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Abstract

Integrated Gradients (IG) as well as its variants are well-
known techniques for interpreting the decisions of deep neu-
ral networks. While IG-based approaches attain state-of-
the-art performance, they often integrate noise into their ex-
planation saliency maps, which reduce their interpretabil-
ity. To minimize the noise, we examine the source of
the noise analytically and propose a new approach to re-
duce the explanation noise based on our analytical find-
ings. We propose the Important Direction Gradient Integra-
tion (IDGI) framework, which can be easily incorporated
into any IG-based method that uses the Reimann Integra-
tion for integrated gradient computation. Extensive exper-
iments with three IG-based methods show that IDGI im-
proves them drastically on numerous interpretability met-
rics. The source code for IDGI is available at https:
//github.com/yangruo1226/IDGI.

1. Introduction
With the deployment of deep neural network (DNN)

models for safety-critical applications such as autonomous
driving [5–7] and medical diagnostics [10, 24], explaining
the decisions of DNNs has become a critical concern. For
humans to trust the decision of DNNs, not only the model
must perform well on the specified task, it also must gen-
erate explanations that are easy to interpret. A series of ex-
planation methods (e.g., gradient-based saliency/attribution
map approaches [21, 22, 29, 33, 36, 38, 43, 46] as well as
many that are not based on gradients [4, 11, 13, 19, 25, 27,
30, 32, 35, 39, 40, 42, 47, 48]) have been developed to con-
nect a DNN’s prediction to its input. Among them, In-
tegrated Gradients (IG) [43], a well-known gradient-based
explanation method, and its variants [22, 46] have attracted
significant interest due to their state-of-the-art explanation
performance and desirable theoretical properties. However,
we observe that explanation noise exists in the attribution
generated by these IG methods (please see Fig. 1). In this
research, we investigate IG-based methods, study the expla-
nation noise introduced by these methods, propose a frame-

Figure 1. Saliency/attribution map of the existing IG-based meth-
ods and those with our method on explaining the prediction from
InceptionV3 model. Our method significantly reduces the noise in
the saliency map created by these IG-based methods.

work to remove the explanation noise, and empirically val-
idate the effectiveness of our approach.

A few recent IG-based methods (e.g., [38] [22], [46],
[41]) have been proposed to address the noise issue.
Kapishnikov et al. [22] provide the following main reasons1

that could generate the noise: 1) DNN model’s shape often
has a high curvature; and 2) The choice of the reference
point impacts explanation. They propose Guided Integrated
Gradients (GIG) [22], which tackles point #1 by iteratively
finding the integration path that tries to avoid the high cur-
vature points in the space. Blur Integral Gradients [46], on
the other hand, shows that the noise could be reduced by
finding the integration path through the frequency domain
instead of the original image domain. Formally, it finds the
path by successively blurring the input via a Gaussian blur
filter. Sturmfels et al. [41] tackle point #2 by performing the
integration from multiple reference points, while Smilkov
et al. [38] aggregate the attribution with respect to multiple
Gaussian noisy inputs to reduce the noise. Nevertheless,
all IG-based methods share a common point in that they
compute the integration of gradients via the Riemann inte-
gral. We highlight that, the integration calculation by the
existing methods fundamentally introduces the explanation
noise. To this end, we offer a general solution that elimi-

1 [22] mentions the accuracy of integration is also a reason to generate
the noise, but this is not the focus of existing IG methods and this paper.

https://github.com/yangruo1226/IDGI
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nates the noise by examining the integration directions from
the explanation perspective.

Specifically, we investigate each computation step in the
Riemann Integration and then theorize about the noises’ ori-
gin. Each Riemann integration calculation integrates the
gradient in the original direction—it first computes the gra-
dient with respect to the starting point of the current path
segment and then multiplies the gradient by the path seg-
ment. We show that the original direction can be divided
into an important direction and a noise direction. We theo-
retically demonstrate that the true gradient is orthogonal to
the noise direction, resulting in the gradient’s multiplication
along the noise direction having no effect on the attribution.
Based on this observation, we design a framework, termed
Important Direction Gradient Integration (IDGI), that can
eliminate the explanation noise in each step of the compu-
tation in any existing IG method. Extensive investigations
reveal that IDGI reduces noise significantly when evaluated
using state-of-the-art IG-based methods.

In summary, our main contributions are as follows:

• We propose the Important Direction Gradient Integra-
tion (IDGI), a general framework to eliminate the ex-
planation noise in IG-based methods, and investigate
its theoretical properties.

• We propose a novel measurement for assessing the at-
tribution techniques’ quality, i.e., AIC and SIC using
MS-SSIM. We show that this metric offers a more pre-
cise measurement than the original AIC and SIC.

• Our extensive evaluations on 11 image classifiers with
3 existing and 1 proposed attribution assessment tech-
niques indicate that IDGI significantly improves the at-
tribution quality over the existing IG-based methods.

2. Background
2.1. Integrated Gradient and its Variants

Integrated Gradients (IG) [43]. Given a classifier f , class
c, and input x, the output fc(x) represents the confidence
score (e.g., probability) for predicting x to class c. IG com-
putes the importance/attribution per feature (e.g., a pixel in
an image) by calculating the line integral between the refer-
ence point x′ and image x in the vector field that the model
creates, where the vector field is formed by the gradient of
fc(x) with respect to the input space. Formally, for each
feature i, the IG, is defined as below:

IIGi (x) =

∫ 1

0

∂fc(γ
IG(α))

∂γIG
i (α)

∂γIG
i (α)

∂α
dα, (1)

where γIG(α), α ∈ [0, 1] is the parametric function repre-
senting the path from x′ to x, e.g.γIG(0) = x′, γIG(1) = x.
Specifically, γIG is a straight line that connects x′ and x.

Guided Integrated Gradients (GIG) [22]. Kapishnikov et
al. [22] claim that DNN’s output shape has a high degree of
curvature; hence, the larger-magnitude gradients from each
feasible point on the path would have a significantly larger
effect on the final attribution values. To address it, they
propose GIG, an adaptive path method for noise reduction.
Specifically, instead of integrating gradients following the
straight path as IG does, GIG initially seeks a new path to
avoid high-gradient directions as below:

γGIG = argmin
γ∈Γ

N∑
i=1

∫ 1

0

|∂fc(γ(α))
∂γi(α)

∂γi(α)

∂α
|dα, (2)

where Γ is the set containing all possible path between x
′

and x. After finding the optimal path γGIG, GIG uses it and
computes the attribution values similar to IG. Formally,

IGIG
i (x) =

∫ 1

0

∂fc(γ
GIG(α))

∂γGIG
i (α)

∂γGIG
i (α)

∂α
dα. (3)

Blur Integrated Gradients (BlurIG) [46]. Xu et al. [46]
propose BlurIG, which integrates the IG into frequency do-
main as opposed to the original image domain. In other
words, BlurIG takes into account the path produced by se-
quentially blurring the input with a Gaussian blur filter.
Specifically, suppose the image has the 2D shape M × N ,
and let x(p, q) represent the value of the image x at the lo-
cation of pixels p and q. The discrete convolution of the
input signal with a 2D Gaussian kernel with variance α is
thus defined as follows:

γBlurIG ::= L(x, p, q, α)

=

∞∑
m=−∞

∞∑
n=−∞

1

πα
e−

q2+p2

α x(p−m, q − n)

(4)

Then, the final BlurIG computation is as below:

IBlurIG
p,q (x) =

∫ 0

∞

∂fc(γ
BlurIG(α))

∂γBlurIG
p,q (α)

∂γBlurIG
p,q (α)

∂α
dα,

(5)

2.2. Riemann Integration

Existing IG-based methods (IG: Eq. (1), GIG: Eq. (3),
and BlurIG: Eq. (5)) all approximate the line integral nu-
merically using the Riemann Integration. Specifically, as
shown in Eq. (6), they discretize the path between x′ and
x into N , a large and finite number, small piece-wise lin-
ear segments, and aggregate the value of multiplication be-
tween the gradient vectors and the small segments:

fc(x)− fc(x
′) = lim

N→∞

N∑
j=0

∂fc(xj)

∂xj
(xj+1 − xj)

=

n∑
i=0

Ii(x) =

∫ 1

0

∂fc(γ(α))

∂γ(α)

∂γ(α)

∂α
dα (6)



Figure 2. Illustration of IDGI. The red, green, and purple lines
illustrate the path corresponding to IG, GIG, and BlurIG, respec-
tively, where both IG and GIG need a reference point as manual
input but BlurIG does not. Riemann Integration computes the inte-
gral by multiplying the blue and black vectors at each calculation
step j. However, each black vector can be linearly decomposed of
blue and brown vectors. Since the direction of the blue vector, i.e.
gradient, represents the maximum rate of change for the function
value, we consider it to be the most important direction. Instead of
multiplying the blue vector by the black vector, we propose com-
puting the integral using the blue vector alone. In addition to the
fact that the multiplication of the blue and brown vectors has no
effect on the function’s value, we assert that this integration also
creates the noise.

In other words, regardless of whichever approach (IG, GIG,
or BlurIG) is used for calculating the attributions, the final
attribution map is produced from Riemann Integration in
all IG-based algorithms. As the algorithm approximates the
integration discretely, the approximation itself contains nu-
merical inaccuracies relative to the theoretical real values.
However, we do not concentrate on eliminating numerical
errors; rather, we discovered that each Riemann Integration
step creates noise from an explanation perspective (please
see Fig. 2). Specifically, each path segment has a noise di-
rection where gradient integration with that direction con-
tributes nothing to output values, which indicates the attri-
bution values generated with this direction are noisy.

3. Our Framework: Important Direction Gra-
dient Integration (IDGI)

In this section, we first describe the concept of important
direction and the noise that arises from the gradient with the
noise direction to the attributions. Then, we formally intro-
duce the Important Direction Gradient Integration (IDGI),
a framework that only leverages the gradient with the im-
portant direction. We highlight that IDGI can be applied
to any IG-based method. Finally, we discuss the theoretical
properties of IDGI.

3.1. Important Direction and Noise Direction
Important Direction. Given the point xj = γ(αj) and
its next point xj+1 = γ(αj+1) on the path from refer-
ence point x′ to the input point x, IG-based methods com-

pute the gradient, g, of fc(xj) with respect to x and uti-
lize Riemann integration to multiply element-wisely with
the direction (original direction) from xj to xj+1 (please
see Fig. 2). Based on the Riemann integration principle,
when N increases, the sum of the multiplication result ac-
curately estimates the differences in the function values,
fc(xj+1) − fc(xj). In terms of the explanation, the mul-
tiplication result for this step indicates the contribution to
change in the value of the function from fc(xj) to fc(xj+1).
In other words, attribution values at this step explain why
the prediction score moves from fc(xj) to fc(xj+1).

The unit direction vector of the gradient at step j, i.e., g
|g| ,

indicates the direction of the fastest increase of the function
fc at xj . That is, moving the point xj along the direction
g changes fc the most. We refer to the direction g

|g| as the
important direction. In general, the gradient of the func-
tion value fc at each point in space defines the conservative
vector field, where an infinite number of hyperplanes h ex-
ist, and each hyperplane contains all points with the same
function output value. For instance, xj resides on the hy-
perplane hj if all the points xhj

∈ hj have the same func-
tion value fc(xj), i.e., fc(xhj

) = fc(xj),∀xhj
∈ hj . In

the conservative vector field, separate hyperplanes never in-
tersect, which means that each point has its own projection
point with regard to the other hyperplanes. Moreover, to
identify the projections, one may move the point from its
original hyperplane toward the next hyperplane in which
the moving direction is the same as the gradient’s direction
g
|g| . Similarly, xj+1 stays on the hyperplane hj+1 where
fc(xhj+1

) = fc(xj+1),∀xhj+1
∈ hj+1. For point xj , if

one moves xj along the important direction, there exists an
unique projection point xjp on the hyperplane hj+1 where
fc(xjp) = fc(xj+1). As we illustrate in Theorem 1, while
the attribution for each feature i computed from the origi-
nal direction (xj+1−xj) and important direction (xjp −xj)
could be different, the change in the value of the function fc,
which are the prediction values to be explained are the same
since xj+1 and xjp are on the same hyperplane hj+1.

Theorem 1 Given a function fc(x) : Rn → R, points
xj , xj+1, xjp ∈ Rn, then the gradient of the function with
respect to each point in the space Rn forms the conserva-
tive vector fields

−→
F and further define the hyperplane hj =

{x : fc(x) = fc(xj)} in
−→
F . Assume the Riemann Integra-

tion accurately estimates the line integral of the vector field−→
F from points xj to xj+1 and xjp e.g.

∫ xjp

xj

∂fc(x)
∂x dx ≈

∂fc(xj)
∂xj

(xjp − xj), and xj ∈ hj , xjp , xj+1 ∈ hj+1. Then:∫ xj+1

xj

∂fc(x)

∂x
dx ≈

∫ xjp

xj

∂fc(x)

∂x
dx.

Noise Direction. For step j, any original direction can be
decomposed into a combination of important direction and



Algorithm 1 Important Direction Gradient Integration

Inputs: x, f , c, path : [x′, . . . , xj , . . . , x]
1: IIDGI

i = 0
2: for xj ∈ path do
3: d = fc(xj+1)− fc(xj)

4: g =
∂fc(xj)

∂x

5: IIDGI
i += gi×gi×d

g·g
6: end for
7: return IIDGI

noise direction. Therefore, the integration at step j con-
sists of two parts: integration from xj to xjp and from xjp

to xj+1. While (i) integrating from xj to xjp (important
direction) and then xjp to xj+1 (noise direction) and (ii) in-
tegrating directly from xj to xj+1 (original direction) often
assign different attribution values to the features, the target
predicted score fc(xj+1)− fc(xj) to be explained at step j
stays the same regardless of which path is chosen.

Since fc(xjp) ≈ fc(xj+1) (as we demonstrated in The-
orem 1), the integration of the first path, i.e., from xj to
xjp , of the two-parts-path offers the full attributions that ex-
plain the prediction value changes from fc(xj) to fc(xj+1).
This suggests that the second path attributions (from xjp to
xj+1) do not account for any changes in prediction score
values. We refer to this direction of the second path as the
noise direction and argue that the integration with this di-
rection adds noise to the attribution since it explains zero
contribution for changes in the prediction score.

3.2. IDGI Algorithm

In order to reduce the noise from the attributions, we pro-
pose the Important Direction Gradient Integration (IDGI)
framework. Suppose we are given an input x, target class c,
classifier f , and a given path path : [x′, . . . , xj , . . . , x] from
any IG-based method. Similar to IG-based approaches,
IDGI first calculates the gradient g with respect to the cur-
rent point at each Riemann integration step. IDGI then
determines the unit important direction vector of g as g

|g|

and the step size fc(xj+1)−fc(xj)
|g| rather than multiplying g

with the distance xj+1 − xj . The step size determines how
much of the unit direction vector should be applied and
ensures that the current step explains the change in prob-
ability from fc(xj+1) − fc(xj). In other words, the pro-
jection of xj onto the hyperplane hj+1, formed as xjp =

xj +
g
|g| ·

fc(xj+1)−fc(xj)
|g| , has the same function value as

point xj+1, i.e., fc(xj+1) = fc(xjp), since both xj+1 and
xjp reside on the hyperplane hj+1. Finally, IDGI aggre-
gates the computations from each step and forms the final
attributions to interpret the prediction score of fc(x). The
pseudo-code of IDGI is described in Algorithm 1.

3.3. Theoretical Properties of IDGI

Sundararajan et al. [43] introduce several axioms that
any explanation method is expected to adhere to. These ax-
ioms include Completeness, Sensitivity(a, b), Implementa-
tion Invariance, Linearity, and Symmetry preserving. As we
discuss below, IDGI satisfies all of them except Linearity.
Completeness. IDGI clearly satisfies this axiom since the
computation for jth step in IDGI computes the attribution
for fc(xj+1)−fc(xj) exactly. This also indicates that IDGI
satisfies Senstivity-N [3].
Sensitivity(a). IDGI satisfies Sensitivity(a) at each com-
putation step j (from xj to xj+1) if the underlying IG-
based method to which IDGI is applied satisfies the ax-
iom. Consider a case that during the jth computation
step, the baseline at this step refers to xj , input refers to
xj+1, and the two points differ only at ith feature, e.g.
xq
j ̸= xq

j+1,∀q = i and xq
j = xq

j+1,∀q ̸= i. Also, as-
sume the predictions vary due to the ith feature differences,
e.g. fc(xj) ̸= fc(xj+1). If the underlying IG-based method
satisfies Sensitivity(a), then the ith of the computed gradient
g at this step is non-zero, i.e., gi ̸= 0. Then IDGI assigns
non-zero value to the attribution of feature i at step j since
gi× gi× (fc(xj+1)− fc(xj)) ̸= 0. From x′ to x, IDGI sat-
isfies Sensitivity(a) if the underlying IG-based method, to
which IDGI is applied, satisfies the axiom and the function
evaluation on the giving path p is strictly monotonic, e.g.
fc(xj+1) > fc(xj) or fc(xj+1) < fc(xj),∀xj ∈ p. Since
the underlying IG-based method satisfies Sensitivity(a), it
indicates that there exists at least one gradient g which has
a non-zero value for ith feature, i.e., gi ̸= 0, during all the
computation steps. Then, the strictly monotonic property
guarantees the non-zero value is captured in the final attri-
bution for ith feature. Also, since the square value of gi is
computed during each step, the strictly monotonic property
assures that any attribution value added to the final attribu-
tion contributes in the same direction rather than canceling
each other. Furthermore, intuitively, the strictly monotonic
property of the function evaluation on the giving path p is
expected since the changing of one feature in one direction
is expected to impact the output of the function in one di-
rection too, e.g increasing the prediction value.
Sensitivity(b). IDGI satisfies this axiom as long as the
underlying IG-based method satisfies it. If the IG-based
method satisfies Sensitivity(b), then any variable/feature i
that the function fc does not rely on will have zero gradient
value everywhere, i.e., gi = 0. Clearly, the final attribution
of IDGI also assigns the value of zero to such a feature i
since gi is zero in each step of the computation.
Implementation Invariance. Kapishnikov et al. [22]
showed an attribution method that depends only on func-
tion gradients and is independent of the network’s underly-
ing structure satisfies the Implementation Invariance axiom.



Thus, IDGI preserves the invariance as long as the underly-
ing IG-based method is independent of the network’s topol-
ogy and solely depends on the gradients of the functions.
Linearity. Given a linearly combined network f3 = a ×
f1 + b× f2, Linearity requires that the explanation method
assign attribution values as a weighted combination of attri-
bution from f1 and f2, i.e, IGf3(x) = a × IGf1(x) + b ×
IGf2(x). IDGI does not satisfy this requirement. However,
in practice, we often try to explain the predictions of a com-
plex nonlinear function, such as DNNs, instead of the linear
composition of models.
Symmetry preserving. An attribution method is Symme-
try preserving if, for all inputs that have identical values
for symmetric variables and baselines that have identical
values for symmetric variables, the symmetric variables re-
ceive identical attributions [43]. IDGI satisfies this axiom
only if the underlying IG-based method satisfies it.

4. Experimental Methodology and Results
4.1. Experimental Setup
Baselines. We use four gradient-based methods as base-
lines. Since the Integrated Gradients (IG) [43], Guided In-
tegrated Gradients (GIG) [22], and Blur Integrated Gradi-
ents (BlurIG) [46] offer distinct paths from the reference
point to the image of interest, our approach could be ap-
plied independently to any of them because it is orthogonal
to any given path. Additionally, we also include the Vanilla
Gradient (VG) [36], which takes the gradient of the output
fc(c) with respect to x. We use the original implementa-
tions2 with default parameters in the authors’ code for IG,
GIG, and BlurIG, and implement our method as an addi-
tional module that interfaces with the original implementa-
tions. Then, same as [22], we use a step size of 200 as the
parameter needed to compute the Riemann integral for all
methods except VG since it doesn’t use Riemann Integra-
tion. As is the common practice, we use the black image as
the reference point for IG and GIG.
Models. We use the TensorFlow (2.3.0) [1] pre-trained
models: DenseNet{121, 169, 201} [18], InceptionV3
[44], MobileNetV2 [17], ResNet{50, 101, 151}V2 [16],
VGG{16, 19} [37], and Xception [8].
Dataset. Following the research [21, 22, 29, 46], we use the
Imagenet [12] validation dataset, which contains 50K test
samples with labels and annotations. We test the explana-
tion methods for each model on images that the model pre-
dicted the label correctly. Hence, the number of test images
varies from 33K to 39K corresponding to different models.
Evaluation metrics. We use numerous metrics to quantita-
tively evaluate our method and compare it with baselines:
Insertion score [29, 30], the Softmax information curves
(SIC), the Accuracy information curves (AIC) [21, 22], and

2https://github.com/PAIR-code/saliency

Figure 3. Saliency map comparisons between different methods
and different models (each row). Each model correctly predicts the
image as bison. Left-to-right: Original image, VG, IG, IG+IDGI,
GIG, GIG+IDGI, BlurIG, and BlurIG+IDGI. Methods with IDGI
focus more on the region of the bison.

three Weakly Supervised Localization [9, 21, 46] metrics.
We also introduce a modified version of SIC and AIC with
MS-SSIM information level. We implement all the evalua-
tion metrics as they were introduced in the previous works,
and we discuss the implementation details in Sec. 4.3-4.6.

4.2. Qualitative Check

Fig. 3 shows a sample of observations for all baselines
and IDGI with all models. Compared to baseline methods,
the outcome of our method demonstrates the relevant pixels
are more concentrated in the bison region of the original
image. Also, the noises are less in other regions. However,
qualitative and visual inspections are often subjective and
hence we focus more on the quantitative metrics in the rest
of the experiments.

4.3. Insertion Score

In this investigation, we assess our explanation ap-
proaches with the Insertion Score from prior works [29,30].
For each test image, starting with a blank image, the in-



Metrics Models IG-based Methods Other
IG +Ours GIG +Ours BlurIG +Ours VG

Insertion
Score
with

Probability
(↑)

DenseNet121 .293 .441 .304 .364 .250 .357 .176
DenseNet169 .350 .503 .362 .421 .298 .412 .203
DenseNet201 .329 .457 .341 .397 .283 .395 .204
InceptionV3 .348 .478 .368 .460 .305 .446 .214
MobileNetV2 .203 .346 .231 .291 .198 .306 .129
ResNet50V2 .338 .431 .364 .403 .256 .380 .219
ResNet101V2 .377 .459 .386 .412 .290 .400 .248
ResNet151V2 .388 .480 .388 .418 .294 .411 .242

VGG16 .217 .338 .212 .265 .192 .298 .134
VGG19 .232 .342 .224 .273 .206 .306 .145

Xception .334 .487 .367 .475 .298 .453 .215

Insertion
Score
with

Probability
Ratio

(↑)

DenseNet121 .322 .484 .337 .400 .276 .392 .194
DenseNet169 .360 .518 .374 .434 .307 .424 .210
DenseNet201 .354 .492 .370 .428 .307 .425 .222
InceptionV3 .389 .532 .413 .512 .342 .496 .240
MobileNetV2 .248 .419 .285 .354 .244 .369 .160
ResNet50V2 .353 .450 .382 .422 .268 .397 .229
ResNet101V2 .389 .473 .399 .425 .300 .412 .256
ResNet151V2 .399 .494 .400 .430 .303 .423 .250

VGG16 .248 .384 .244 .303 .221 .339 .155
VGG19 .265 .388 .257 .313 .237 .348 .167

Xception .387 .564 .428 .551 .347 .524 .251

Table 1. Insertion score for different models with explanation
methods. We report the area under the curves formed by the origi-
nally predicted probability of modified images and the normalized
probability (probability ratio: the predicted probability of mod-
ified images over the predicted probability of original images.)
IDGI improves all methods for all models.

sertion technique inserts pixels from the best to the lowest
attribution scores and generates predictions. The approach
generates a curve representing the prediction values as a
function of the number of inserted pixels. We also compute
the normalized curve where the curves are divided by the
predicted class probability of the original image. The area
under the curves (AUC) are then defined as the insertion
scores. The quality of interpretation improves as the inser-
tion score increases. For each image, we iteratively insert
the next top 5% important pixel values to the black base im-
age based on each explanation technique, and we create the
model performance curves as the mean model performance
on all the reconstructed images at each level. We report the
insertion scores in Tab. 1. As expected, the VG always has
the lowest score across the experiments with different mod-
els. IDGI improves the Insertion Score drastically, in all
cases, for all the IG-based methods.

4.4. SIC and AIC

We next evaluate the explanation methods using the Soft-
max information curves (SIC) and the Accuracy informa-
tion curves (AIC) [21]. The evaluation method starts with a
blurred version of the given test image and then puts back
the most important pixel’s values as determined by the ex-
planation approach, resulting in a bokeh image. Moreover,
an information level is computed for each bokeh image by
comparing the size of the compressed bokeh image to the
size of the compressed original image, which is also re-
ferred to as the Normalized Entropy. Bokeh images are
binned based on the information level. Then, the average
accuracy for each bin is calculated. AIC is the curve of

Metrics Models IG-based Methods Other
IG +Ours GIG +Ours BlurIG +Ours VG

AUC
AIC
(↑)

DenseNet121 .161 .300 .141 .252 .192 .230 .087
DenseNet169 .160 .288 .154 .254 .181 .216 .089
DenseNet201 .185 .307 .182 .269 .213 .246 .110
InceptionV3 .203 .343 .189 .338 .266 .301 .127
MobileNetV2 .098 .233 .114 .204 .145 .197 .068
ResNet50V2 .162 .253 .162 .248 .189 .210 .108

ResNet101V2 .177 .268 .163 .253 .198 .215 .116
ResNet151V2 .186 .281 .165 .258 .205 .229 .112

VGG16 .145 .244 .141 .199 .181 .222 .108
VGG19 .153 .263 .150 .219 .204 .240 .117

Xception .238 .404 .239 .381 .309 .355 .174

AUC
SIC
(↑)

DenseNet121 .054 .228 .036 .157 .085 .134 .015
DenseNet169 .052 .230 .045 .170 .083 .130 .016
DenseNet201 .068 .241 .058 .183 .109 .155 .019
InceptionV3 .087 .294 .061 .286 .171 .232 .029
MobileNetV2 .020 .145 .023 .111 .043 .103 .011
ResNet50V2 .077 .210 .067 .201 .099 .158 .025

ResNet101V2 .095 .231 .070 .201 .117 .165 .026
ResNet151V2 .101 .249 .065 .212 .122 .177 .025

VGG16 .046 .166 .039 .104 .082 .141 .021
VGG19 .046 .177 .041 .115 .098 .151 .023

Xception .119 .363 .107 .336 .218 .296 .054

Table 2. Area under the curve for AIC and SIC with 11 different
models. The information level is computed with the compression
size ratio to the original image. IDGI shows improvement for all
three IG-based methods across all experiment settings.

those mean accuracies over bins. Further, the probability of
bokeh versus the original image is calculated for each image
in each bin. SIC is the curve of the median of those values.
Areas under the AIC and SIC curves are computed; better
explanation methods should have higher values.
Implementation Details. For each image, we first create
a base image using PIL3 with Gaussian blur with a radius
of 20 pixels. Then we use 25 percentile values, distributed
from 0 to 100, as thresholds (k) to determine the important
pixels at each threshold level. That is, given a test instance,
we construct 25 bokeh images where each of them contains
the top k percent important pixel’s original value with the
rest pixels’ value from the base image. Furthermore, we
utilize the implementation from [21] to compute the Nor-
malized Entropy and record the model performance on each
bokeh image. For information level bin size, we use 100.
We report, in Tab. 2, the AUC under AIC and SIC curves
across all baselines and our methods. Our method improves
all three IG-based methods across all models drastically.

4.5. SIC and AIC with MS-SSIM

In the third experiment, instead of the Normalized en-
tropy as the information level, we use the Multi-scale Struc-
tural Similarity (MS-SSIM) [45]. MS-SSIM is a well-
studied [20,26,28] image quality evaluation method that an-
alyzes the structural similarity of two images. It is a multi-
scale variation of a well-defined perceptual similarity mea-
sure that seeks to dismiss irrelevant features (based on hu-
man perspective) of a picture [28]. MS-SSIM values range
from 0.0 to 1.0; images with greater MS-SSIM values are
perceptually more similar. Fig. 4 shows the distribution of

3https://pillow.readthedocs.io/en/stable/index.html



Figure 4. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [21]. We produce 25 bokeh pictures for each
test instance based on the various attribution maps and calculate the MS-SSIM and Normalized Entropy as the information level for each
bokeh image. We show the modified bokeh images of the test instance for Resnet151V2. Information level with MS-SSIM has a more
evenly distribution of bokeh images than Normalized Entropy. Other models have similar trends.

Figure 5. AIC and SIC (median of normalized softmax), from
InceptionV3 model, over the distribution of Normalized Entropy
(Top row) and MS-SSIM (Bottom row). The area under the curve
indicates IDGI provides significant improvement from all the IG-
based methods. As expected, the saliency maps from the Vanilla
gradient have the lowest score in all the experiments.

all modified images over MS-SSIM and the Normalized En-
tropy, where MS-SSIM distributed the bokeh images more
evenly over the bins. That is, each bin is expected to have
more samples to represent the true model performance con-
ditioned on that similarity. The effect can be also observed
in Fig. 5 where the performance for the small Normalized
Entropy group has high variance due to not having enough
images for that group bin. In contrast, the measurement
with MS-SSIM is a much smoother curve. Hence, we pro-
pose to use MS-SSIM for estimating the information of each
bokeh image rather than Normalized Entropy.

The experimental settings are the same as in the previous
section except we replaced the Normalized Entropy with the

Metrics Models IG-based Methods Other
IG +Ours GIG +Ours BlurIG +Ours VG

AUC
AIC
(↑)

DenseNet121 .229 .305 .231 .280 .216 .277 .186
DenseNet169 .241 .314 .249 .297 .218 .289 .205
DenseNet201 .254 .323 .262 .303 .237 .303 .216
InceptionV3 .264 .333 .268 .333 .264 .323 .228
MobileNetV2 .179 .259 .197 .238 .186 .241 .150
ResNet50V2 .225 .277 .239 .274 .209 .260 .198

ResNet101V2 .235 .284 .243 .277 .215 .265 .206
ResNet151V2 .247 .302 .250 .292 .227 .284 .212

VGG16 .205 .271 .212 .245 .204 .259 .179
VGG19 .211 .275 .220 .252 .214 .266 .188

Xception .281 .362 .293 .356 .284 .345 .254

AUC
SIC
(↑)

DenseNet121 .184 .263 .188 .239 .172 .236 .139
DenseNet169 .205 .282 .214 .263 .182 .256 .166
DenseNet201 .212 .286 .221 .265 .194 .266 .170
InceptionV3 .211 .287 .215 .285 .214 .276 .179
MobileNetV2 .126 .204 .144 .187 .130 .188 .096
ResNet50V2 .196 .254 .213 .250 .177 .236 .167

ResNet101V2 .210 .265 .221 .256 .188 .244 .180
ResNet151V2 .221 .282 .227 .270 .197 .261 .186

VGG16 .163 .234 .174 .210 .166 .224 .137
VGG19 .173 .240 .186 .219 .177 .233 .149

Xception .223 .312 .233 .304 .229 .293 .194

Table 3. Area under the curve for SIC and AIC for 11 models.
The information level is MS-SSIM. IDGI shows improvement for
all three IG-based methods across all experiments.

MS-SSIM score as the information level. As demonstrated
in Tab. 3, our approach significantly improves modified AIC
and SIC for all IG-based methods.

4.6. Weakly Supervised Localization

We utilize the quantitative assessments in [9,21,46]. The
evaluation computes ROC-AUC, F1, and MAE (mean ab-
solute error) of the created saliency mask by considering
pixels inside the annotation to be positive and pixels out-
side to be negative, given an annotation area. Specifically,
we calculate the optimal F1 and MAE of each saliency map
for each image by finding the best threshold for attribution
values provided by different explanation methods. Tab. 4



Metrics Models IG-based Methods Other
IG +Ours GIG +Ours BlurIG +Ours VG

F1
(↑)

DenseNet121 .663 .733 .676 .700 .664 .694 .648
DenseNet169 .666 .730 .679 .702 .667 .695 .649
DenseNet201 .658 .723 .675 .701 .661 .694 .645
InceptionV3 .661 .731 .679 .727 .670 .717 .651
MobileNetV2 .666 .741 .686 .713 .673 .718 .656
ResNet50V2 .673 .724 .694 .720 .676 .704 .668

ResNet101V2 .675 .730 .691 .716 .676 .703 .666
ResNet151V2 .675 .730 .687 .713 .675 .701 .663

VGG16 .672 .719 .671 .696 .672 .704 .667
VGG19 .672 .719 .671 .696 .671 .702 .666

Xception .669 .745 .691 .740 .678 .730 .662

ROC
AUC
(↑)

DenseNet121 .662 .798 .660 .722 .661 .722 .607
DenseNet169 .656 .790 .655 .714 .657 .718 .582
DenseNet201 .654 .788 .664 .729 .658 .726 .604
InceptionV3 .679 .811 .664 .799 .696 .790 .659
MobileNetV2 .677 .811 .695 .760 .684 .778 .653
ResNet50V2 .698 .798 .698 .775 .690 .746 .671

ResNet101V2 .709 .811 .693 .773 .695 .753 .670
ResNet151V2 .707 .810 .681 .766 .687 .745 .659

VGG16 .652 .757 .648 .702 .656 .727 .642
VGG19 .652 .755 .650 .703 .652 .719 .640

Xception .693 .825 .702 .814 .705 .805 .683

MAE
(↓)

DenseNet121 .236 .189 .232 .215 .238 .218 .251
DenseNet169 .239 .195 .235 .218 .241 .222 .257
DenseNet201 .237 .194 .230 .212 .238 .216 .251
InceptionV3 .233 .187 .228 .188 .227 .194 .241
MobileNetV2 .234 .183 .225 .203 .231 .199 .242
ResNet50V2 .233 .195 .223 .200 .234 .213 .240

ResNet101V2 .229 .189 .223 .201 .232 .212 .240
ResNet151V2 .230 .189 .227 .204 .234 .214 .243

VGG16 .239 .206 .241 .225 .240 .217 .244
VGG19 .239 .206 .241 .224 .241 .219 .245

Xception .227 .178 .218 .179 .222 .186 .233

Table 4. F1, ROC-AUC, and MAE scores. IG-based methods are
improved by IDGI across all three metrics and eleven models.

summarizes the findings for each metric where IDGI con-
sistently outperforms the underlying IG-based approaches.

5. Related Work
Research on explanations for machine learning models

has garnered a significant amount of attention since the de-
velopment of expert models of the 1970s [2, 15]. Recently,
with the increased use of Deep Neural Networks, several pa-
pers have focused on explaining the decisions of these black
box models. One possible approach is based on Shapley
values [14, 34]. The Shapley value was proposed to repre-
sent the contribution value of each player in the coopera-
tive games to the outcome of the game. From the expla-
nation perspective, the Shapley value based methods [40]
computed for each feature how much it contributes to the
prediction score when it’s considered alone compared to the
rest of the features. The Shapley value of a feature is its
true attribution value. However, calculating Shapley values
is intractable when the input dimension is large. Several
methods approximate the Shapley values. These include
KernelSHAP [25], BShap [42], and FastShap [19].

Another strategy for explaining models’ decisions is in-
put perturbation. Input perturbation methods work by ma-
nipulating the input and observing its effect on the output;
this process is often repeated many times to produce the
general behavior of the model’s prediction on that input. For
example, LIME [32] approximates the decision for an input

by fitting a linear model around the neighborhood of the in-
put, where the neighborhood is generated through perturba-
tions. The similar idea of manipulating the input is utilized
by RISE [30] and several other papers [11, 13, 48].

For deep neural networks, in addition to the above strate-
gies, several have also focused on methods of backpropaga-
tion to assign attribution to the input values. For example,
modified backpropagation based methods propagate the sig-
nal of the final prediction back to the input and assign a
score for each feature in the input. Methods include De-
convnet [47], guided backpropagation [39], DeepLIFT [35]
and LRP [4, 27]. These approaches propagate the modified
gradient/signal, instead of the true gradient, to the input.

Using the true gradient of the prediction with respect to
the input as the explanation was introduced by Simonyan et
al. [36]. Similarly, Shrikumar et al. [35] propose using the
element-wise product (gradient ⊗ input) with input itself
instead of the gradient directly. Grad-CAM [33] utilizes
gradients to produce the localization map of the important
regions in the input image. A popular method, Integrated
Gradients (IG), was proposed by Sundararajan et al. [43]; it
computes the attribution for each feature to explain the de-
cision of a differentiable model, e.g. DNNs. Its variants in-
clude Guided Integrated Gradients (GIG) [22] and Blur In-
tegrated Gradients (BlurIG) [46]. XRAI [21] utilizes IG to
provide interpretation at the region level instead of the pixel
level. SmoothGrad [38] and AGI [29] compute repeated at-
tribution maps for a given input; however, those approaches
require more computation as the single path methods (such
as IG, GIG, and BlurIG) has to be repeated multiple times
for a given input. Finally, I-GOS [31] and I-GOS++ [23]
find a mask that would decrease the prediction score the
most when it is applied to an image; they use the output of
IG in their search for the mask. Our work builds on, and is
orthogonal to, the single-path IG-based methods where we
reduce the noise created during the integration computation.
In other words, our work can be applied to any given single-
path IG-based method. Furthermore, since it works with
single-path methods, it is also easy to adapt to multiple-path
methods as well.

6. Conclusion
We investigate the noise source generated by Integrated

Gradient (IG) and its variants. Specifically, we propose
the Important Direction Gradient Integration (IDGI) frame-
work, which can be incorporated into all IG-based explana-
tion methods and reduce the noise in their outputs. Exten-
sive experiments show that IDGI can drastically improve
the quality of saliency maps generated by the underlying
IG-based approaches.
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