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Abstract

We investigate the relational classification of biological cells
in 2D microscopy images. Rather than treating each cell im-
age independently, we investigate whether and how the neigh-
borhood information of a cell can be informative for its pre-
diction. We propose a Relational Long Short-Term Memory
(R-LSTM) algorithm, coupled with auto-encoders and convo-
lutional neural networks, that can learn from both annotated
and unlabeled microscopy images and that can utilize both the
local and neighborhood information to perform an improved
classification of biological cells. Experimental results on both
synthetic and real datasets show that R-LSTM performs com-
parable to or better than six baselines.

1 Introduction
Signaling variability of individual cells results in different
responses when they are exposed to external stimuli such
as proteins, drugs, and viruses. Single-cell analyses are car-
ried out to understand cell heterogeneity (Shipp et al. 2002).
Studying the cellular heterogeneity can help with under-
standing drug response (Sheng, Li, and Wong 2015), drug
tolerance (Lee et al. 2014), tumor necrosis (Obraztsov et al.
2019), viral infection (Drayman et al. 2017), and more.

One approach to single-cell analysis is to use imaging. For
example, cancer tissues can be stained, histology images can
be generated, cell nuclei can be detected, and cell types can
be manually annotated, as can be seen in Figure 1. Another
example is studying viral infections where viruses are intro-
duced to a sample and protein dynamics are monitored under
a microscope, taking thousands of images during the process
(Drayman et al. 2017).

Through high-content screening (Usaj et al. 2016), it is
possible to generate thousands of images per day for study-
ing cell biology. While it is possible to detect cell nuclei
(Shifat-E-Rabbi et al. 2020), labeling the cells is a costly
process, where experiments need to be carried out and the
cells need to be labeled manually. Therefore, even though
unlabeled data is abundant, labeled data is often scarce.

Machine learning models have been employed for anal-
yses of these biological images. One simple modeling ap-
proach is to treat each cell independently. In this case, the
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Figure 1: Examples microscopy images of cells. This figure
is a cancer histology image from (Sirinukunwattana et al.
2016), where each cell is classified into four categories: ep-
ithelial, inflammatory, fibroblast, and miscellaneous.

cell nuclei are detected and a rectangular area around the
nucleus can be cropped to represent the cells. One approach
to cell label prediction is to extract features, such as SIFT,
from the cell images and use vector-based machine learn-
ing models such as logistic regression and support vector
machines (Loo, Wu, and Altschuler 2007). Recently, deep
learning models have also been employed for cell classifi-
cation (Kraus, Ba, and Frey 2016; Sirinukunwattana et al.
2016).

An alternative approach is to study and model the cells
and their neighborhood(Sirinukunwattana et al. 2016). This
approach can be informative due to several reasons includ-
ing i) cells often communicate with their neighborhood, ii)
some stimuli diffuse locally in a neighborhood, iii) viral and
bacterial infections can affect a local neighborhood, and iv)
the labels of the cells within a local neighborhood might be
correlated (e.g., tumor cells tend to be neighbors with other
tumor cells.).

In this paper, we study relational classification of biolog-
ical cells in 2D microscopy images. Rather than treating the
classification of each cell as independent of its neighbor-
hood, we develop a relational deep learning model that is
able to utilize both the cell’s own image as well as its neigh-
borhood to improve the classification performance. Our con-
tributions in this paper include:

• A relational Long Short-Term Memory (LSTM) model
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for classification of biological cells in microscopy images
that can take into account both local and neighborhood
information.

• A synthetic data generator to simulate various settings
where informativeness of the local versus neighborhood
information is controlled.

• A stratified cross-validation algorithm for object classifi-
cation in images.

• Development and analysis of three non-relational and
three relational baselines.
The rest of the paper is organized as follows. We first dis-

cuss related work in Section 2. In Section 3, we describe the
proposed relational-LSTM model. We explain the synthetic
data generator in Section 4. Section 6 includes the discus-
sion of the experimental methodology and the results. We
conclude in Section 7.

2 Related work
One of our main contributions in this paper is the rela-
tional classification of the cells. A related area is learning
with graphs (Perozzi, Al-Rfou, and Skiena 2014; Jin et al.
2019; Aguinaga, Chiang, and Weninger 2019; Abu-El-Haija
et al. 2018) where the data typically consists of vertices and
edges. The graph can be heterogeneous where vertices and
edges belong to different types. The vertices and the edges
optionally have features that describe them. Typical classi-
fication tasks include node prediction, link prediction, and
network prediction. In many domains, the links are often
defined explicitly through an adjacency matrix. In some do-
mains, however, the links are implicitly defined or mined
from data (e.g., through a neighborhood similarity).

The most closely-related work is the work on relational
and collective classification (Neville and Jensen 2003; Sen
et al. 2008; Fakhraei et al. 2015). In relational classification,
the label of an object is determined based on its own features
as well as its neighbors’ features (Preisach and Schmidt-
Thieme 2006; Zhu et al. 2017; Taskar, Segal, and Koller
2001). In collective classification, the labels of a set of re-
lated objects are predicted jointly as opposed to each one
predicted independently. The iterative classification algo-
rithm (Neville and Jensen 2003) first bootstraps the labels
of the nodes of a graph using local information, and then
predicts the labels of the nodes based on its features and
the predicted labels of its neighbors. Recently, deep learn-
ing approaches, such as Long Short-Term Memory (LSTM)
models, have been utilized for collective classification (e.g.,
(Moore and Neville 2017; Fan and Huang 2018). In this
case, the LSTM model treats a node and its unordered neigh-
bors as a sequence, and uses both local features and the pre-
dicted labels as an input. This is most similar to our work,
except, in our case the neighborhood structure is not explic-
itly defined, the number of neighbors is fixed, there is a large
amount of unlabeled data, and the input is an image that con-
tains numerous cells and empty locations.

Another related area is node embedding where nodes are
represented through a low-dimensional embedding that is
learned based on the node itself and its neighbors. An exam-
ple approach is Graph Convolutional Networks (Kipf and

Welling 2016) that learn convolutional neural networks on
the graph directly for node prediction. Similar work include
(Grover and Leskovec 2016; Hamilton, Ying, and Leskovec
2017; Perozzi, Al-Rfou, and Skiena 2014; Jin et al. 2019;
Abu-El-Haija et al. 2018) where the embedding representa-
tion for each node is obtained by optimizing a customized
cost function. Such methods are able to take care of the
varying-size neighborhoods typically using sampling meth-
ods such as random walks.

Relational classification via feature extraction and selec-
tion has been studied for biological experiments. For ex-
ample, Snijder et al. (2009) discover the impact of pop-
ulation context on the prediction of virus infection using
bootstrapped Bayesian networks. Toth et al. (2018) propose
an approach to extract cell-based and neighbourhood fea-
tures from segmentation of cells, where the neighbor fea-
tures are aggregated by using K-nearest neighbours and the
N-distance methods, and a classifier, such as Support Vector
Machines and Random Forests, are trained and evaluated on
the combined set of features. These approaches, however, re-
quire significant amount of feature engineering. In the mean
time, Kraus, Ba, and Frey (2016) design and combine con-
volutional neural network with multiple instance learning to
classify and segment microscopy images with only anno-
tations in image level. Beck et al. (2011) construct objects
classifier for superpixels in cancer images using contextual
and relational features.

Lastly, a related area is object detection and segmentation
(e.g., (Long, Shelhamer, and Darrell 2015; Girshick et al.
2014; Girshick 2015; Ren et al. 2015; He et al. 2017; Xu
et al. 2017; Yang et al. 2018). The main differences between
our work and this line of work are that in our case the type of
objects is only one type (i.e. biological cells), we are inter-
ested in predicting a feature of the object, and the relation-
ship between cells is defined via a local proximity.

3 Our approach: Relational-LSTM
Let I represent the set of all microscopy images, where each
microscopy image Ii ∈ I represents the microscopy image
of a biological sample that contain several (often 50 to 200)
cells cji ∈ Ii. The cells are located at arbitrary locations
in the image. A typical approach to represent each cell is
to crop a rectangular area centered around its nucleus, after
its nucleus has been automatically detected (Shifat-E-Rabbi
et al. 2020). Thus, we assume that cji are images within the
larger image Ii.

The labels of the cells are known for a subset of biological
samples, L ⊂ I. Each Ll ∈ L represents a biological sam-
ple where the labels of cjl are known. The labels are typically
obtained through experimentation, imaging, and human an-
notation. Let YL represent the set of all known labels, Yl

represent the set of labels of all cells in the annotated biolog-
ical sample Ll, and ykl represent the label of the individual
cell ckl . For the remaining subset of samples, U = I\L, only
the images of the samples are taken but they are not anno-
tated. That is, the images of the cells, cku, are given and the
labels, yku, are unknown. These represent several biological
samples that have been imaged but not annotated.



The objective is to train an accurate predictive model M
using all images I, which include both annotated samples
L and the labels of the cells in those samples YL, and the
unlabeled U samples. We take a probabilistic approach and
aim to maximize conditional likelihood of the known labels.

argmax
M

P (YL | L,U,M)

Because each microscopy image Ii ∈ I represents an inde-
pendent sample, P (YL | L,U,M) factorizes over individ-
ual images:

argmax
M

∏
Ll∈L

P (Yl | L,U,M) (1)

Equation 1 optimizes the joint distribution of labels. Most
collective classification approaches optimize this objective
function. A model that assumes the individual cells are in-
dependent and identically distributed (i.i.d.) but uses all in-
formation as input would further factorize the product to in-
dividual cell labels:

argmax
M

∏
Ll∈L

∏
ckl ∈Ll

P (ykl | L,U,M) (2)

Relational models typically uses the objective function in
Equation 2 where the target variables are independently op-
timized, but the input from neighbors is still used as input.
A model that further assumes the local information is suffi-
cient and the neighborhood information is irrelevant would
ignore the neighbors and instead optimize:

argmax
M

∏
Ll∈L

∏
ckl ∈Ll

P (ykl | ckl ,M) (3)

Equation 3 refers to the traditional classification approaches
where each object is classified using only its own features.

In this paper, we propose a relational classification ap-
proach (Getoor and Taskar 2007) and hence solve the
optimization of Equation 2. In collective, relational, and
neighborhood-based approaches, it is typically assumed that
the relational information is local (Sen et al. 2008; Grover
and Leskovec 2016). For example, in a social network, one’s
close neighborhood is assumed to be more informative than
it is distant neighborhood. Similarly, we assume that the re-
lationship between the biological cells is local: cells com-
municate with their immediate neighbors and a cells within
a local vicinity might have correlated features and labels1.

Because each cell ck is represented as a rectangle image,
we define its immediate neighborhood as rectangles in its
immediate vicinity. Please see Figure 2 as an illustration of
the neighborhood of the target cell.

Using the labeled data L and each cell ckl as the target,
we optimize Equation 2 using a Long Short-Term Memory
(LSTM) architecture, which is illustrated in Figure 3. The

1We do not require the cells in a local neighborhood to carry
correlated information. Our model learns if such a correlation ex-
ists, learns the strength and the sign of the correlation, and utilizes
it to improve prediction performance.
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Figure 2: The neighborhood of a target cell. Each location
is represented as a rectangle image. The target cell is in the
center. The target cell has eight neighbors some of which
can be empty.
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Figure 3: The relational-LSTM (R-LSTM) architecture. The
images of the eight neighbors and the target cell, as shown in
Figure 2, is treated as sequence of inputs. The AE-CNN is a
convolutional encoder, which is initialized using the weights
of an auto-encoder trained on unlabeled data U using unsu-
pervised learning. The target of the R-LSTM is the label of
the target cell.

first eight inputs are the images of the eight neighbors and
the last input is the image of the target cell. The output of
the relational-LSTM (R-LSTM) is the label of the target cell.
The input images are processed through an autoencoder con-
volutional neural network (AE-CNN), which is initialized
using the unlabeled data U.

Note that both during training and testing, the neighbor
locations that do not contain cells are still used as input to
the R-LSTM. The main motivation for such a choice is that
even though a neighboring location might not contain a cell,
the image of the neighborhood can still contain valuable in-
formation for biological reasons. For example, in tissue re-
generation a biological cell that is far from blood vessels
enters into a distress mode due to lack of oxygen and nu-
trients, and starts producing and releasing a distress signal
protein (vascular endothelial growth factor) into its environ-
ment (Ferrara et al. 1992), and hence, both the image of the
cell and the image of its vicinity are informative for predict-
ing the cell’s state.



Algorithm 1 Synthetic data generation

Input: N – the number of images that will be generated; G
– the size of the grid; pe – probability of a grid being
empty; pa – probability that a non-empty grid contains an
active cell; acl, ach, inl, inh – the lower and upper bounds
for the intensities of the active and inactive cells; λ –
parameter controlling how informative the neighbors are
Output: I – a set of synthetic images each of which
contains multiple cells; YI – the labels of the cells

1: Let I = {}.
2: while |I| < N do
3: create a G×G-grid image Ii
4: for entry in grid do
5: if random.roll < pe then
6: Leave it empty
7: else if random.roll < pa then
8: y = active
9: Sample an intensity uniformly from [acl, ach]

10: else
11: y = inactive
12: Sample an intensity object uniformly from

[inl, inh]
13: YIi .add(y)
14: I.add(Ii)
15: YI.add(YIi )
16: Train a binary Gaussian naı̈ve Bayes M on cells and

their labels
17: for Ii in I do
18: for cki ∈ Ii do
19: probas =M.predict(cki )
20: conf = max(probas)
21: d = log(1/conf)/10 + λ
22: if random.roll > conf − d then
23: cki ’s label yki is voted by non-empty neighbors’

probabilistic labels and updated accordingly
24: return I and YI

4 Synthetic Data Generator
We first develop a synthetic data generator to simulate vari-
ous settings where we can experiment with i) how informa-
tive each individual cell features are, ii) how informative the
neighborhood information is, iii) the label distribution, and
iv) the distribution of the cells in the images. The algorithm
is described in Algorithm 1, which generates gray-scale im-
ages that contain cells whose labels are binary indicating
whether they are activated by external stimuli.

The algorithm generates N images. Each image Ii is a
GxG grid. Whether each grid is empty or occupied by a cell
is decided by a random roll controlled by the pe parameter,
where pe represents probability of being “empty.” This pa-
rameter controls the cell density of the image. If a grid is
occupied by a cell, we first sample the cell’s label (active or
inactive) using the parameter pa, where pa represents proba-
bility of being “active.” Active cells’ intensities are sampled
from [acl, ach] whereas inactive cells’ intensities are sam-
pled from [inl, inh]. The potential overlap between inactive

and active cells’ intensities control how much informative
the individual cells’ own intensities are.

Next, the algorithm decides how informative the cells’
neighborhood is. The neighborhood plays a bigger role for
cells whose local information is less discriminative. That is,
if a cell’s local information (in this case, the image intensity)
is not very informative about the cell’s label, then its neigh-
borhood has a higher chance to play a more important role in
the classification process. To simulate this behavior, we first
learn a local model that predicts the cell’s label using only
its local image. Because we generated image intensities for
active and inactive cells, the synthetic generator fits a Gaus-
sian naı̈ve Bayes (GNB) model whose input is the image
intensity and the output is whether the cell is “active.” Then,
it uses GNB to predict each cell’s label probabilistically and
if the prediction is not confident enough, controlled by the
λ parameter, the cell’s label is determined by its neighbor-
hood: the cell’s neighbors vote what the target cell’s label
should be set to.

In summary, pe controls the cell density of the microscopy
image, pa controls the likelihood that a cell will react to ex-
ternal stimuli, the overlap between the intensity parameters
(acl, ach, inl, inh) controls the informativeness of the local
information, and λ controls when neighborhood will play a
role in determining the final label of the cell.

5 Stratified Cross Validation
A typical evaluation approach for classification is to use
stratified cross validation where the data is divided into folds
where each fold has similar label distribution (Tsamardinos,
Greasidou, and Borboudakis 2018; Tibshirani and Tibshirani
2009). Achieving similar label distributions in each fold is
straightforward when each cell can be assigned to any fold.
However, because each microscopy image Ii corresponds
to a different laboratory experiment, it is more appropriate
to create the folds at the image level rather than at the cell
level. Hence, when an image Ii is assigned to fold k, all cells
cji ∈ Ii are assigned to that fold. However, because each im-
age Ii varies in the number of cells that they contain and the
label distribution of those cells can vary from image to im-
age, splitting the entire data into stratified folds is not trivial.
We therefore introduce a stratified fold creation algorithm
(Algorithm 2) for microscopy images.

Algorithm 2 describes our proposed approach for creating
k folds where each fold has similar label distribution to the
overall label distribution in the data. The algorithm works
as follows: first, the overall label distribution in the data, O,
is calculated. Then, k empty sets are created to hold each of
the k folds. Finally, for each random image that has not been
yet assigned a fold, the most appropriate fold is assigned by
finding the fold that would result in the minimum Kullback-
Leibler (KL) divergence between the overall distribution O
and the candidate fold, if the image was added to that fold.
This process is repeated until all images are assigned a fold.

Because this algorithm is a greedy algorithm, it is not
guaranteed to result in the optimal split where each fold
would have the closest label distribution to the overall label
distribution. Thus, this entire fold generation process is re-



Algorithm 2 Stratified fold generation

Input: O – the overall class distribution; k – the number of
folds ; L – a set of labeled images; m – the number of trials
Output: folds – a splitting sample that has the lowest
KL-Divergence score with O

1: Let R = {}
2: while |R| < m do
3: Let s be a list of sets, where sj = ∅, for 0 ≤ j < k
4: Let f j be the class distribution of sj , for 0 ≤ j < k
5: while L 6= ∅ do
6: Pick a random Li ∈ L
7: z = argmin

j
KL(O, f j) if sj = sj ∪ {Li}

8: sz = sz ∪ {Li}
9: L = L \ {Li}

10: R.add(s)
11: folds = argmin

s∈R
max

0≤j<k
KL(O, f j)

12: return folds

peatedm times with a different random seed and the fold as-
signment that has the minimum of the maximum (i.e., min-
max) KL divergence from the target distribution is returned.
Prior work on stratification of multi-label data uses similar
greedy idea (Sechidis, Tsoumakas, and Vlahavas 2011). We
adopt minimizing KL divergence on the label distribution,
whereas the prior work greedily optimizes the desired num-
ber of labels for each set.

Once a stratified fold is generated, standard train-validate-
test process is applied where k−2 folds are used for training,
one fold is used for validation, and one fold is used for test-
ing. This process is repeated k times where each fold gets
to be the validation set exactly once and the test set exactly
once, and average performance over the test sets is reported.

6 Experimental Methodology and Results
In this section, we describe the datasets, the baselines,
the experimental methodology, the performance metrics,
and the results. The code to replicate the experimental re-
sults in this paper is available at https://github.com/IIT-
ML/AAAI21-relational-cell-classification.

6.1 Datasets
We experimented with several synthetic datasets, generated
using Algorithm 1, and three real-world datasets.

Synthetic Data We experimented with three parameter
configurations to test how models that ignore or utilize
the neighborhood information would perform under various
conditions. The parameter configurations are shown in Table
1. The first four parameters, N , G, pe, and pa are held con-
stant for all three synthetic datasets. N = 40, resulting in 40
images for each dataset, each of which is aG×G = 25×25
grid. pe = 0.5, resulting in approximately half of the grids
in each image to be empty. pa = 0.5, resulting in an approx-
imately equal number of active and inactive cells. We varied
the last three parameters to generate datasets with varying

degree of importance of the local versus neighborhood in-
formation.

Parameter Setting 1 (S1) Setting 2 (S2) Setting 3 (S3)

N 40 40 40
G 25 25 25
pe 0.5 0.5 0.5
pa 0.5 0.5 0.5

[inl, inh] [0.3, 0.8] [0.3, 0.8] [0.3,0.7]
[acl, ach] [0.5, 1.0] [0.5, 1.0] [0.6, 1.0]
λ 0.2 0.4 0.2

Table 1: Parameter settings for synthetic datasets. To make it
easy to spot the differences, the parameters that are different
in one setting compared to the rest are highlighted in bold.

Local features: We used the amount of overlap between the
intensities of the “active” and “inactive” cells to control how
much a local classifier can be confident (and accurate) in
its predictions. The overlap of the image intensities in S1
and S2 are the same ([0.5, 0.8]) whereas the overlap in S3
is smaller ([0.6, 0.7]). Hence, a local classifier is expected to
be equally confident (and accurate) in S1 and S2, and more
confident (and accurate) in S3.
Neighborhood: We used the λ parameter to control when a
cell’s neighbors can intervene and vote on its label. A higher
λ means the local classifier needs to be more confident to
prevent neighbors from determining the cell’s label. Com-
paring S1 and S2 where the local classifier is expected to be
equally confident, a higher λ for S2 means neighbors will
intervene more in S2 than in S1. Comparing S1 and S3, λ is
equal for both but because the local classifier is expected to
be more confident in S3, the neighbors will intervene more
in S1 than in S3. Comparison of S2 and S3 is now straight-
forward: the neighbors will intervene more in S2 than in S3.

Histology Images of Colorectal Cancer (CRC) This
dataset is introduced by Sirinukunwattana et al. (2016) and
it contains 100 H&E stained histology images of colorectal
cancer (colorectal adenocarcinomas). All images have the
same size of 500×500 pixels. The cancer cells are labeled as
Epithelial, Inflammatory, Fibroblast, or Miscellaneous, and
the number of cells in these categories are 5745, 4942, 4025,
and 1440 respectively. One example image is shown in Fig-
ure 1 in Section 1.

Human MCF7 Breast Cancer Cells (MCF-7) MCF-7
is a public image set that was collected and labeled using
a typical set of morphological labels and a relevant p53-
wildtype breast-cancer model system (MCF-7) provided by
Broad Bioimage Benchmark Collection2. The microscopy
images are recorded in 24 hours with a collection of 113
small molecules. For our experiments, we follow the single-
cell annotation presented and provided by Piccinini et al.
(2017); Toth et al. (2018). We classify cells as “debris” ver-
sus “non-debris”, and the corresponding number of cells are

2https://data.broadinstitute.org/bbbc/BBBC021/



250 versus 1137.

Urinary bladder cancer tissue sections (UBC) UBC
image dataset (Toth et al. 2018) is a collection of mi-
croscopy images that record urinary bladder cancer tis-
sue. The histopathologic process was applied to generate
Hematoxylin-Eosin (HE) staining of slides of the urinary
cancer tissue. This dataset contains 24 images and a total of
1, 494 cells. We classified the cells as “cancer” versus “non-
cancer.” There are 178 cancer cells and 1, 316 non-cancer
cells annotated in the UBC dataset.

In practice, a grid can contain more than one cell. For
three real datasets, we the analyzed the mean number of cells
in each of the non-empty locations. On average CRC has
1.76 cells and MCF-7 and UBC have 1.0 cell on non-empty
locations. Our method does not explicitly need each grid to
have at most one cell. It is possible, and indeed expected
that, if a grid has multiple cells, the image could contain
stronger signals (if cells have similar features) or a mixed
signal (if cells have varying features).

In all of the following experiments, we treat half of the
dataset as the labeled set L and the remaining half as the un-
labeled set U. Rather than randomly assigning the individual
cells cJi to labeled and unlabeled sets, we first assign the full
microscopy images Ii into the annotated and not-annotated
sets. We then treat the cells in the annotated images as la-
beled and the cells in the not-annotated images as unlabeled.
The choice of splitting the dataset into labeled and unlabeled
sets based on images rather than individual cells is aligned
with experimental practice: several microscopy images can
be taken before the introduction of the stimuli and such im-
ages are not annotated. Annotation requires one to introduce
the stimuli, observe the cells, and annotate them as active
or inactive. Hence, whether a cell is labeled or not depends
on whether the microscopy image that contains that cell is
annotated or not.

6.2 Baselines
The following baselines treat each cell independently, ignor-
ing the relational information, and simply use the cropped
images of the cells as input.

Support Vector Machines (SVM) We train SVMs with
individual cells’ cropped images as input and their labels as
output. We use SVM with an ‘rbf’ kernel and use grid search
for optimizing the complexity ‘C’ (for regularization) and
the ‘gamma’ (for kernel) parameters using the validation set.

CNN The setup for this model is the same as SVM, except
a convolutional neural netwok (CNN) is used as the super-
vised model. We use the same network structure used by
the CRC dataset paper (Sirinukunwattana et al. 2016): two
convolutional layers with RELU activations followed by a
max-pooling operation, which is then followed by two dense
layers and a final softmax function.

AE-CNN This is the same model as the CNN model
above, except the convolutional layers of the CNN is initial-
ized as follows: an auto-encoder (AE) with the same con-
volutional layer structure, followed by deconvolutional lay-
ers, is trained on the unlabeled set of images U. The con-

Models S1 S2 S3

Non-relational
SVM .647 (.00) .597 (.00) .778 (.00)
CNN .648 (.00) .595 (.00) .780 (.00)
AE-CNN .655 (.00) .596 (.00) .782 (.00)

Relational

AE-SVM-F .766 (.00) .800 (.00) .828 (.00)
AE-SVM-A .778 (.00) .826 (.36) .825 (.00)
LCNN .797 (.07) .828 (.44) .836 (.00)
R-LSTM .802 (–) .828 (–) .849 (–)

Table 2: Accuracy and p-value comparisons for the synthetic
datasets.

volutional layers of AE-CNN are then initialized with the
weights of the convolutional layers of the AE. AE-CNN is
then trained, validated, and tested using the stratified cross-
validation on the labeled set.

The following baselines utilize both the target cell and its
neighborhood for training, validation, and testing.

AE-SVM-F We apply the AE’s encoder portion to encode
the target cell’s image and its eight neighbor images, and
then concatenate the nine embedding vectors. We train an
SVM where the input is the concatenated vectors and the
output is the target cell’s label.

AE-SVM-A This is similar to AE-SVM-F, except the em-
bedding vectors of the neighbors are aggregated through av-
eraging the eight neighbor vectors, and then the embedding
of the target cell is concatenated to the average neighbor vec-
tor.

LCNN This model is the larger version of the CNN model
above, except instead of just the target cell, a larger image
that contains the target cell and its eight neighbors is used as
a single image and fed to LCNN.

For the deep learning models (AE, CNN, LCNN, R-
LSTM) we used PyTorch (Paszke et al. 2017). For SVM,
we used scikit-learn (Pedregosa et al. 2011).

6.3 Performance Metrics
We perform 10-fold stratified cross validation, where eight
folds are used for training, one fold for validation, and one
fold for testing. Average performance is reported. For syn-
thetic datasets, we report accuracy because the class distri-
bution is approximately even. For the three real datasets, we
report accuracy, macro-F1, and weighted-F1. We also report
one-tailed paired t-test results comparing R-LSTM to the six
baselines. The pairings are done through the test folds. The
p values are listed in parentheses after each metric.

6.4 Results and Discussion
The performance metrics and p values of the the t-tests are
presented in Tables 2 through 5. Each entry has two num-
bers: the first number is the average performance and the
second number, shown in parentheses, is the p-value of the
t-test comparing R-LSTM to the respective baseline.



Models Accu (p) M-F1 (p) W-F1 (p)

Non-relational
SVM .697 (.00) .588 (.01) .697 (.00)
CNN .730 (.08) .619 (.16) .727 (.05)
AE-CNN .722 (.04) .618 (.14) .723 (.04)

Relational

AE-SVM-F .730 (.13) .610 (.06) .724 (.05)
AE-SVM-A .693 (.00) .604 (.05) .707 (.00)
LCNN .721 (.05) .605 (.02) .721 (.03)
R-LSTM .745 (–) .634 (–) .743 (–)

Table 3: Accuracy, Macro-F1, Weighted-F1, and p-value
comparisons for the CRC dataset.

Synthetic Data In the synthetic datasets, the local feature
structure is simple: cells are represented as circles with in-
tensities sampled from an interval corresponding to their la-
bel. Therefore, the non-relational models (SVM, CNN, and
AE-CNN) have similar results. Comparing S1, S2, and S3
results for the non-relational models, S3 results in the high-
est accuracy as expected, because active and inactive cells
have the lowest intensity overlap. Comparing S1 and S2,
even though the intensity overlap is the same in both S1 and
S2, the neighbors intervene more in S2 and hence the non-
relational accuracy is lower for S2.

Comparing the relational models to the non-relational
ones, the relational ones outperform the non-relational ones
in all settings, as expected. Notable results are as follows.
i) Even though non-relational accuracy is lower in S2 than
in S1, the relational accuracy is higher in S2 than in S1, be-
cause neighbors are more informative in S2 than in S1. ii)
The SVM method that aggregates the neighborhood infor-
mation, AE-SVM-A, performs comparable to or better than
the SVM that concatenates the neighborhood information,
AE-SVM-F. This result is expected because the order of
neighbors is not important in the synthetic data generation
process. iii) LCNN performs comparable to or better than
the SVM approaches. iv) R-LSTM performs comparable to
or better than all baselines. The most competitive baseline is
LCNN as expected; R-LSTM has comparable performance
to LCNN in S1 and S2, and R-LSTM outperforms LCNN in
S3, as the p values in the parentheses show.

Histology Images of Colorectal Cancer (CRC) The ac-
curacy, macro-F1 (M-F1), weighted-F1 (W-F1), and p val-
ues of the the t-tests for the CRC dataset are presented in
Table 3. Unlike the synthetic data where the local cell in-
formation was simple, SVM performs worse than CNN for
the CRC data. Similarly, the comparison of relational ver-
sus non-relational for the CRC data is not as clear cut as the
synthetic data. For example, LCNN performs a little worse
than CNN, most likely due to insufficiency of the size of the
training data and the complexity of the cell neighborhood.
R-LSTM, in contrast, performs comparable to or better than
all baselines (both relational and non-relational) for all three
performance metrics.

Human MCF7 Breast Cancer Cells (MCF-7) The ex-
perimental results of MCF-7 are reported in Table 4. MCF-7
has fewer data points than synthetic and the CRC datasets. In

Models Accu (p) M-F1 (p) W-F1 (p)

Non-relational
SVM .836 (.00) .685 (.00) .825 (.00)
CNN .869 (.07) .724 (.09) .852 (.09)
AE-CNN .866 (.06) .716 (.08) .848 (.07)

Relational

AE-SVM-F .877 (.25) .730 (.07) .856 (.09)
AE-SVM-A .854 (.08) .720 (.08) .843 (.07)
LCNN .859 (.00) .734 (.09) .850 (.02)
R-LSTM .885 (–) .770 (–) .873 (–)

Table 4: Accuracy, Macro-F1, Weighted-F1, and p-value
comparisons for the MCF-7 dataset.

Models Accu (p) M-F1 (p) W-F1 (p)

Non-relational
SVM .968 (.23) .873 (.18) .977 (.39)
CNN .952 (.02) .832 (.06) .953 (.03)
AE-CNN .956 (.08) .853 (.10) .962 (.05)

Relational

AE-SVM-F .942 (.06) .806 (.06) .958 (.06)
AE-SVM-A .936 (.17) .814 (.09) .956 (.22)
LCNN .930 (.05) .809 (.13) .923 (.09)
R-LSTM .980 (–) .925 (–) .980 (–)

Table 5: Accuracy, Macro-F1, Weighted-F1, and p-value
comparisons for the UBC dataset.

general, relational models perform better than non-relational
models in all three metrics. AE-SVM-F is better than all
other models except for R-LSTM. R-LSTM achieves the
highest results for all three metrics.

Urinary bladder cancer tissue sections (UBC) Table 5
shows the results for UBC. Unlike the previous two datasets,
all non-relational models have better results than AE-SVM-
F, AE-SVM-A, and LCNN. R-LSTM outperforms all other
models in a large margin in all three measures. The reason
may lie in the fact that many cells in UBC are located on
the boundaries among different kinds of tissues. Thus neigh-
bors’ often contain several different kinds of cells. R-LSTM
was able to handle the cell diversity better than other rela-
tional model baselines.

7 Conclusions
We investigated the relational classification of biological
cells in microscopy images. We proposed a relational LSTM
(R-LSTM) model that take both the target cell’s image and
neighboring images into account to make a prediction on
the target cell. We also proposed a synthetic data genera-
tor and an algorithm for stratified cross-validation on mi-
croscopy images. The experimental results on three syn-
thetic datasets and three real datasets showed that R-LSTM
performed comparable to or better than both non-relational
and relational baselines.
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