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Abstract We present a simple and yet effective approach for document classifica-
tion to incorporate rationales elicited from annotators into the training of any off-
the-shelf classifier. We empirically show on several document classification datasets
that our classifier-agnostic approach, which makes no assumptions about the under-
lying classifier, can effectively incorporate rationales into the training of multinomial
naı̈ve Bayes, logistic regression, and support vector machines. In addition to being
classifier-agnostic, we show that our method has comparable performance to previ-
ous classifier-specific approaches developed for incorporating rationales and feature
annotations. Additionally, we propose and evaluate an active learning method tailored
specifically for the learning with rationales framework.

Keywords Document classification · learning with rationales · active learning

1 Introduction

Annotating documents for supervised learning is a tedious, laborious, and time con-
suming task for humans. Given huge amounts of unlabeled documents, it is impracti-
cal for annotators to go over each document and provide a label. To reduce the anno-
tation time and effort, various approaches such as semi-supervised learning (Chapelle
et al., 2006) that utilizes both labeled and unlabeled data, and active learning (Settles,
2012) that carefully chooses instances for annotation have been developed. To further
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minimize the human effort, recent work looked at eliciting domain knowledge, such
as rationales and feature annotations, from the annotators instead of just the labels of
documents.

Humans can classify instances based on their prior knowledge about feature-class
correlations. In order for the classifier to learn similar feature-class correlations from
the data, it needs to see many labeled instances. For example, consider the task of
sentiment analysis for movie reviews where a classifier is tasked with classifying the
reviews as overall positive or overall negative. When the classifier is presented with
a negative review that reads “I saw this movie with my friends over the weekend.
The movie was terrible.”, the classifier does not know which terms in this review are
responsible for classifying it as a negative review. Unless the classifier has observed
many more negative reviews that have the word “terrible” in them, it would not know
that “terrible” is a negative sentiment word, and unless it has seen many positive and
negative reviews that have the words “friend” and “weekend” in them, it would not
know that these words are potentially neutral sentiment words. In domains where
labeled data is scarce, teasing out this kind of information is like searching for a
needle in haystack. In learning with rationales framework, in addition to a label, the
annotator provides a rationale, pointing out the phrases that are responsible for the
assigned label, enabling the classifier to quickly identify the important feature-class
correlations and speed up the learning.

A bottleneck in effective utilization of rationales elicited from annotators is that
the traditional supervised learning approaches cannot readily handle the elicited rich
feedback. To address this issue, many methods have been developed that are classifier-
specific. Examples include knowledge-based neural networks (Towell and Shavlik,
1994; Girosi and Chan, 1995; Towell et al., 1990), knowledge-based support vec-
tor machines (Fung et al., 2002), pooling multinomial naı̈ve Bayes (Melville and
Sindhwani, 2009), incorporating feature annotation into locally-weighted logistic re-
gression (Das et al., 2013), incorporating constraints into the training of naı̈ve Bayes
(Stumpf et al., 2007), and converting rationales and feature annotations into con-
straints for support vector machines (Small et al., 2011; Zaidan et al., 2007). Being
classifier-specific limits their applicability when one does not know which classifier
is best suited for his/her domain and hence would like to test several classifiers, ne-
cessitating a simple and generic approach that can be utilized by several off-the-shelf
classifiers.

In this article we present a simple and yet effective approach that can incorpo-
rate the elicited rationales into the training of any off-the-shelf classifier. This article
builds upon our earlier work (Sharma et al., 2015). Our main contributions are:

– We present a simple and intuitive approach for incorporating rationales into the
training of any off-the-shelf classifier for document classification.

– We empirically evaluate our method on several document classification datasets
and show that our method can effectively incorporate rationales into the training
of naı̈ve Bayes, logistic regression, and support vector machines using binary and
tf-idf representations of the documents.

– We present results showing how much a document annotated with a label and a
rationale is worth compared to the document annotated with just the label, allow-
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ing one to judge whether the extra time spent on providing rationales is worth the
extra effort.

– We evaluate our method on user-annotated dataset provided by Zaidan et al.
(2008) and show that our approach performs well with user-annotated rationales,
which could be noisy.

– We compare our method to Zaidan et al. (2007), which was specifically designed
for incorporating rationales into the training of support vector machines, and show
that our method has comparable performance.

– We compare our method to Melville and Sindhwani (2009), which was specifi-
cally designed for incorporating feature annotations into the training of multino-
mial naı̈ve Bayes, and show that our method has comparable performance.

– We compare our method to Das et al. (2013), which was specifically designed for
incorporating feature labels into the training of locally-weighted logistic regres-
sion, and show that our method has comparable performance.

– We propose and evaluate a novel active learning approach specifically tailored for
utilizing the rationales provided by the labeler.

The rest of the article is organized as follows. In Sect. 2, we provide a brief back-
ground on eliciting rationales in the context of active learning. In Sect. 3, we describe
our approach for incorporating rationales into the training of classifiers, compare the
improvements provided by incorporating rationales into learning to traditional learn-
ing that does not use rationales, and evaluate our approach on a dataset with user-
annotated rationales. In Sect. 4, we compare our method to three baselines, Melville
and Sindhwani (2009), Zaidan et al. (2007), and Das et al. (2013). In Sect. 5, we
present an active learning method using the learning with rationales framework and
present relevant results. Finally, we discuss future work in Sect. 6, discuss related
work in Sect. 7, and conclude in Sect. 8.

2 Background

Let D be a set of document-label pairs 〈x, y〉, where the label (value of y) is known
for only a small subset L ⊂ D of documents: L = {〈x, y〉} and the rest, U = D \ L,
consists of the unlabeled documents: U = {〈x, ?〉}. We assume that each document
xi is represented as a vector of features (most commonly as a bag-of-words model
with a dictionary of predefined set of phrases, which can be unigrams, bigrams, etc.):
xi , {f i1, f i2, · · · , f in}. Each feature f ij represents the binary presence (or absence),
frequency, or tf-idf representation of the word/phrase j in document xi. Each label
y ∈ Y is a discrete-valued variable: Y , {y1, y2, · · · , yl}.

Typical greedy active learning algorithms iteratively select an informative docu-
ment 〈x∗, ?〉 ∈ U according to utility-based heuristics, query a labeler for its label y∗,
and incorporate the new document 〈x∗, y∗〉 into the training set, L. This process con-
tinues until a stopping criterion is met, usually until a given budget, B, is exhausted.

In the learning with rationales framework, in addition to querying for label y∗ of
document x∗, the active learner asks the labeler to provide a rationale, R(x∗), for
the chosen label. The rationale in its most general form consists of a subset of the
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terms that are present in document x∗: R(x∗) = {f∗k : k ∈ x∗}. Note that there
might be cases where the labeler cannot pinpoint any phrase as a rationale, in which
case R(x∗) is allowed to be empty (φ). The labeled set now contains the document-
label-rationale triplets 〈x∗, y∗, R(x∗)〉, instead of the document-label pairs 〈x∗, y∗〉.
Algorithm 1 formally describes the active learning process that elicits rationales from
the labeler.

Algorithm 1 Active Learning with Rationales
1: Input: U - unlabeled documents, L - labeled documents, θ - underlying classification model, B -

budget
2: repeat
3: x∗ = argmax

x∈U
utility(x|θ)

4: request label and rationale for this label
5: L ← L ∪ {〈x∗, y∗, R(x∗)〉}
6: U ← U \ {〈x∗〉}
7: Train θ on L
8: until Budget B is exhausted; e.g., |L| = B

The goal of eliciting rationales is to improve the learning efficiency by incorpo-
rating domain knowledge. However, it is not trivial to integrate domain knowledge
into the state-of-the-art classifiers, such as logistic regression and support vector ma-
chines, because the traditional classifiers are able to handle only 〈x, y〉 pairs and they
cannot readily handle 〈x, y,R(x)〉 triplets. In order to incorporate the additional ra-
tionales or feature annotations into learning, a few classifier-specific approaches have
been developed, that modify the way a classifier is trained. For example, Zaidan et al.
(2007) and Raghavan and Allan (2007) introduced constraints for support vector ma-
chines to incorporate rationales. Melville and Sindhwani (2009) incorporated feature
annotation into multinomial naı̈ve Bayes by training two multinomial naı̈ve Bayes
models, one on labeled instances and the other on labeled features, and used linear
pooling to combine the two models. Das et al. (2013) utilized locally-weighted logis-
tic regression to incorporate feature labels into logistic regression by locally fitting a
logistic function on instances around a small neighborhood of test instances and tak-
ing into account the labeled features. We next describe our approach that can readily
incorporate rationales into any classifier by modifying the training data, without re-
quiring changes to the training algorithm of a classifier.

3 Learning with Rationales

In this section, we first provide the formulation of our approach to incorporate ratio-
nales into learning and then present results comparing learning with rationales (LwR)
to learning without rationales (Lw/oR) on four document classification datasets. We
evaluate our approach using multinomial naı̈ve Bayes, logistic regression, and sup-
port vector machines classifiers.
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3.1 Training a Classifier Using Labels and Rationales

Like most previous work, we assume that the rationales, i.e. the phrases, returned by
the labeler already exist in the dictionary of the vectorizer. Hence, the rationales cor-
respond to features in our vector representation. It is possible that the labeler returns
a phrase that is currently not in the dictionary; for example, the labeler might return
a phrase that consists of three words whereas the representation has single words and
bi-grams only. In that case, the representation can be enriched by creating and adding
a new feature that represents the phrase returned by the labeler.

Our simple approach works as follows: we modify the features of the annotated
document 〈xi, yi, R(xi)〉 to emphasize the rationale(s) and de-emphasize the remain-
ing phrases in that document. We simply multiply the features corresponding to
phrase(s) that are returned as rationale(s) by weight r and we multiply the remaining
features in the document by weight o, where r > o, and r and o are hyper-parameters.
The modified document becomes:

xi′ = 〈r × f ij ,∀f ij ∈ R(xi); o× f ij ,∀f ij /∈ R(xi)〉 (1)

Note that the rationales are tied to documents for which they were provided as
rationales. One phrase might be a rationale for the label of one document and yet it
might not be a rationale for the label of another document. Hence, the feature weight-
ings are done at the document level, rather than globally. To illustrate this concept,
we provide an example dataset below with three documents. In these documents, the
words that are returned as rationales are underlined.

Document 1: This is a great movie.
Document 2: The plot was great, but the performance of the actors was terrible.

Avoid it.
Document 3: I’ve seen this at an outdoor cinema; great atmosphere. The movie

was terrific.
As these examples illustrate, the word “great” appears in all three documents,

but it is marked as a rationale only for Document 1. Hence, we do not weight the
rationales globally; rather, we modify only the labeled document using its particular
rationale. Table 1 illustrates the Lw/oR and LwR representations for these documents.

Our approach modifies the training data, in which the rationale features are weighted
higher than the other features, and hence our approach can incorporate rationales into
the training of any off-the-shelf classifier, without requiring changes to the training
algorithm of a classifier. In our approach, the training algorithm of a classifier uses
the modified training data to estimate the parameters of the model. This approach is
simple, intuitive, and classifier-agnostic. As we will show later, it is quite effective
empirically as well. To gain a theoretical understanding of this approach, consider
the work on regularization: the aim is to build a sparse/simple model that can capture
the most important features of the training data and thus have large weights for im-
portant features and small/zero weights for irrelevant features. For example, consider
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Table 1 The Lw/oR binary representation (top) and its LwR transformation (bottom) for Documents 1, 2,
and 3. Stop words are removed. LwR multiplies the rationales by weight r and other features by weight o.
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Lw/oR Representation (binary)

Document 1 1 1

Document 2 1 1 1 1 1 1

Document 3 1 1 1 1 1 1

LwR Transformation of the binary Lw/oR representation

Document 1 r o

Document 2 o o o o r r

Document 3 o o o o o r

the gradient of weight wj for feature fj for logistic regression with l2 regularization
(assuming y is binary with 0/1):

∇wj = C ×
∑
xl∈L

f lj × (yl − P (y = 1|xl))− wj (2)

where C is the complexity parameter that balances between fit to the data and the
model complexity. With our rationales framework, the gradient for wj will be:

∇wj = C ×

 ∑
xl∈L:f l

j∈R(xl)

r × f lj × (yl − P (yl = 1|xl))

+
∑

xl∈L:f l
j /∈R(xl)

o× f lj × (yl − P (yl = 1|xl))

− wj (3)

In Eq. 3, feature fj contributes more to the gradient of weight wj when a document
in which it is marked as a rationale is misclassified. When fj appears in another doc-
ument xk, but is not a rationale, its contribution to the gradient is muted by o. Hence,
when r > o, this framework implicitly provides more granular (per instance-feature
combination) regularization by placing a higher importance on the contribution of the
rationales versus non-rationales in each document.1

Note that in our framework, the rationales are tied to their own documents; that
is, we do not weight rationales and non-rationales globally. In addition to providing

1 The justification for our approach is similar for support vector machines. The idea is also similar
for multinomial naı̈ve Bayes with Dirichlet priors αj . For a fixed Dirichlet prior with 〈α1, α2, · · · , αn〉
setting, when o < 1 for a feature fj , its counts are smoothed more.
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Table 2 Description of the datasets: the domain, number of instances in training and test datasets, and size
of vocabulary.

Dataset Task Train Test Vocabulary

IMDB Sentiment analysis of movie reviews 25,000 25,000 27,272

NOVA Email classification (politics versus religion) 12,977 6,498 16,969

SRAA Aviation vs. auto document classification 48,812 24,406 31,883

WvsH 20Newsgroups (Windows vs. hardware) 1,176 783 4,026

more granular regularization, this approach has the benefit of allowing different ra-
tionales to contribute differently to the objective function of the trained classifier. For
example, consider the case where the number of documents in which word fj (e.g.,
“excellent”) is marked as a rationale is much more than the number of documents
in which another word fk (e.g., “good”) is marked as a rationale. In this case, the
first summation term in Eq. 3 will range over more documents for the gradient of
wj compared to the gradient of wk, giving more importance to wj than to wk. In the
traditional feature annotation work, this can be achieved only if the labeler can rank
the features; but then, it is often very difficult, if not impossible, for the labelers to
determine how much more important one feature is compared to another.

3.2 Experiments Comparing LwR to Lw/oR

In this section, we first describe the settings, datasets, and classifiers used for our
experiments and how we simulated a human labeler to provide rationales. Then, we
present results comparing the learning curves achieved with learning without ratio-
nales (Lw/oR) and learning with rationales (LwR).

3.2.1 Methodology

For this study, we used four document classification datasets. IMDB dataset consists
of movie reviews (Maas et al., 2011). Nova is a text classification dataset used in
active learning challenge (Guyon, 2011). SRAA2 dataset consists of documents that
discuss either auto or aviation. WvsH3 is a 20 Newsgroups dataset using the Win-
dows vs. hardware categories. We provide the description of these datasets in Table 2.
IMDB and WvsH had separate train and test datasets. For NOVA and SRAA datasets,
we randomly selected two-thirds of the documents as the training dataset and the re-
maining one-third of the documents were used as the test dataset. We treated the
training datasets as unlabeled set, U , in Algorithm 1.

2 http://people.cs.umass.edu/ mccallum/data.html
3 http://qwone.com/ jason/20Newsgroups/
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We used the bag-of-words representation of documents with a dictionary of pre-
defined vocabulary of phrases, consisting of only unigrams. To test whether our ap-
proach works across representations, we experimented with both binary and tf-idf
representations for these text datasets. We evaluated our method using multinomial
naı̈ve Bayes, logistic regression, and support vector machines, as these are strong
classifiers for text classification. We used the scikit-learn (Pedregosa et al., 2011)
implementation of these classifiers with their default parameter settings for the ex-
periments in this section.

To compare various strategies, we used learning curves. The initially labeled
dataset was bootstrapped using 10 documents by picking 5 random documents from
each class. A budget, B, of 200 documents was used in our experiments, because
most of the learning curves flattened out after about 200 documents. We evaluated all
the strategies using AUC (Area Under an ROC Curve) measure. The code to repeat
our experiments is available on Github (http://www.cs.iit.edu/∼ml/code/).

While incorporating the rationales into learning, we set the weights for rationales
and the remaining features of a document as 1 and 0.01 respectively (i.e., r = 1
and o = 0.01). That is, we did not overemphasize the features corresponding to
rationales but rather de-emphasized the remaining features in the document. These
weights worked reasonably well for all four datasets, across all three classifiers, and
using both binary and tf-idf data representations.

Obviously, these are not necessarily the best weight settings one can achieve;
the optimal settings for r and o depend on many factors, such as the extent of the
knowledge of the labeler (i.e., how many words a labeler can recognize), how noisy
the labeler is, and how much labeled data there is in the training set. A more practical
approach is to tune these parameters (e.g., using cross-validation) at each step of the
learning curve. For simplicity, in this section, we present results using fixed weights
for r and o as 1 and 0.01 respectively. Later, in Sect. 4, we present results by tuning
the weights r and o using cross-validation on labeled data.

3.2.2 Simulating the Human Expert

Like most literature on feature labeling, we constructed an artificial labeler to simu-
late a human labeler, to allow for large-scale experimentation on several datasets and
parameter configurations. Every time a document is annotated, we asked the artificial
labeler to mark a word as a rationale for the chosen label. We allowed the labeler to
return any one, and not necessarily the top one, of the positive words as a rationale for
a positive document and any one of the negative words as a rationale for a negative
document. If the labeler did not recognize any of the words as positive (negative) in
a positive (negative) document, we let the labeler return null (φ) as the rationale.

To make this as practical as possible in a real-world setting, we constructed the
artificial labeler to recognize only the most apparent words in the documents. For gen-
erating rationales, we chose only the positive (negative) features that had the highest
χ2 (chi-squared) statistic in at least 5% of the positive (negative) documents. This
resulted in an overly-conservative labeler that recognized only a tiny subset of the
words as rationales. For example, the artificial labeler knew about only 49 words out

http://www.cs.iit.edu/~ml/code/
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‘great’, ‘excellent’, ‘wonderful’, ‘perfect’, ‘best’, ‘amazing’, ‘beautiful’, ‘love’, ‘favorite’,
‘loved’, ‘superb’, ‘brilliant’, ‘highly’, ‘fantastic’, ‘today’, ‘performance’, ‘beautifully’,
‘also’, ‘always’, ‘both’, ‘heart’, ‘performances’, ‘touching’, ‘wonderfully’, ‘enjoyed’,
‘well’

‘worst’, ‘bad’ , ‘waste’, ‘awful’, ‘terrible’, ‘stupid’, ‘worse’, ‘boring’, ‘horrible’, ‘poor’,
‘nothing’, ‘crap’, ‘minutes’, ‘supposed’, ‘poorly’, ‘no’, ‘lame’, ‘ridiculous’, ‘plot’,
‘script’, ‘avoid’, ‘dull’, ‘mess’

Fig. 1 Words selected as rationales for positive movie reviews (top) and negative movie reviews (bottom)
for IMDB dataset.

of 27272 words for IMDB, 111 words out of 16969 words for NOVA, 67 words out
of 31883 words for SRAA, and 95 words out of 4026 words for WvsH dataset.

To determine whether the rationales selected by this artificial labeler are mean-
ingful, we printed the actual words returned as rationales for IMDB dataset in Fig. 1,
and verified that a majority of these words are human-recognizable words that could
be naturally provided as rationales for classification. For example, the positive terms
for the IMDB dataset included “great”, “excellent”, and “wonderful” and the negative
terms included “worst”, “bad”, and “waste”. As Fig. 1 shows, the rationales returned
by the artificial labeler are unigrams.

3.2.3 Results

Figure 2 presents the learning curves comparing LwR to Lw/oR on four document
classification datasets with binary and tf-idf representations and using multinomial
naı̈ve Bayes, logistic regression, and support vector machines. We made sure that
both Lw/oR and LwR work with the same set of documents, and the only difference
between them is that in Lw/oR, the labeler provides only a label, whereas in LwR,
the labeler provides both a label and a rationale. Hence, the difference between the
learning curves of Lw/oR and LwR stems not from choosing different documents but
rather from incorporating rationales into learning. Figure 2 shows that even though
the artificial labeler knew about only a tiny subset of the vocabulary, and returned any
one word, rather than the top word or all the words, as a rationale, LwR drastically
outperformed Lw/oR across all datasets, classifiers, and representations. These results
show that our method for incorporating rationales into the learning process is quite
effective.

LwR provides improvements over Lw/oR, especially at the beginning of learning,
when the labeled data is limited. LwR improves learning by enabling the classifier to
quickly identify important feature-class correlations using the rationales provided by
labeler. When the labeled data is large, Lw/oR can surpass LwR when r >> o.
Ideally, one should have r >> o when the labeled data is small and r should be
closer to o when the labeled data is large. A more practical approach would be to
tune these parameters (e.g., using cross-validation, as we later present in Sect. 4.2.2)
at each iteration of learning. We empirically found that most settings where r > o
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in LwR approach performed better than Lw/oR. In this section, for simplicity, we set
r = 1 and o = 0.01.

As discussed in Sect. 3.2.1, we used the default complexity parameters for logistic
regression and support vector machines and used Laplace smoothing for multinomial
naı̈ve Bayes. Since most features are expected to be non-rationales, in Eq. 3, most fea-
tures will appear in the second summation term, with o = 0.01. We tested whether
the improvements that LwR provides over Lw/oR are simply due to implicit higher
regularization for most of the features with o = 0.01, and hence experimented with
Eq. 2 (which is Lw/oR) using C = 0.01. We observed that setting C = 0.01 and
indiscriminately regularizing all the terms did not improve Lw/oR on most datasets
and classifiers using both binary and tf-idf representations, providing experimental
evidence that the improvements provided by LwR are not due to just higher reg-
ularization, but they are due to a more fine-grained regularization, as explained in
Sect. 3.1. We present one such result for IMDB dataset using logistic regression in
Fig. 3(a).

Similarly, since most features in LwR representation had a weight of 0.01, and
only a handful of features had a weight of 1, we repeated all the experiments using
r = 0.01 and o = 0.01 to test whether indiscriminately decreasing the weights for
all the terms in all the documents provides any improvement in Lw/oR. One would
not expect that decreasing the weights for all the terms in all the documents would
provide any improvement in learning, however, the LwR representation with r = 1
and o = 0.01 is quite similar to the representation where r = 0.01 and o = 0.01,
because all the words, except the rationale word, in a document have a weight of 0.01.
As expected, we found that for all datasets and classifiers and using both binary and
tf-idf representations, indiscriminately multiplying all the terms by 0.01, i.e. setting
r = 0.01 and o = 0.01, did not improve Lw/oR, providing further experimental
evidence that the improvements provided by LwR over Lw/oR are not just due to
placing smaller weights on all the terms. We present one such result for SRAA dataset
using support vector machines in Fig. 3(b).

Even though LwR improves performance drastically over Lw/oR, providing both
a label and a rationale is expected to take more time of the labeler than simply pro-
viding a label. The question then is how to best utilize the labeler’s time and effort:
is it better to ask for only the labels of documents or should we elicit rationales along
with the labels? To test how much a document annotated with a label and a ratio-
nale is worth, we computed how many documents a labeler would need to inspect
to achieve a target AUC performance, using Lw/oR and LwR. Table 3 and Table 4
present the number of documents required to achieve a target AUC using Lw/oR and
LwR for multimonial naı̈ve Bayes using binary and tf-idf representations.

Tables 3 and 4 show that LwR drastically accelerates learning compared to Lw/oR,
and it requires relatively very few annotated documents for LwR to achieve the same
target AUC as Lw/oR. For example, in order to achieve a target AUC of 0.95 for
SRAA dataset (using tf-idf representation with MNB classifier), Lw/oR required la-
beling 656 documents, whereas LwR required annotating a mere 29 documents. That
is, if the labeler is spending a minute per document to simply provide a label, then
it is better to provide a label and a rationale as long as providing both a label and a
rationale does not take more than 656/29 ≈ 22 minutes of labeler’s time. The re-
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Fig. 2 Comparison between LwR and Lw/oR using multinomial naı̈ve Bayes, logistic regression, and
support vector machines on four datasets: IMDB ((a), (b), and (c)), NOVA ((d), (e), and (f)), SRAA ((g),
(h), and (i)), and WvsH ((j), (k), and (l)). LwR provides drastic improvements over Lw/oR for all datasets
with binary and tf-idf representations and using all three classifiers.
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Fig. 3 (a) Results showing the effect of setting C = 0.01 for Lw/oR using binary and tf-idf represen-
tations. (b) Results showing the effect of multiplying the weights for all features by 0.01, i.e. setting
r = 0.01 and o = 0.01. Using a higher regularization, C = 0.01, for Lw/oR or indiscriminately multi-
plying the weights of all features by 0.01 does not provide improvement over Lw/oR.

sults for logistic regression and support vector machines using both binary and tf-idf
representations are similar, and hence they are omitted to avoid redundancy.

Table 3 Comparison of number of documents needed to be annotated to achieve various target AUC
performances using Lw/oR and LwR with multinomial naı̈ve Bayes using binary representation. ‘N/A’
represents that a target AUC cannot be achieved by the learning strategy.

Dataset Target AUC 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

IMDB

Lw/oR-binary 23 63 79 102 152 339 N/A N/A

LwR-binary 2 5 11 22 62 257 N/A N/A

Ratio 11.5 12.6 7.2 4.6 2.5 1.3 N/A N/A

NOVA

Lw/oR-binary 2 5 98 134 160 201 304 584

LwR-binary 2 2 5 6 11 24 51 N/A

Ratio 1 2.5 19.6 22.3 14.5 8.4 5.9 N/A

SRAA

Lw/oR-binary 6 9 25 76 100 188 294 723

LwR-binary 2 2 3 5 7 9 20 N/A

Ratio 3 4.5 8.3 15.2 14.3 20.9 14.7 N/A

WvsH

Lw/oR-binary 6 17 28 38 139 693 N/A N/A

LwR-binary 2 3 4 6 12 32 200 N/A

Ratio 3 5.7 7 6.3 11.6 21.7 N/A N/A

Zaidan et al. (2007) conducted user studies and showed that providing 5 to 11
rationales and a class label per document takes roughly twice the time of providing
only the label for documents. In our experiments, the labeler was asked to provide any
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Table 4 Comparison of number of documents needed to be annotated to achieve various target AUC
performances using Lw/oR and LwR with multinomial naı̈ve Bayes using tf-idf representation. ‘N/A’
represents that a target AUC cannot be achieved by the learning strategy.

Dataset Target AUC 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

IMDB

Lw/oR-tfidf 7 14 37 65 106 233 841 N/A

LwR-tfidf 2 4 10 16 37 164 N/A N/A

Ratio 3.5 3.5 3.7 4.1 2.9 1.4 N/A N/A

NOVA

Lw/oR-tfidf 2 2 3 3 5 12 28 126

LwR-tfidf 2 2 2 3 4 11 31 110

Ratio 1 1 1.5 1 1.2 1.1 0.9 1.1

SRAA

Lw/oR-tfidf 2 4 7 12 21 58 109 656

LwR-tfidf 2 2 3 4 6 8 13 29

Ratio 1 2 2.3 3 3.5 7.3 8.4 22.6

WvsH

Lw/oR-tfidf 5 9 17 33 57 127 380 N/A

LwR-tfidf 2 3 4 6 12 33 188 N/A

Ratio 2.5 3 4.3 5.5 4.8 3.8 2 N/A

one rationale instead of all the rationales. Hence, even though we do not know for sure
whether labelers would take more/less time in providing one rationale as opposed to
all the rationales, Tables 3 and 4 show that documents annotated with rationales are
often worth at least as two and sometimes more than even 20 documents that are
simply annotated with labels.

3.2.4 Results with User-Annotated Rationales

We evaluated our approach on user-annotated IMDB dataset provided by Zaidan et al.
(2008). The dataset consists of 1800 IMDB movie reviews for which a user provided
rationales for labeled documents. The main difference between the simulated expert
and the user-annotated dataset is that the simulated expert selected only one word as a
rationale, whereas the human highlighted many words, and sometimes even phrases,
as rationales. Simulated rationales can also be noisy; in our study, the simulated la-
beler returns any one word as a rationale, but in real life, it might not be the rationale.

We performed 5-fold cross validation and repeated each experiment 5 times for
each fold and present average results. We used tf-idf representation of the dataset. Fig-
ure 4 presents the results on user-annotated IMDB dataset comparing LwR to Lw/oR
using multinomial naı̈ve Bayes, logistic regression, and support vector machines. We
found that LwR performed better than Lw/oR using the default weight settings (r = 1
and o = 0.01). However, user-annotated rationales can be really noisy, where users
do not necessarily pinpoint just the important words, but rather highlight phrases (or
even sentences) that span several words. When the expert is noisy, the trust in the ex-
pert should be reflected in the weights r and o. If the user is trustworthy and precise
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in pin-pointing the rationales, then r should be much greater than o, but if the user is
noisy, then r should be relatively closer to o.

To test the effect of weights r and o on noisy rationales, we experimented with
various settings for r and o between 0.001 and 1000. For user-annotated IMDB
dataset, we found that weight settings where r was closer to o worked better than
weight settings where r was much greater than o. In general, the default setting of
r=1 and o=0.01 worked well for the simulated labeler case and the setting r = 1 and
o = 0.1 worked well for the user-annotated case.
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Fig. 4 Comparison of LwR to Lw/oR on user-annotated IMDB dataset with tf-idf representation using
(a) multinomial naı̈ve Bayes, (b) logistic regression, and (c) support vector machines. LwR with default
weight setting of r = 1 and o = 0.01 provides improvements over Lw/oR using all three classifiers. Since
user-annotated rationales can be rather noisy, LwR with weights r = 1 and o = 0.1 performs better than
LwR with weights r = 1 and o = 0.01.

4 Comparison with Baselines

In this section, we empirically compare our approach to incorporate rationales with
other classifier-specific approaches from the literature. Our experiments were based
on three classifiers: multinomial naı̈ve Bayes, logistic regression, and support vector
machines. Hence, we looked for classifier-specific approaches in the literature that
focused on these three classifiers.

When the underlying classifier is support vector machines, the closest work to
ours is that of Zaidan et al. (2007), in which they incorporated rationales into the
training of support vector machines, so we chose this as a baseline for our approach
using support vector machines. When the underlying classifier is multinomial naı̈ve
Bayes, we are not aware of any approach specifically developed to incorporate ra-
tionales into learning. The closest work to learning with rationales is feature annota-
tion (e.g., (Melville and Sindhwani, 2009), (Raghavan and Allan, 2007), and (Stumpf
et al., 2009)), in which labelers annotate features independent of the documents. Even
though learning with rationales is not the same as feature annotation, learning with
rationales can be treated as feature annotation if the underlying rationales correspond
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to features. Melville and Sindhwani (2009) presented pooling multinomials to incor-
porate feature annotations into the training of multinomial naı̈ve Bayes, hence we
chose this as a baseline for our approach using multinomial naı̈ve Bayes. We are not
aware of any approach specifically developed to incorporate rationales into the train-
ing of logistic regression classifier, and the closest work is that of Das et al. (2013),
which was specifically designed to incorporate feature annotation into the training
of locally-weighted logistic regression, and hence we chose it as a baseline for our
approach using logistic regression.

4.1 Description of the Baselines

4.1.1 Description of Zaidan et al. (2007)

Zaidan et al. (2007) presented a method to incorporate rationales into the training of
support vector machines. They asked labelers to highlight the most important words
and phrases as rationales to justify why a movie review is labeled as positive or nega-
tive. For each document, xi, annotated with a label and one or more rationales, one or
more contrast examples, vij (where j is the number of rationales for document xi), is
created that resembles xi, but lacks the evidence (rationale) that the annotator found
significant, and new examples xij def

= xi−vij
µ along with their class labels,

〈
xij , yi

〉
,

are added to the training set, where µ controls the desired margin between the original
and contrast examples. The soft-margin SVM chooses w and ξi to minimize:

min
w

1

2
‖w‖2 + C(

n∑
i=1

ξi) (4)

subject to the constraints:

(∀i)w · xi · yi ≥ 1− ξi (5)

(∀i)ξi ≥ 0 (6)

where xi is a training document, yi ∈ {−1,+1} is the class, and ξi is the slack
variable. The parameter C > 0 controls the relative importance of minimizing w and
cost of the slack. In their approach, they add the contrast constraints:

(∀i, j)w · (xi − vij) · yi ≥ µ(1− ξij) (7)

where ξij > 0 is the associated slack variable. The contrast constraints have their own
margin, µ, and the slack variables have their own cost, so their objective function for
support vector machines becomes:

min
w

1

2
‖w‖2 + C(

n∑
i=1

ξi) + Ccontrast(
∑
i,j

ξij) (8)

In Zaidan et al. (2007), for each document, one contrast example, vij , and several
pseudoexamples, xij , for the rationales are created. Hence, according to Eq. 8, the
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hyperplane is determined by whether the contrast examples or the pseudoexamples
add to the loss function or participate in the optimization as a support vector. Ana-
lytically, our approach is equivalent to Zaidan et al. (2007) when all of the following
three conditions hold: (i) C = Ccontrast, (ii) o = 1 and r = 1

µ , and (iii) in our
approach, if a document xi becomes a support vector, then in Zaidan et al. (2007)
approach, both the contrast example, vij , and pseudoexamples, xij , for the document
xi also become support vectors.

4.1.2 Description of Melville and Sindhwani (2009)

Melville and Sindhwani (2009) presented an approach to incorporate feature labels
and instance labels into the training of a multinomial naı̈ve Bayes classifier. They
build two multinomial naı̈ve Bayes models: one trained on labeled instances and the
other trained on labeled features. The two models are then combined using linear
pooling (Melville et al., 2009) to aggregate the conditional probabilities, P (fj |yk)
using:

P (fj |yk) = βPe(fj |yk) + (1− β)Pf (fj |yk) (9)

where yk is the class, Pe(fj |yk) and Pf (fj |yk) represent the probabilities assigned
by the model trained on labeled instances and the model trained on labeled features
respectively, and β is the weight for combining these two conditional probability
distributions.

In order to build a model trained on labeled features, Melville et al. (2009) as-
sumed that a positive term, f+, is more likely to appear in a positive document than
in a negative document and a negative term, f−, is more likely to appear in a negative
document than in a positive document. To build a model trained on labeled features,
they specified a parameter for polarity level, γ, to measure the likeliness of positive
(negative) term to occur in a positive (negative) document compared to a negative
(positive) document. Eq. 10 computes the conditional probabilities of the unknown
terms, fu, given class labels, ‘+’ and ‘−’.

P (fu|+) =
n(1− 1/γ)

(p+ n)(m− p− n)
,

and P (fu|−) =
n(1− 1/γ)

(p+ n)(m− p− n)

(10)

where P (fu|+) and P (fu|−) are the conditional probabilities of the unknown terms
given class, m is the number of terms in the dictionary, p is the number of positive
terms labeled by the labeler, and n is the number of negative terms labeled by the
labeler.

The main difference between our approach and Melville and Sindhwani (2009)
is that in our approach, rationales are tied to the documents in which they appear as
rationales, whereas in Melville and Sindhwani (2009), the feature labels are weighted
globally, and all positive words are equally positive, and all negative words are equally
negative. Our approach provides more granular (per instance-feature combination)
regularization as described in Sect. 3.1. Hence, there is no parameter setting where
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our approach is equivalent to Melville and Sindhwani (2009), however, as we show in
Sect. 4.2, empirically, our approach performs quite similar to Melville and Sindhwani
(2009).

4.1.3 Description of Das et al. (2013)

Das et al. (2013) proposed an approach for incorporating feature labels into the train-
ing of a locally-weighted logistic regression classifier (Cleveland and Devlin, 1988).
In feature annotation, each feature (for example, the term) is labeled by the human.
For example, for a binary sentiment classification task, the terms are labeled as posi-
tive or negative. Locally-weighted logistic regression fits one logistic function per test
instance, where the objective function for the logistic regression model is modified so
that the training instances that are closer to the test instance are given higher weights
compared to the training instances that are farther away from the test instance. When
computing similarity between the test instances and training instances, in addition
to regular document similarity, Das et al. (2013) takes labeled features into account:
when a test document shares labeled features with a training document, it computes
similarity between the test document and the training document based on the labeled
features and the label of the training instance.

Logistic regression maximizes the conditional log likelihood of data as:

lw(θ) =

N∑
i=1

log(Pθ(y
i|xi)) (11)

Locally-Weighted Logistic Regression (LWLR) fits a logistic function around a
small neighborhood of test instance, xt, where the training instances, xi, that are
closer to xt are given higher weights compared to the training instances that are
farther away from xt. LWLR maximizes the conditional log likelihood of data as:

lw(θ) =

m∑
i=1

w(xt, xi) log(Pθ(y
i|xi)) (12)

where, the weight w(xt, xi) is a kernel function:

w(xt, xi) = exp

(
−f(x

t, xi)2

k2

)
(13)

where f(xt, xi) is a distance function and k is the kernel width.
Das et al. (2013) used LWLR for its ability to weight training instances differ-

ently, rather than for its ability to learn a non-linear decision boundary. LWLR assigns
higher weights to documents that are more similar to xt, and lower weights to doc-
uments that are less similar to xt. They used cosim(xt, xi) = 1−cos(xt, xi) as the
baseline distance function to measure similarity between documents. To incorporate
feature labeling into LWLR, they changed the baseline distance function to include
two components: (i) distance between documents xt and xi based on all the words
present in xt and xi, i.e. cosim(xt, xi) and (ii) distance between documents xt and
xi based on all the features that have been labeled by user.
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The second component of the distance function is computed as the difference
between contributions of class-relevant and class-irrelevant features in xt, where xt

is l2-normalized tf-idf feature vector. Considering binary classification, y ∈ {+,−},
if the label of xi is ‘+’, the class-relevant features in xt will be all the features that
have been labeled as ‘+’, and the class-irrelevant features in xt will be all the features
that have been labeled as ‘−’. Similarly, if the label of xi is ‘−’, the class-relevant
features in xt will be all the features that have been labeled as ‘−’, and the class-
irrelevant features in xt will be all the features that have been labeled as ‘+’. Let R
be a set of class-relevant features in xt and let I be a set of class-irrelevant features
in xt. Their modified distance function for incorporating feature labels into LWLR
becomes:

f(xt, xi) = cosim(xt, xi)

∑
j∈R

xtj −
∑
j∈I

xtj

 (14)

Since the above distance function can sometimes become negative, the weightw(xt, xi)
is computed as:

w(xt, xi) = exp

(
−max(0, f(xt, xi))2

k2

)
(15)

For simplicity, in Eq. 14, we present formulation of their approach for binary clas-
sification. We refer the reader to Das et al. (2013) for a general formulation of their
approach for multi-class classification.

Next, we present the results to empirically compare our classifier-agnostic ap-
proach with the three classifier-specific approaches: Melville and Sindhwani (2009),
Zaidan et al. (2007), and Das et al. (2013).

4.2 Results

In this section, we first describe the experimental settings used to compare our ap-
proach to three baselines, Zaidan et al. (2007), Melville and Sindhwani (2009), and
Das et al. (2013), and then present the results for empirical comparison. Note that
the results for our approach and the baselines depend on hyper-parameters used in
the experiments, hence, in order to have a fair comparison between our approach and
the baselines, we compared them under two settings. First, we compared them using
the best possible hyper-parameter settings. We ran several experiments using a wide
range of values for all hyper-parameters and report the best possible performance,
measured as the highest area under the learning curve, for each method. This is es-
sentially equivalent to tuning parameters using the test data itself. We performed this
test to observe how different methods would behave at their best. Second, we com-
pared them using hyper-parameters that were optimized at each iteration of learning
using cross validation on the labeled set, L obtained including and up to that iteration
of active learning. We also provide results for learning without rationales (Lw/oR)
using best parameters and using hyper-parameters optimized using cross validation
on labeled data.
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We used the same four document classification datasets described in Sect. 3.2.1.
Since the results in Sect. 3.2 showed that tf-idf representation gave better results
than the binary representation, in this section, we present results using only the tf-idf
representation of the datasets. We repeated each experiment 10 times, starting with a
different bootstrap, and report average results on 10 different trials.

Our method using multinomial naı̈ve Bayes classifier (LwR-MNB) needs to tune
the following hyper-parameters: (i) the Dirichlet prior, α, for the features (ii) weight
for the rationale features, r, and (iii) weight for the other features, o. The method in
Melville and Sindhwani (2009) needs to tune the following hyper-parameters: (i)
smoothing parameter for the instance model, α, (ii) polarity level for the feature
model, (γ), and (iii) weights for combining the instance model and feature model
(β and 1− β respectively).

Our method using support vector machines (LwR-SVM) needs to tune the follow-
ing parameters: (i) regularization parameter, C, (ii) weight for the rationale features,
r, and (iii) weight for the other features, o. Zaidan et al. (2007) approach needs to
tune the following hyper-parameters: (i) regularization parameter, C, for the pseu-
doexamples, xij , (ii) regularization parameter, Ccontrast, for the contrast examples,
vij , and (iii) margin between the original and contrast examples, µ.

Das et al. (2013) used locally-weighted logistic regression specifically to incorpo-
rate feature labels into learning. Our method to incorporate rationales is independent
of the classifier, hence we compared our approach to Das et al. (2013) using both
logistic regression and locally-weighted logistic regression to see whether the im-
provements provided by incorporating rationales stem from using locally-weighted
logistic regression. Our method using locally-weighted logistic regression classifier
(LwR-LWLR) needs to tune the following parameters: (i) regularization parameter,
C, (ii) kernel width, k, (iii) weight for the rationale features, r, and (iv) weight for the
other features, o. Our method using vanilla logistic regression classifier (LwR-LR)
needs to tune the following parameters: (i) regularization parameter, C, (ii) weight
for the rationale features, r, and (iii) weight for the other features, o. Das et al. (2013)
approach needs to tune the following parameters: (i) regularization parameter, C and
(ii) kernel width, k.

For each instance, xt, in the test data, LWLR builds a model around a small neigh-
borhood of xt, based on distances between the test instance and training instances,
xi. This method requires learning a logistic function for each test instance, and is
therefore computationally very expensive. In this study, we compare our approach to
the baselines using best hyper-parameters, which requires repeating each experiment
several times with all possible hyper-parameter combinations. Moreover, our cross
validation experiments require tuning hyper-parameters at each step of learning. To
reduce the running time of LWLR experiments, we reduced the test data by randomly
subsampling 500 test instances. To further reduce the running time, we searched for
one parameter at a time, fixing others; that is, we did not perform a joint search over
all the hyper-parameters for LWLR experiments.
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4.2.1 Comparison to Baselines under Best Parameter Settings

In this section, we present results comparing the best learning curves obtained using
our approach and the baselines. We bootstrapped the initial model using 10 instances
chosen randomly, picking 5 documents from each class. At each iteration of learning,
we selected 10 documents randomly from the unlabeled pool, U . We repeated the ex-
periments using a wide range of hyper-parameters for our approach and the baselines
and plotted the best learning curve for each method.

For our approach using multinomial naı̈ve Bayes, we searched for α between
10−6 and 102. For our approach using support vector machines, we searched for C
between 10−2 and 102. For our approach using locally-weighted logistic regression,
we searched for C between 10−3 and 103 and k between 0.1 and 1. For our approach
using multinomial naı̈ve Bayes and support vector machines, we searched for weights
r and o between 10−4 and 107. For our approach using locally-weighted logistic
regression, we searched for weights r and o between 10−3 and 103. In Zaidan et al.
(2007), for C and Ccontrast, we searched for values between 10−3 and 103, and µ
between 10−2 and 102. In Melville and Sindhwani (2009), we searched for α between
10−6 and 102, γ between 1 and 105, and β between 0 and 1. In Das et al. (2013), we
searched for C between 10−3 and 103 and k between 0.1 and 1.

Figure 5 presents the learning curves comparing LwR-SVM to Zaidan et al.
(2007), LwR-MNB to Melville and Sindhwani (2009), and LwR-LWLR to Das et al.
(2013). These results show that under best parameter settings, our classifier-agnostic
approach performs as good as other classifier-specific approaches. The results for our
approach using logistic regression and locally-weighted logistic regression are very
similar under best parameter settings, however, LWLR is computationally very ex-
pensive. We omit the learning curves for LwR-LR in Fig. 5, as it is very similar to
LwR-LWLR.

We report the hyper-parameter values that gave us the best possible learning
curves (learning curves with the highest area under the AUC curve) for our approach
and the baselines in Tables 5, 6, and 7. For our approaches, LwR-SVM, LwR-MNB,
and LwR-LWLR, as expected, r > o gave the best results. For Zaidan et al. (2007),
we found that µ = 0.1 and settingC <= Ccontrast gave the best results. Melville and
Sindhwani (2009) used the weights for combining the instance model (β) and feature
model (1 − β) as 0.5 and 0.5 respectively. However, we found that for the four text
datasets we used in this study, placing a much higher weight (e.g. 0.9 or 0.99) on the
instance model gave better results than using their default weights for combining the
two models. Note that if we place a weight of 1 for the instance model (i.e. β = 1),
the weight for the feature model will be zero, and this will give the same results as
Lw/oR-MNB. Das et al. (2013) reported that setting k =

√
0.5 for LWLR-FL gave

reasonable good macro-F1 scores, however, for the four text datasets, we found that
k > 0.4 gave good results for AUC measure.

4.2.2 Comparison to Baselines by Tuning Parameters using Cross Validation

In this section, we present the results comparing our approach with the baselines un-
der the setting where we search for optimal hyper-parameters using cross validation
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Fig. 5 Results comparing our approach to the three baselines using best hyper-parameters. LwR-MNB
performs similar to Melville and Sindhwani (2009) on all four datasets ((a), (d), (g), and (j)). LwR-LWLR
performs similar to Das et al. (2013) on all four datasets ((b), (e), (h), and (k)). LwR-SVM performs similar
to Zaidan et al. (2007) on all four datasets ((c), (f), (i), and (l)).
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Table 5 Hyper-parameter settings for Lw/oR-SVM, LwR-SVM, and Zaidan et al. (2007) that gave the
best learning curves.

Dataset
Lw/oR-SVM LwR-SVM Zaidan et al. (2007)

C C r o C Ccontrast µ

IMDB 0.1 0.1 10 1 0.5 0.5 0.1

NOVA 10 0.1 10 1 1 1 0.1

SRAA 10 10 1 0.01 0.1 10 0.1

WvsH 0.1 10 1 0.1 0.2 0.2 0.1

Table 6 Hyper-parameter settings for Lw/oR-MNB, LwR-MNB, and Melville and Sindhwani (2009) that
gave the best learning curves.

Dataset
Lw/oR-MNB LwR-MNB Melville and Sindhwani (2009)

α α r o α γ β

IMDB 1 1 100 1 1 100, 000 0.99

NOVA 0.1 1 250 10 0.1 100, 000 0.9

SRAA 0.01 1 125 0.1 10 100, 000 0.99

WvsH 1 1 75 1 0.9 100, 000 0.9

Table 7 Hyper-parameter settings for Lw/oR-LWLR, LwR-LWLR, and Das et al. (2013) that gave the
best learning curves.

Dataset
Lw/oR-LWLR LwR-LWLR Das et al. (2013)

C k C k r o C k

IMDB 1 0.7 1 0.7 10 1 1000 1

NOVA 1000 1 1000 1 1 0.1 1000 1

SRAA 1000 1 1000 1 1 0.01 100 0.4

WvsH 10 0.5 10 0.5 1 0.1 1000 1

on labeled data, L, at each iteration of learning. We performed 5 fold cross validation
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on L and optimized all the hyper-parameters for the AUC measure, since AUC is the
target performance measure in our experiments.

AUC of a classifier is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance.
In an active learning setting, the labeled data (L) is severely limited, consisting of
only a few instances. When we use 5 fold cross validation, each fold containing only
20% of the instances is evaluated to produce an AUC score, which does not give an
accurate measure of ranking. Hence, in order to fully utilize the scores assigned by
the classifier to instances in all the folds, we merge-sorted the instances in all the
folds using their assigned scores, and computed AUC score based on instances in all
the folds. This is similar to the approach described in Fawcett (2006).

Figure 6 presents the learning curves comparing LwR-SVM to Zaidan et al.
(2007), LwR-MNB to Melville and Sindhwani (2009), and LwR-LWLR to Das et al.
(2013). As these results show, when we optimize the hyper-parameters using cross
validation on training data, LwR-SVM performs very similar to Zaidan et al. (2007),
LwR-MNB performs very similar to Melville and Sindhwani (2009), and LwR-LWLR
performs very similar to Das et al. (2013). We performed t-tests comparing the learn-
ing curves obtained using our method and the baselines and found that the differences
are not statistically significant in most cases.

The results for our approach using logistic regression (LwR-LR) and using locally-
weighted logistic regression (LwR-LWLR) have some differences, when the hyper-
parameters are optimized using cross validation on labeled set. For experiments using
LWLR, we did not perform a grid search for the parameters, and optimized only one
parameter at a time, which could result in sub-optimal hyper-parameters. Moreover,
our approach using LWLR needs to tune four hyper-parameters (C, k, r, and o) and
Das et al. (2013) needs to tune two hyper-parameters (C and k).

These results show that our approach to incorporate rationales is as effective as
three other approaches from the literature, Zaidan et al. (2007), Melville and Sind-
hwani (2009), and Das et al. (2013), that were designed specifically for incorporating
rationales and feature annotations into support vector machines, multinomial naı̈ve
Bayes, and locally-weighted logistic regression respectively. Our approach has the
additional benefit of being independent of the underlying classifier.

5 Active Learning with Rationales

So far we have seen that LwR provides drastic improvements over Lw/oR and our
approach performs as well as other classifier-specific approaches in the literature.
In previous sections, we made sure that both LwR and Lw/oR saw the same docu-
ments and we chose those documents randomly from the unlabeled set of documents.
Active learning (Settles, 2012) aims to carefully choose instances for labeling to im-
prove over random sampling. Many successful active learning approaches have been
developed for annotating instances (Lewis and Gale, 1994; Seung et al., 1992; Roy
and McCallum, 2001). Ramirez-Loaiza et al. (2016) provide an empirical evaluation
of common active learning strategies. Several approaches have been developed for
annotating features (Druck et al., 2009; Das et al., 2013) and rotating between an-
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Fig. 6 Results comparing our approach to the three baselines with hyper-parameters tuned using cross-
validation on labeled data. LwR-MNB performs similar to Melville and Sindhwani (2009) on all four
datasets ((a), (d), (g), and (j)). LwR-LWLR performs similar to Das et al. (2013) on all four datasets ((b),
(e), (h), and (k)). LwR-SVM performs similar to Zaidan et al. (2007) on all four datasets ((c), (f), (i), and
(l)).
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notating instances and annotating features (Raghavan and Allan, 2007; Druck et al.,
2009; Attenberg et al., 2010; Melville and Sindhwani, 2009). In this section, we in-
troduce an active learning strategy that is specifically tailored for the learning with
rationales framework.

5.1 Active Learning to Select Documents based on Rationales

Arguably, one of the most successful active learning strategies for text categorization
is uncertainty sampling, which was first introduced by Lewis and Catlett (1994) for
probabilistic classifiers and later formalized for support vector machines by Tong
and Koller (2001). The idea is to label instances for which the underlying classifier
is uncertain, i.e., the instances that are close to the decision boundary of the model.
It has been successfully applied to text classification tasks in numerous publications,
including Zhu and Hovy (2007), Sindhwani et al. (2009), and Segal et al. (2006).

We adapt uncertainty sampling for the learning with rationales framework. To put
simply, when the underlying model is uncertain about an unlabeled document, we
examine whether the unlabeled document contains words/phrases that were returned
as rationales for any of the existing labeled documents. More formally, letR+ denote
the union of all the rationales returned for the positive documents so far. Similarly,
let R− denote the union of all the rationales returned for the negative documents so
far. An unlabeled document can be one of these three types:

– Category 1: has no words in common with R+ and R−.
– Category 2: has word(s) in common with either R+ or R− but not both.
– Category 3: has at least one word in common with R+ and at least one word in

common with R−.

One would imagine that annotating each of the Category 1, Category 2, and Cat-
egory 3 documents has its own advantage. Annotating Category 1 documents has
the potential to elicit new domain knowledge, i.e., terms that were not provided as
a rationale for any of the existing labeled documents. It also carries the risk of con-
taining little to no useful information for the classifier (e.g., a neutral review). For
Category 2 documents, even though the document shares a word that was returned as
a rationale for another document, the classifier is still uncertain about the document
either because that word is not weighted high enough by the classifier and/or there
are other words that pull the classification decision in the other direction, making the
classifier uncertain. Category 3 documents contain conflicting words/phrases and are
potentially harder cases, and annotating Category 3 documents has the potential to
resolve conflicts for the classifier.

Building on our previous work on uncertainty sampling (Sharma and Bilgic,
2013), we devised an active learning approach, where given uncertain documents,
the active learner prefers documents of Category 3 over Categories 1 and 2. We call
this strategy as uncertain-prefer-conflict (UNC-PC) because Category 3 documents
carry conflicting words (with respect to rationales) whereas Category 1 and Cate-
gory 2 documents do not. The difference between this approach and our previous
work (Sharma and Bilgic, 2013) is that in Sharma and Bilgic (2013), we selected
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uncertain instances based on model’s perceived conflict whereas in this work, we are
selecting documents based on conflict caused by the domain knowledge provided by
the labeler. Next, we compare the vanilla uncertainty sampling (UNC) and UNC-PC
strategies using LwR to see if using uncertain Category 3 documents could improve
active learning.

5.2 Active Learning with Rationales Experiments

We used the same four text datasets and evaluated our method UNC-PC using multi-
nomial naı̈ve Bayes, logistic regression, and support vector machines. For the active
learning strategies, we used a bootstrap of 10 random documents, and labeled five
documents at each round of active learning. We used a budget of 200 documents for
all methods. UNC simply picks the top five uncertain documents, whereas UNC-PC
looks at top 20 uncertain documents and picks five uncertain documents giving pref-
erence to the conflicting cases (Category 3) over the non-conflicting cases (Category
1 and Category 2). We repeated each experiment 10 times starting with a different
bootstrap at each trial and report the average results.

Table 8 Significant W/T/L counts for UNC-PC versus UNC. UNC-PC improves over UNC significantly
for all three classifiers and most of the datasets.

UNC-PC versus UNC MNB LR SVM

Win IMDB, WvsH SRAA, NOVA SRAA, NOVA, WvsH

Tie NOVA WvsH -

Loss SRAA IMDB IMDB

Figure 7 presents the learning curves comparing UNC-PC with UNC for multi-
nomial naı̈ve Bayes. Since the performances of both LwR and Lw/oR using tf-idf
representation are better than the performance using binary representation, we com-
pared UNC-PC to UNC for LwR using only the tf-idf representation. We see that for
multinomial naı̈ve Bayes, UNC-PC improves over traditional uncertainty sampling,
UNC, on two datasets, and hurts performance on one dataset. The trends are similar
for other classifiers and hence we omit them for simplicity.

We performed paired t-tests to compare the learning curves of UNC-PC with
the learning curves of UNC, to test whether the average of one learning curve is
significantly better or worse than the average of the other learning curve. If UNC-PC
has a higher average AUC than UNC with a t-test significance level of 0.05 or better,
it is a Win, if it has significantly lower performance, it is a Loss, and if the difference
is not statistically significant, the result is a Tie.

Table 8 shows the datasets for which UNC-PC wins, ties, or loses compared to
UNC. The t-test results show that UNC-PC wins on two out of four datasets for
MNB and LR, and wins on three datasets for SVM. However, as these results and
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Fig. 7 Comparison of LwR using UNC and UNC-PC for all datasets with tf-idf representation and using
multinomial naı̈ve Bayes classifier.

Fig. 7 show, even though UNC-PC has potential, it is far from perfect, leaving room
for improvement.

6 Future Work

An exciting future research direction is to allow the labelers to provide richer feed-
back. This is especially useful for resolving conflicts that stem from seemingly con-
flicting words and phrases. For example, for the movie review “The plot was great,
but the performance of the actors was terrible. Avoid it.” the positive word “great” is
at odds with the negative words “terrible” and “avoid”. If the labeler is allowed to pro-
vide richer feedback, stating that the word “great” refers to the plot, “terrible” refers
to the performance, and “avoid” refers to the movie, then the learner might be able to
learn to resolve similar conflicts in other documents. However, this requires a conflict
resolution mechanism in which the labeler can provide rich feedback and a learner
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that can utilize such rich feedback. This is an exciting future research direction that
we would like to pursue.

We showed that our strategy to incorporate rationales works well for text classifi-
cation. The proposed framework can potentially be used for non-text domains where
the domain experts can provide rationales for their decisions, such as medical domain
where the doctor can provide a rationale for his/her diagnosis and treatment deci-
sions. In our framework, we place higher weights on rationales and lower weights on
other features, thus our approach can be applied to domains where features represent
presence/frequencies of characteristics, such as whether a patient is infant/young/old,
whether the cholesterol level is low/medium/high, etc. Each domain is expected to
have its own unique research challenges and working with other domains is another
interesting future research direction. Evaluating the framework on non-text domains
is left as future work.

7 Related Work

The closest related work deals with eliciting rationales from users and incorporating
them into the learning. Zaidan et al. (2007) and Zaidan et al. (2008) incorporated
rationales into the training of support vector machines for text classification. We pro-
vided a detailed description of Zaidan et al. (2007) in Sect. 4.1.1 and chose it as one
of the baselines for our approach.

Donahue and Grauman (2011) extended the work of Zaidan et al. (2007) to in-
corporate rationales for visual recognition task. They proposed eliciting two forms of
visual rationales from the labelers. First, they asked labelers to mark spatial regions in
an image as rationales for choosing a label for the image. Second, they asked labelers
to comment on the nameable visual attributes (based on a predefined vocabulary of
visual attributes) that influenced their choices the most. For both forms of rationales,
they created contrast examples that lack the rationale and incorporated the contrast
examples and pseudoexamples into the training of support vector machines.

Parkash and Parikh (2012) proposed a method to incorporate labels and feature
feedback for image classification task. They asked users to provide labels for images,
and for each image that was predicted incorrectly by the classifier, they asked users
to provide explanations in the form of attributed-based feedback. The attribute feed-
back was based on relative attributes (Parikh and Grauman, 2011) that are mid-level
concepts that can be shared across various class labels. In their approach, the feature
feedback provided by the labelers is propagated to other unlabeled images that match
the explanation provided by the labelers.

However, much of the work presented above is specific to a particular classifier,
such as support vector machines. The framework we present is classifier-agnostic
and we showed that our method works across classifiers and feature representations.
Additionally, we provide a novel active learning approach tailored for the learning
with rationales framework, whereas most of the previous work used random sampling
and/or traditional uncertainty sampling for selecting documents for annotation.

Druck et al. (2009) proposed an approach for sequence labeling task in which
the active learner selects useful queries and asks labelers to provide annotation for
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features, rather than annotation for instances. Similarly, Small et al. (2011) presented
an approach for incorporating feature annotations into training of support vector ma-
chines for text classification. In their approach, they asked labelers to provide a ranked
list of features, and added additional constraints into support vector machines to ex-
ploit the ranked features. Das et al. (2013) asked users to identify features from a
list of labeled documents, and suggest features that would help the classifier to label
future documents. They presented an approach to incorporate feature labels using a
locally-weighted logistic regression classifier. In these three approaches, the learner
elicits only feature annotations from labelers, whereas in our approach, the learner
elicits a label and a rationale for documents.

Another line of related work is active learning with instance and feature anno-
tations. For example, Melville and Sindhwani (2009) and Attenberg et al. (2010)
presented a pooling multinomials approach to incorporate labeled instances and la-
beled features into multinomial naı̈ve Bayes. We provided a detailed description of
Melville and Sindhwani (2009) in Sect. 4.1.2 and chose it as one of the baselines for
our approach.

Raghavan and Allan (2007) and Raghavan et al. (2006) proposed tandem learn-
ing to incorporate instance annotations and feature feedback into support vector ma-
chines. For features, they asked asked labelers to provide feedback as to whether the
features are discriminative or not. They incorporated feature feedback by scaling all
the important features by a higher weight, a, and scaling all the other features by a
lower weight, b. The difference between their approach and our approach is that in
their approach, features are not tied to any documents, and they scale all the impor-
tant features that appear in all the documents by weight a and all other features by
weight b, where a = 10 and b = 1, whereas in our approach, rationales are tied to
the documents in which they appear as rationales and thus, our approach provides a
more granular regularization, as explained in Sect. 3.1.

8 Conclusion

We introduced a novel framework to incorporate rationales into active learning for
document classification. Our simple strategy to incorporate rationales can utilize any
off-the-shelf classifier. The empirical evaluations on four text datasets with binary
and tf-idf representations and three classifiers showed that our proposed method uti-
lizes rationales effectively. We compared our classifier-agnostic approach to three
classifier-specific approaches from the literature and showed that our method per-
forms at least as well. Additionally, we presented an active learning strategy that
is tailored specifically for the learning with rationales framework and empirically
showed that it improved over traditional active learning on at least two out of four
datasets using multinomial naive Bayes, logistic regression, and support vector ma-
chines.
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