistic framework allows researchers to “sweep the unaccounted and uncontrolled factors under the probability
rug.” Additionally, how far the VEGF travels depends on a number of factors including the scaffold porosity.
Therefore, we do not set dy parameter to a fixed value; rather, we experiment with various hypothetical values
to see how it effects vascularization.

3.2 Active Inference for DBNs
3.2.1 Motivation and Objective Function

In this section, we formalize the question of “given an uncertainty threshold of o, how early can a tissue engi-
neering experiment be stopped so that the prediction uncertainty over the tissue grid for a target time slice T is
below o?7” More formally, we need to find ¢* such that:

t* = argmin UNC (P (£T|l0, ") <o
t<T
where UNC' (P (LT|I°,1")) is the prediction uncertainty over the target time slice 7', o is the maximum uncer-
tainty acceptable to the researcher, I? is the observation (i.e., the values of all the random variables L;y at time

t) we would get once we stop the lab experiment and dissect the tissue, and £ is the set of all locations at time
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T. Of course, we do not know what the status of the experiment would be at time ¢ unless we actually stop the
experiment. Therefore, a standard technique is to take an expectation over all possible outcomes '

t* = argmin » P (L' =1'I°) UNC (P (£"]I°,1"')) < o
t<T
A challenge here is, however, that if the number of all locations at time ¢ is 1, then [ ranges over 3™ possible
assignments (each location can be TC, SC, or E), which makes taking the expectation clearly intractable. There
are two viable approximations that are common in the literature. One is to sample potential assignment values
using the probability distribution P (£![I°) and take the mean of UNC (P (LT|I%1")). A second approach
is to use I* where P (£'[I°) is maximum (i.e., the MAP assignment). Note that finding I* where P (L*[1%) is
maximum does not necessarily require us to enumerate all possible [ values, when 1) each location at time ¢
is independent of other locations at the same time ¢ given their parents, and ii) there are no future, ¢’ > ¢,

observations. Both assumptions hold for our DBN structure.

3.2.2 Uncertainty Definition

There are a number of possible approaches for defining uncertainty over the target time slice, UNC (P (LT 19,1 1t) ) .
One typical approach is to use entropy. However, entropy cannot capture correctly the cases that are misclassi-
fied with high certainty. For example, a model that predicts all locations as empty with high uncertainty would
have low entropy but high error. In our domain, the researchers are interested in predicting the path that a new
sprout from the host blood vessel follows and hence we formulate uncertainty as the conditional error of the
most probable blood vessel path that originates from the host blood vessel.

More formally, let p = (p1, p2, ..., P|patn|) be a path of length [path| that represents a connected sequence of
locations representing a blood vessel, whose tip p|pq¢p| is @ TC and whose body (p1, p2, ...,p|path_1‘> are SCs.

Then, the conditional error over this path p being a blood vessel is:

|path|—1

UNC@|', 1% = | Y (1-P(p; =sc|i*, 1)

=1
+ (1 - P(p\path\ = TC|lt, lo))

The uncertainty over the target time locations £ is then defined as the conditional error of the most probable
blood vessel path at time 7"

UNC (P (LT1°,1") = mi£n UNC(p|lt,1%) (1)
peLT

3.2.3 Search

To find the optimal ¢t* to stop a laboratory experiment so that uncertainty for target time 7" is below threshold
o, we need to search for the 0 < ¢ < T for which UNC (P (LT|I°,1")) < o < UNC (P (LT[1°,1'71)).
However, such a search can be computationally expensive. For each ¢ value we try, we need to:

— Step I: Find the most-likely assignment /! for L!, i.e., find argmax P(L! = [!|I"). Given the Bayesian
lt

network structure, this requires us to run inference from only from ¢ = 0 up to ¢’ = ¢; any variables for
t' > t are irrelevant. Moreover, given two times t; < t», the computations done for argmax P(L% = ['119)
It

can be reused for computing argmax P (L2 = [2|[%). For example, if an approximate inference technique
it2
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such as sampling is used for inference, the counts can be stored and reused for all 0 < ¢ < T'. If variable
elimination is used, respecting the temporal order of the variables, the computations for eliminating variables
need not to be repeated. Therefore, this step can be done once for the whole search process.

— Step 2: Compute UNC' (P (LT|1°,1%)), which requires us to run inference with {* as observed, find the most-
probable blood vessel path of length 7" at time 7", and compute conditional error for this blood vessel path.
Unfortunately, for this phase, computations needed for P (£T|lo, lt) cannot be shared between different ¢
values, and hence, this step needs to be repeated for every ¢ value the search algorithm tries.

In this active inference setting, the observations are always for past time slices; i.e., we need to compute
P (£t|lo) where t > 0 and P (£T|ZO, lt) where ¢t < T'. We assume that once the laboratory experiment is
stopped at time ¢ and the tissue is dissected, all locations at time ¢ can be observed by the experimenter. Hence,
forward sampling can be conveniently utilized for both probability computations. Then, the inference cost for
computing P(L|It) is
IC(H[t)y=mx (' —t) x s

where m is the number of locations on each time slice and s is the number of samples per location. The inference
cost for Step 1 is independent of ¢ and it is /C'(T|0) because sampling is done once for all time slices and the
computations are shared between different time slices. The inference cost for Step 2 depends on ¢ and it is
IC(T|t). Hence, a search algorithm that tries multiple time steps will incur the first cost /C(T'|0) once and it
will incur the second cost IC(T'|t) for each ¢ tried. More formally, the aggregated inference cost for a search

algorithm to find the optimal ¢* is:
ASC(t*|search) = IC(T|t =0)+ Y IC(T}t) )
tEsearch
Assuming the uncertainty over the target time slice decreases as the evidence is gathered later in time (i.e.,

the later the experiment is stopped, the more reliable the predictions about the target time slice get), viable search

algorithms are:

Forward search (ForS), starting with ¢ = 1 and ending when the uncertainty goes below o,

Backward search (BackS), starting with t = 7" — 1 and ending when the uncertainty goes above o,

Binary search (BinS), starting with the end points, and halving the space at each iteration, and

Line search (LineS), iteratively fitting a line to the uncertainties of the latest known (computed) time points

and trying to pinpoint the optimal time ¢* accordingly.

We compare these search algorithms in terms of their aggregated inference costs (Equation |2)) both empiri-
cally and analytically in the rest of the article.

4 Empirical Evaluation

In this section, we present inference results of our DBN model on various real and hypothetical settings that are
obtained by varying the location of the VEGF source, VS, the number and locations of initial sprouts as Tip
Cells (TCs), and the maximum distance the VEGF can travel, dy .

4.1 Experimental Setup

Given an initial setup specified by the experimenter, which is specified as the values of all the random variables
at time t = 0, i.e., the locations that are TC, SC, and E at ¢ = 0, given the initial location of the distressed
cell VS, and the maximum distance that the VEGF can travel, dy/, we compute the probability distribution of
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(TC, SC, E) for each location for each time slice 0 < ¢ < T'. We present detailed results for 5 x 5 and 9 x 9 grids
for illustrative purposes first. Then we present active inference results using a much larger 51 x 51 grid, which
is more realistic. Note that these grids are relatively small compared to the full tissue space, because each grid
does not represent the full tissue space but rather represents a zoomed region of a single VS, because the task is
to figure out the likelihood of this single VS being reached by a blood vessel.

The grid is drawn in such a way that the VS is at the top/north of the grid (y = Y — 1) and the blood vessel
sprout(s) (TC) are located at the bottom/south of the grid (y = 0). We experimented with various conditions
where the VS is located in the middle versus in the corners, the TC is in the middle or the corners, and there is
only one or more TCs in the grid. We also varied how far the VEGF can travel (dy ). We chose three representative
cases where the VEGF can travel short, medium, and long (in comparison to the grid height) distances dy = Y/4,
dy =Y, and dy = 4Y. In all of our experiments, the likelihood of a SC becoming TC again () and the noise

parameter (¢) are both set to a very small number, 1075,

4.2 Prediction Results

Figure 4| shows the probability of each location being occupied by a blood vessel cell (i.e., P(L! = TC|I®) +
P(L' = sC|i%) for t = 0,1,2,3,4 for a5 x 5 grid. The case where VEGF can travel only a short distance,
dy = Y/4, is shown at the top and the case where VEGF can travel a long distance, dy = 4Y’, is shown at the
bottom. For both cases one VS is located at the middle north location and one TC is located in the middle south.

1° P(L19) P(L2[1°) P(L31°) P(L*|1°)
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 14 .16 16 .13
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 12 .19 23 .19 .15 12 19 23 19 .15
Y/4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 A1 0021 31 .21 .12 A1 .21 31 .21 .12 A1 021 31 .21 .12
.00 .00 .00 .00 .00 .00 31 .34 35 .00 .00 31 .34 35 .00 .00 .31 34 35 .00 .00 31 34 35 .00
.00 .00/1.00 .00 .00 .00 .00/1.00 .00 .00 .00 .00/1.00 .00 .00 .00 .00/1.00 .00 .00 .00 .00/ 2.00f .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 E .01 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02) .78 .03 .00 .00 .02 .78 .03 .00
4Y .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .04 .83 .04 .00 .00 .04/ 83 .04 .00 .00 .04 .83 .04 .00
.00 .00 .00 .00 .00 .00 .05| .87 .06 .00 .00 .05| .87 .06 .00 .00 .05/ .87 .06 .00 .00 .05 .87 .06 .00
.00 .00/1.00 .00 .00 .00 .00/1.00 .00 .00 .00 .00/1.00 .00 .00 .00 .00/1.00 .00 .00 .00 .00/ 2.00f .00 .00

Fig. 4 Cell probabilities (the sum of TC and SC) for the 5 X 5 grid at all time slices for dy = Y/4 and dy = 4Y".

Note that A parameters denote the likelihood of TC elongating in one of NW, N, or NE directions and the
values of these parameters depend whether the TC is reached by VEGF and if so, how close the TC is to the
VS, the source of the VEGF. For dy = Y/4, any location that is further away from the VS as much as Y/4 or
more has uniform A values and hence the blood vessel has equal likelihood of growing in all three directions,
resulting in uniform probabilities (the top of Figure ). For dy, = 4Y’, all locations are in the VEGF diffusion
range, causing the X\ values to be more skewed in the gradient of the VEGF. In this case, we see that the TC
simply follows the gradient to reach the distressed cell. For dyy = Y/4, the probability that the TC reaches the
distressed cell is only 0.18 whereas for dy, = 4Y, the probability is much higher: 0.76.

We next present results of different placings of VS and TC on a 9 x 9 grid (we present only the dy = 4Y
case as the dy = Y/4 case simply results in uniform probabilities). The top of Figure |5|shows a setting where
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the VS is on the north-west corner and a single TC is on the south-east corner. The bottom of the same figure
shows the results for the case of one VS in the middle north, one TC in the south-east corner and another TC in
the south-west corner.

Comparing to the 5 x 5, the 9 x 9 grid is larger in both dimensions and furthermore, on top the top figure,
the VS and TC are placed on the opposite ends of a diagonal. This setting doubles the distance between VS and
TC comparing with the previous case and hence the likelihood of VS being reached by a blood vessel is much
smaller, 0.37 versus 0.76. At the bottom, however, the chance of VS being reached by a blood vessel is much
higher than the case on top since there are two initial TCs and VS is not as further away. These results illustrate the
obvious: that as the VEGF travels longer distances, the chance of a blood vessel finding the VS increases. When
multiple initial sprouts are involved, the chance rises even more. What is perhaps more important, however, is

that the DBN model associates a probability with these scenarios that can be acted upon by the tissue engineering

researchers.
1° P(L310) P(Lo10) P(LE10)
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 7 09 05 03 .01 01 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 7 08 05 02 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 39 20 .18 .08 .04 .01 .00 .00 00 39 20 .18 .08 .04 .01 .00
1 VS .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 00 00 43 20 .17 07 .03 .01 .00 00 00 43 20 .17 07 .03 01
1 Ac .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 00 .00 00 48 21 .1 .06 .03 .00 00 .00 00 48 21 .16 .06 .03
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 00 .00 .00 56 .23 .14 .05 00 00 .00 00 00 56 23 .14 .05 .00 00 00 .00 00 56 23 .14 05
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .65 .23 1n 00 .00 .00 00 00 00 65 23 .1 .00 00 00 00 00 00 65 23 .1
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 .00 .00 .00 .00 .00 .79 .21 .00 00 00 .00 00 .00 00 .79 .21 .00 .00 00 .00 00 00 00 .79 21
.00 .00 .00 .00 .00 .00 .00 .00/ 100 .00 .00 .00 .00 .00 .00 .00 .00 100 00 .00 .00 .00 .00 .00 .00 .00 100 .00 .00 .00 .00 .00 .00 .00 .00 100
.00 .00 .00 OD .00 .00 .00 .00 .00 .00 .00 .00 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 .01 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03/ 80 .04 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 .02 .09 82 .06 .02 .01 .00 .00 .00 .02 .09 82 .06 .02 .01 .00
1 VS .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 02 05 .17 82 .16 .04 .02 .00 .00 .02 .05 17 82 .16 .04 .02 .00
ZAC'S .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 01 04 24 19 81 20 .14 03 .01 01 04 24 19 81 20 .14 03 .01
.00 .00 .00 .00 .00 .00 .00 .00 .00 03 12 19 64 00 62 20 .13 .02 03 12 19 64 00 62 20 .13 .02 .03 2 19 64 00 62 20 .13 .02
.00 .00 .00 .00 .00 .00 .00 .00 .00 08 .18 .73 00 .00 00 .71 .19 .09 08 .18 .73 00 00 00 71 .19 .09 .08 18 73 00 00 00 71 .19 .09
.00 .00 .00 .00 .00 .00 .00 .00 .00 .6 85 .00 .00 .00 .00 .00 83 .17 6 85 00 .00 .00 .00 .00 83 .17 16 85 00 .00 .00 .00 .00 83 .17
100 00 .00 .00 .00 .00 .00 .00 100 100 00 00 .00 .00 .00 .00 .00 100 100 00 .00 00 .00 .00 .00 .00 100 100 .00 .00 .00 .00 .00 .00 .00[100

Fig. 5 Cell probabilities for the 9 x 9 grid at 4 selected time slices for maximum travel distance = 4Y".

4.3 Discussion

Evaluating mathematical models of tissue engineering is fairly challenging for several reasons: there are many
uncontrolled and unaccounted factors that mathematical models simply do not take into account. Therefore,
the process looks just too stochastic from the modeling perspective, and comparison by a set of controlled
experiments is not straightforward. Therefore, rather than evaluating precision of locations of the blood vessels,
general characteristics are evaluated, such as how much branching occurs, the mean and the maximum blood

vessel invasion depth, blood vessel length density, etc.

4.3.1 Laboratory Experiments

We next present laboratory experimental results where we focus on the invasion depth, i.e., the depth of vascular-
ized tissue growth into the environment. An experimental study was previously performed using porous polymer

scaffolds containing gradients of growth factors in vivo [[1]. More detail on the experimental conditions can be
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found in [1]]. Briefly, gradient scaffolds with varying growth factor doses (0, 2, 20 and 200 ng) of PDGF-BB
(a growth factor, of which VEGF is a subfamily) were investigated on a rodent model and vascularization was
evaluated at 1, 3, and 6 weeks post implantation. Harvested samples were stained, i.e., the tissue was colored
with dyes (in this case with hematoxylin and eosin (H&E)) to enhance visibility and contrast in the microscopic
imaging. H&E stain cell nuclei and the tissue structure purple and pink, respectively. The dataset corresponding
to this experiment will soon be available athttp://share.iit.edu/.

Stained samples were imaged to quantify tissue invasion depth using an Axiovert 200 inverted microscope
(1.10 pym/pixel). The depth of tissue invasion was measured as the straight-line distance from the underlying
host tissue to the deepest location where tissue could be seen within the scaffolds. For these experiments, five
animals were sacrificed at each time point (1 week, 3 weeks, and 6 weeks). Each animal received four implants
each one corresponding to a different growth factor concentration (0, 2, 20, and 200ng). This procedure resulted
in five samples per growth factor concentration per time point. We took measurements from three different
locations (right, middle, and left) within each sample. Therefore, we have 5 x 3 = 15 measurements for each
condition (dose & time). In each measurement, we calculated tissue invasion depth statistics for various threshold
ranges (Table[I)). Statistics were calculated by dividing the number of times tissue invasion reaches an identified
threshold to the total number of measurements of the condition.

Table 1 Statistics of tissue invasion depth.

0 ng <1000 pm 1000 ym 1250 ym 1500 pm  >1750 pm
Week 1 1 0.2 0.13 0.07 0
Week 3 1 0.53 0.13 0 0
Week 6 1 0.73 0 0 0

2 ng <1000 pm 1000 pm 1250 ym 1500 pm  >1750 pm
Week 1 1 0.53 0.33 0.2 0.07
Week 3 1 0.8 0.73 0.53 0.27
Week 6 1 0.67 0.27 0.07 0

20 ng <1000 pm 1000 pm 1250 pm 1500 pm >1750 pm
Week 1 1 0.73 0.4 0 0
Week 3 1 0.93 0.67 0.4 0.2
Week 6 1 0.87 0.73 0.27 0.2
200ng <1000pm 1000 pm 1250 ym 1500 pm  >1750 pm
Week 1 1 0.93 0.8 0.47 0.2
Week 3 1 1 0.87 0.67 0.6
Week 6 1 1 1 0.4 0.33

Blood vessels within the scaffold were labeled using a fluorescent dye (Alexa Fluor 647-isolectin) and im-
aged using confocal microscopy. Representative images of blood vessels within gradient scaffolds (20 ng PDGF-
BB) for weeks 1, 3 and 6 are shown in Figure@

As these results in Table [I] illustrate, the higher the growth factor dose (the lower rows), the higher the
likelihood of deeper invasion of the tissue (the columns on the right). For example, at week 6, the ratios of
samples where an invasion depth of 1250 um was reached are 0%, 27%, 73%, and 100% corresponding to O ng,
2 ng, 20 ng, and 200 ng doses of growth factor. Note that in some cases, the invasion depth decreases between 3
and 6 weeks due to regression and pruning, i.e., cell death.

We cannot directly compare these numbers (Table [I) with the numbers in Figure 4] because our model
focuses on specific regions whereas these experimental results show aggregate information. However, these data
support the claim that our DBN model captures the phenomenon that the higher the growth factor concentration
is (Figure ] bottom figure), the higher the likelihood of reaching distressed cells.


http://share.iit.edu/
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Fig. 6 Blood vessel invasion within gradient scaffolds at (A) week 1, (B) week 3, and (C) week 6. All images are for the 20 ng PDGF-BB
case. Red shows isolectin labeled blood vessels and green is autofluorescence of the tissue. The large black areas are the scaffold structure.
Scale bars are 100 um.

Note that the end result of the DBN model of vascularization is not to predict the positive correlation between
the amount of growth factor concentration and the likelihood of reaching distressed cells. The similarity of the
results obtained in the laboratory (Table|l) and the results obtained through the DBN model (Figure /) simply
validates that the DBN model is indeed able to represent the actual phenomenon observed in the lab and hence
the DBN model can be used for various probabilistic queries, such as i) given an initial condition (various
placements of distressed cells, host blood vessel, VEGF concentration, etc.), what is the probability that the
distressed cells will be reached? ii) given an initial setting, what will be the uncertainty about the condition of
the tissue at a target time 7'?, and iii) given an uncertainty threshold for the target time 7', how early can we
stop the wet lab experiments?, and so on. We next compare the DBN results with the results obtained through a
validated agent-based model of vascularization.

4.3.2 Agent-Based Models

A direct comparison of our DBN model with the laboratory experiments is challenging, as was explained above.
However, there are other mathematical models of tissue engineering applications where one-to-one evaluation is
more straightforward. One such mathematical modeling approach is agent-based modeling. For example, Artel
et al [2]] developed an agent-based model to investigate blood vessel formation in biomaterial scaffolds, and
the model was improved progressively through constant revision and incorporating new experimental findings
(2,132,133} 149].

The agent-based models have many advantages over dynamic Bayesian networks. Different cell types such
as stem cells, tissue cells, and the cells forming blood vessels can be represented through different agents with
specific rules governing their behavior. This allows the modeler to impart domain knowledge easily into the
system. For example, a cell going through its life cycle can exist in different states and perform actions such as
migration, proliferation, or differentiation. The cell state such as being hypoxic or not can be determined by the
presence (or lack thereof) of nearby blood vessels that are also represented by agents that have their own rule
set.

A big challenge in using agent-based models is the need for many simulations to observe the average behav-
ior of the system. In order to observe the average behavior, the researcher repeats the same simulation multiple
times, starting with the same initial conditions but varying the random seed. The number of trials is often decided
on an ad-hoc manner. Graphical models have the obvious advantage over such simulations in observing average

behavior because that is what the probabilistic graphical models are obviously designed for. Further, and more
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importantly, graphical models allow for “what if”” analysis more effectively by enabling one to provide hypothet-
ical evidence values for future time slices and then one can reason both backward and forward in time. Starting
an agent-based model in future and running it backwards, however, is almost impossible, unless one designs a
complete set of new rules that takes agents back in time.

We next provide a comparison of DBN inference results to average behavior of the agent based model of
Artel et al [2]]. The average behavior of the agent-based model is obtained by running multiple simulations (200
in this case) and averaging the observed results. In Figure [7, on the left, we present cell probabilities at 5
time tick at each location after 200 runs of the agent-based model simulation and in the middle we present cell
probabilities at 5 time slice of the DBN model. These results show that both models result in the same average
behavior. We computed Jensen-Shannon divergence between the results of these two models and present it as a
table on the right of Figure[/| As these results show, the differences between the two models are very small, and

the differences stem from the approximation errors of the average behavior from multiple simulations.

Cell probabilities based on simulation Cell probabilities based on DBN Jensen-Shannon Divergence
14 20 21 14 .16 14 .16 18 16 13 3.80E-05 | 1.52E-03 | 1.03E-03 | 5.66E-04 | 9.23E-04
15 18 22 27 11 12 19 23 19 15 1.39E-03 | 1.20E-04 | 2.35E-04 | 5.79E-03 | 3.30E-03
14 19 34 24 .10 11 21 31 21 12 1.49E-03 | 7.12E-04 | 5.16E-04 | 9.31E-04 |7.38E-04
.00 34 31 36 .00 .00 31 34 35 .00 0 |5.16E-04 | 7.40E-04 | 1.98E-05 0
.00 .00 1.00 .00 .00 .00 .00 1.00 .00 .00 0 0 0 0 0

Fig. 7 The comparison of cell probabilities obtained from 200 runs of simulation with our DBN model.

In addition to matching the results of the agent-based model, the DBN allows for more complicated queries
that the agent-based models cannot readily handle. For example, we can observe the behavior of the underlying
vascularization laboratory experiment at time ¢ and enter the observations as evidence into the DBN model. Fur-
ther, this ability to enter the state of the experiment as evidence into DBN allows us to perform active inference,

which we discuss next in the following section.

4.4 Active Inference Results

In this section, we provide empirical results for investigating the question of “given an acceptable uncertainty
threshold of o, how early can a tissue engineering experiment be stopped so that the prediction uncertainty for
a target time T is below o7’ We first present results exploring how uncertainty, as defined in Equation |1} is
affected by dy and how it varies by ¢. Then, we compare the computation cost of various search algorithms that

search for the optimal time to stop an experiment.

4.4.1 The Uncertainty Distribution

In this experiment, we computed uncertainty as defined in Equation|lfon a 51 x 51 grid. We placed one VS in
the middle north and one TC in the middle south. We experimented with dy = Y/4,dy =Y, and dy = 4Y to
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observe the relation between dy and uncertainty. Figure 8| shows the uncertainty in the y axis, assuming the lab

experiment is stopped at time ¢ (the x axis).

Uncertainties on different VEGF Travel Distances

Uncertainty
o o o o
N H ()] [ee] =

o

0 10 20 30 40 50

The time the lab experiment is stopped
—o—Y/4 Y —m—ay

Fig. 8 Uncertainty at time slice 7" for each time slice candidate of observation, using various dy- values.

As expected, as we stop the tissue engineering experiment at later time slices, the uncertainty for the target
time goes down. Additionally, the longer the VEGF can travel, the more skewed the A values become and hence
the blood vessel path becomes more predictable, i.e., less uncertain.

Next, we tackle the question of finding the optimal ¢*, the earliest time ¢ that guarantees a prediction uncer-
tainty below the threshold of ¢. This question can be easily answered if we compute the expected uncertainty
for each candidate time ¢, like we did in Figure [§] However, computing uncertainty for a candidate time ¢ is
computationally expensive, as was discussed and formulated in the approach section. Next, we compare various

search algorithms on how they fare in minimizing this computational cost.

4.4.2 Uncertainty Search

We compared the search methods we described in the approach section: forward search (ForS), backward search
(BacksS), binary search (BinS), and line search (LineS) in terms of the amount of computation (EquationE[)
they would require to find ¢*. We tested how the search algorithms would compare if the ideal time ¢t* was ¢t = 1,
t =2,..,t=T-— 1. We experimented with both dy = Y/4 and dyy = 4Y cases, but we show only the
dy = Y/4 case, as the other case is similar.

Figure 0] shows the aggregated computation cost of each search method. The x axis represents the hypothet-
ical ideal time to stop an experiment and the y axis shows the aggregated search cost a search algorithm would
incur to find that ideal time. As expected, ForS incurs more cost and Backs$ incurs less cost as we move t*
to later time slices, and BinS outperforms both ForS and BackS. LineS performs the best because it fits a
function to the so-far-computed uncertainty values and tries to pinpoint t* using this function. We also see that
LinesS outperforms BinsS for each ¢*.

5 Analytical Evaluation

In this section, we provide closed-form solutions to the aggregated search costs (Equation [2)) for the search
algorithms ForS, BacksS, BinS, and LineS. We make the reasonable assumption that uncertainty decreases
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Comparison of search algorithms
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Fig. 9 Aggregated computation cost for each search method when dy = Y/4.

as we provide evidence for later time slices. That is, UNC (P (LT|I°,1*F1)) < UNC (P (LT|1°1)) for
0 < t < T. This assumption is verified to hold for our domain as was shown in Figure[9]

In the active inference problem, we are searching for t* where ¢* = argmin, ., UNC (P (£"|I°,1*)) < 0.

ForStriest = 1,2,--- ,T—1 in increasing order till it finds the first ¢ that satisfies the uncertainty requirement.
Therefore, ForS will tryt = 1,2, --- ,t*. BackStriest =T — 1,7 — 2,--- | 1 in decreasing order till it finds
the first ¢ that violates the uncertainty requirement. That is, BackS willtry t =T — 1,T — 2,--- ,t*,t* — 1.

BinsS will perform search by halving the search space at each iteration. That is, it will first try ¢ = T'/2 and
depending on the uncertainty at this time, it will try either ¢t = T'/4 or t = 37T'/4, and so on, till it tries ¢* and
either one of t* — 1 or t* + 1. LineS tries t = T" — 1 first and then fits a line to the uncertainty at time ¢t = 0,
which is given, and tries to pinpoint the exact uncertainty threshold. If the pinpoint uncertainty is larger than the
threshold, it fits a new line between the pinpoint and ¢ = T' — 1, otherwise between the pinpoint and ¢ = 0. It

iterates narrowing the search interval down until o is clamped between two latest pinpoints.

5.1 Forward Search

The aggregated search cost for Fors, ASC(t*|ForS) is:

ASC(t*|Fors) =IC(T|t=0)+ICTt=1)+ ..+ IC(T|t =t")
=mxsx[(T—-0+(T-1)+..+ (T —1t")]
t(t*+ 1
:mxsx[(t*—i—l)xT—%]
t*
:mxsx(t*—kl)(T—E)
Note that 0 < ¢* < T and hence each of the terms (7" — 0), (7" — 1),..., (T — t*) in the second line of
this equation are positive and the number of terms grows in ¢*. Therefore, the ASC for ForsS grows as the ideal
time to stop the experiment is closer to the target time 7" as expected and as has also been empirically validated

and shown in Figure[9]
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5.2 Backward Search

Similarly, the aggregated search cost of Backs is:

ASC(t*[Backs) = IC(T|t = 0) + IC(T|T — 1) + IC(T|T — 2) + - - +

IC(T|t") + IC(T|t" — 1)

=mxsx[(T-0)+(T-T+1)+(T-T+2)+---+
(T =) + (T = (" = 1))]

=mxsx [T+ (T—(T-1)+(T—(T-2)++
(- - 1)]

=mxsx [T+Tx((T-1)— @t —=1)+1)—[(T-1)+
(T=2) 4+ —1)]]

=m X s x [T+T[T—t*+1]— (T_t*+1)(T+t*_2)]

2

2

Following similar reasoning, each of terms (7' — 0), (T’ =T+ 1),(T =T 4+ 2),...,(T — (t* — 1)) in the
second line are positive and the number of terms decreases in ¢* resulting lower cost as the ideal time to stop the

X x [T+(T—t*+1)(T—t*+2)}

experiment gets closer to the target time 7.
The ASC for ForS is monotonously increasing in t* whereas it is monotonously decreasing for Backs.
Next, we determine ¢t* for which ForS and BackS have equal cost.

. t* T—t*+1)x (T —t*+2

t+D)(T -~ =T+( ) )
2 2

1 1 T—t*+1)x (T —t*+2

—§t*2+(T—§)t*+T:T+( * );( +2)

t*2 — (2T = 3)t* +T? + 5T + 2
2

1 1
— 2+ (T - +T=T

57+ (T =)+ +
202 4 (AT = 2)t* + T - 3T +2=0

The solution of this quadratic equation is:

AT 42+ /(4T —2)2 =4 x 2 x (T? - 3T + 2)
B 4

*

1 T2 T
=T — + _ =
+2 2

The feasible solution for which t* < T is:

=T+ —/>=—-=+=

For large T values, the t* for which ForS and Backs$ have equal aggregated inference cost is equal to:

f oo L
t~T 7
=T(1—-1/V?2) 3)

~ 0.3T
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That is, for t* < 0.37, ForsS is more efficient than BacksS, and for ¢* > 0.37, it is better to use BacksS. For
T = 50, Fors and Backs are equal on t* = 15 which is roughly the value we see in Figure[9]
5.3 Binary Search

For binary search, because the actual steps depend on where t* lies, we provide closed-form solutions for i) the

worst-case, ii) the best-case, and iii) average-case scenarios.

5.3.1 Worst-Case Scenario

Because the inference cost of earlier steps is larger than the cost of the later time steps, in the worst case, the

binary search keeps trying earlier time steps ¢t = %, %, S 72%& #7. Let n = [log, T'|. The inference cost is
then:
T T T
ASC(t*:O|BinS):mxsx < 2>+(T 4)+...+(T_2n>:|
1 1 1
= T —-Tl=+= —
m X 8§ X +nT (2+4+ 2n>]
1 1 1
=m X § X T+nT T(2+4+ +2n>}
271
=m X § X T+nT T o
2"—1

~ 1 for large n. So the equation becomes:

on

ASC(t* =0|BinS) = m x s X [T +nT — T

=mxsxnT

m x s X [log, TT

5.4 Best Case

Because the inference cost of later time steps is smaller than the cost of the earlier time steps, in the best case,

. . . [loga T _ .
the binary search keeps trying later time steps ¢t = %, %, S % Let n = [log, T']. The inference

cost is then:

ASC(t* =T —1|BinS) =m x s x T + {(T—g)—i—(T—?)T)-i--“-i-

-5

11 1
T+T<2++-~-+>

2" —1
rir( %5 )]

~mxsx2T

=m X s X

=m X s X
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5.4.1 Average Case

We analyze the average case in Figure[T0] Binary search makes a decision on two options at each step. Without
prior knowledge, two options are equally likely to be selected. Since each option in the previous step is equally
likely, all possible decisions are also equally likely in following steps. For example in Figure [I0} in the third
step, four time slices can be dissection point and each of them can be reached with equal probability. Therefore,
knowing inference cost for each time slice, we can compute expected inference cost at each step. Computing
and summing expected inference cost at each search step gives the expected inference cost of binary search as a

function of T', which is equal to m X s X [log2T'|T/2.

E Expected cost at
each step

Step 1 _— Z ~ Z

,/’////// 2 - ~ 2

27 7 1 T 1 3T T

— — —X=F+=-X—==

Step 2 7 4 24 + 2 4 2
-~ — ] ‘ o \‘\1 x///// \‘

step 3 7T 5T 3T r rrresr, T

P B B B 8 1787178 72

INTNTN INTNTN "
2

Step [log, T

T
Sum = [log, T| 5

Fig. 10 Indices of potentially explored time slices by binary search at each step of the search phase. Each of these time slices may or may
not be explored. Hence, probability of a time slice for being explored is equal to other time slices of the same row.

5.5 Line Search

If UNC(P(LT|1°,1%)) is assumed to follow a perfect line as a function of ¢, then line search can try ¢t = T'— 1
(the cheapest case) and because ¢ = 0 case is already given, can fit a line and pinpoint ¢t* without any further

search. In that case, the total cost of LineS is:

ASC(t*|LineS, perfect line) = IC(T|t =0)+ IC(T|t =T — 1)
=mxsx[(T—-0)+(T—(T-1))]
=mxsx(T+1)

As Figure [§] shows, the uncertainty is not a perfect line but close to a line. In that case, line search needs
to verify that its pinpoint is indeed correct. That is, line search triest = 7' — 1,¢t = t*,and t = t* — 1 to
verify UNC(LT]1°,1'") < o < UNC(LT[1°,1* ~1). Then, for each possible ¢*, line search incurs the cost of
IC(T|t=0),ICT|t=T-1),IC(T|t =t*),IC(T|t =t* —1).
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t* explored slices aggregated search cost
0,7—-1,1 T-0)4+(T—-(T-1)+(T-1)
0,7—-1,1,2 T-0)0+T—-(T-1)+T—-1)+(T-2)
3 0,7—-1,2,3 T-0)+T—-(T-1)+(T—-2)+(T-3)
t ;).;Tfl,tfl,t '(‘.T70)+(T7(Tfl))+(Tf(t71))+(Tft)
;72 6;T71,T73,T72 .(“TfO)Jr(Tf(Tfl))+(Tf(Tf3))+(Tf(TfQ))
T—-11]10T-1T-2 T-0)+T—-(T-1)+(T—-(T-2)

Fig. 11 Aggregated search cost for each ¢* value in the case that uncertainty curve is close to a line.

In order to compute the average case, we need to calculate the summation of aggregated search cost for each
of t* =1,2,---T — 1, as illustrated in Figure [I T}
T—1
> ASC(t|Lines) =m x s x [(T—1) x (T+ 1)+ [(T = 1) + (T = 2) + ... + 2]
t*=0
+[(T-1)+(T-2)+ (T —-3)+...+2]]

=mXxsX
2

(T—1)(T+1)+2x [(T_UT_1”

X [(T21)+(T1)T2}

m X s
mxsx (T?=1+T%—T —2)
mxsx (2I* =T — 3)

The average case aggregated search cost is then:

T—1
E[ASC(t*|Lines)] = % x 3" ASC(#*[Lines)
t*=0
1

= _—xmxsx(2T* =T - 3)

6 Current Limitations and Generalizations to Other Domains

The DBN model we presented in this article serves as a proof of concept to show the feasibility of using DBNs
for vascularization, as has been validated through the similarities of the results with those of agent-based models
of vascularization [2l], and on an aggregate level through real-world experimental data [1]. The DBN model
can be enriched further to reflect reality, such as a 3D instead of a 2D model. Much of these enrichments are
engineering problems, where the parents of a node come from a 3D space instead of a 2D space.

The active inference formulation we discussed in this article focused on tissue engineering. Some of the ideas
and approaches are, however, general enough to be applicable to several other domains. There are many practical
scenarios in which intelligent agents face the question of how much to wait gathering information versus when
to act based on what is so far known. This problem is in fact an active inference problem in a temporal domain
such as the one we described in this article and hence cost formulations and search results we discussed largely
carry over to these problems.
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Though our active inference formulation is generic, our inference cost calculations assumed that when an
observation is made at time slice ¢, all variables at that time slice are observed. Hence, expected uncertainty
calculations required forward sampling starting from time ¢ to target time 7. This meant searching for later time
steps incurred less cost (note that Backs had less cost than Fors for ¢t* > 0.37 as shown in Equation [3).
In practice, however, there might be hidden variables or variables that are too costly to acquire so that not all
variables can be observed at time ¢. Then, a simple forward sampling from ¢ to 7" would not suffice; instead, other
approximations algorithms, e.g., likelihood weighting and Gibbs sampling, including all non-observed variables
from time O to time 7" need to be performed and hence search for earlier and later steps would incur the same
inference cost. In that case, ForS and BackS would have equal cost when t* = T'/2. Still, BinS is expected
to outperform ForS and BackS, and LinesS is expected to outperform BinS, as expected.

7 Related work

Tissue engineering is an active research field where a number of papers tackle different aspects of the problem
using in-vivo and in-vitro laboratory experiments (e.g., [} 116} [17, 23, 22, 51]). There have been also computa-
tional models of tissue development, such as multi-agent systems (e.g., [2 14} 5, [12} 33]). Artel et al [2] propose
a multi-agent model to simulate vascularization in polymer scaffolds. They compare effects of various growth
factor concentrations and scaffold porosities on vascularization. Mehdizadeh et al [33]] observe the contribution
of porosity and interconnectivity of scaffold to vascularization. Bentley et al [S] also propose an agent-based
model for vascularization in which they observe the effect of different growth factor conditions on blood vessel
growth. Bailey et al [4] use an agent-based model to represent an existing blood vessel network and they simulate
white blood vessel trafficking. Finally, Byrne et al [12], model tissue differentiation using agent-based models
under different settings of scaffold porosity and degradation rate.

In this article, we propose a dynamic Bayesian network modeling to vascularization in engineered tissues.
We compared our approach to the agent based model of Artel et al 2] and we found similar results. Though
agent-based models provide a more natural fit for modeling various cells and biomaterials as agents, DBNs
allow a natural formalism for modeling the spatiotemporal uncertainty present in vascularization. Further, DBNs
enable researchers to ask what if questions about past and future through setting a subset of random variables as
evidence variables.

DBNSs have also been successfully applied to several other real-world applications. A few examples include
managing water sources [[11]], gene regulatory networks [21} [3537]], figure tracking [36], ranking [13], speech
recognition [S3]], modeling environmental problems [50]], and driverless cars [[20].

Active inference was previously formulated and utilized for iterative classification of nodes of a network
[8,19], video analysis using hidden Markov models [14], battery optimization in wireless sensor networks [25],
and more generally as value of information in graphical models [10, [27]. In this paper, we formulate active
inference problem specifically for dynamic Bayesian networks and utilize it for computing the ideal time to
stop a laboratory experiment to guarantee an acceptable prediction uncertainty about the final outcome of the
experiment.

A closely related area to active inference is active learning [42]. In this field, similar to active inference, the
objective is to gather information to help the underlying predictive model, but unlike active inference, active
learning collects information during training of the predictive model, not during inference. Common approaches
include query-by-committee [18] |44]], expected error reduction [41]], and uncertainty sampling [29]. Uncertainty
sampling is arguably the most frequently utilized approach and hence there has been several approaches that
augment uncertainty sampling. For example, in density-weighted uncertainty sampling, Settles and Craven [43]]
weighed uncertainty of instances by their similarity to other instances so as to avoid picking outliers. Sharma
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and Bilgic [45]46] formulated two types of uncertainties: conflicting-evidence uncertainty where the underlying
model has conflicting and strong information about which class the instance belongs to and insufficient-evidence
uncertainty where the underlying model has little information about which class the instance belongs to. Re-
cently, several researchers looked at incorporating domain knowledge and different kinds of queries into the
learning. Two prominent examples are feature annotation [3}119}|34} 38} 48] and learning with rationales[47, 52].
Ramirez-Loaiza et al [39} 40| focused on improving annotation effiency by showing a carefully chosen snippet
of an instance rather than the full instance.Bilgic [7] performed dynamic dimensionality reduction to improve

learning efficiency of the underlying model when trained on scarce data.

8 Conclusion

We presented a dynamic Bayesian network model of vascularization in engineered tissues. The DBN model
allows tissue researchers to perform spatial and temporal reasoning for the tissue development process. Addi-
tionally, we formulated and evaluated active inference for DBNSs in the context of tissue engineering, aimed at
answering the question of determining the ideal time to stop a laboratory experiment to guarantee an acceptable
uncertainty for the prediction of the future progress of the tissue. We compared several search algorithms and
analyzed their inference time complexity, providing closed-form solutions whenever possible. In this article,
we focused on the tissue engineering application. However, the active inference formulation for DBNs and the
complexity analysis for the search algorithms are general and can potentially be applied to other spatio-temporal
domains under some natural assumptions.
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