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Abstract
Recent P4 research has motivated the need for in-network fractional
calculations to support functions in Networking (for calculations
related to active queue management and load balancing) and in Ma-
chine Learning. The P4 language and ASICs do not natively support
fractional types (e.g., float). Existing P4 techniques provide incom-
plete emulations of the IEEE-754 standard, which was designed
as a generic approach that can benefit from dedicated hardware
acceleration, but whose features are difficult to fully support in P4.

This paper re-thinks the foundation of in-network fractional calcu-
lation and proposes a new approach that is more resource conscious
and is straightforward to encode in P4. Instead of floating-point, it
uses a fixed-point encoding of numerals; and instead of sampling
functions into tables it uses Taylor Approximation to reduce data-
plane calculations to simple arithmetic over pre-calculated coeffi-
cients, requiring constant space and linear time. The paper describes
and evaluates a P4 code synthesis algorithm that allows users to
trade-off switch resources for accuracy, grounded on an applica-
tion of a well-understood mathematical theory. It describes how to
encode 𝜋 and various functions including cos, log and exp.

This technique is being developed to support Scientific Comput-
ing (SC) applications which typically make heavy use of fractional
approximations of Real numbers. The paper applies this technique
in a novel P4 program that is being open-sourced: in-network Monte
Carlo simulation of photon propagation that models the analysis that
is carried out in a class of cancer treatments. This technique is also
being used in ongoing work on another SC application: online event
detection in a large-scale neutrino detection experiment.

CCS Concepts
• Networks→ In-network processing; • Mathematics of comput-
ing→ Numerical analysis.
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1 Introduction
Scientific Computing (SC) has an ever-increasing appetite for com-
puting and communication capacity across a huge range of online
and offline processing tasks drawn from various systems, includ-
ing large-scale discrete element simulations, high-energy particle
detectors and telescope arrays.

SC applications are typically distributed across many nodes in a
network, and programmable switching and NICs could contribute
domain-specific forwarding optimizations and simple processing
tasks operating on large volumes of data flowing between nodes.

But SC computations often involve calculations over real num-
bers approximated using fractional types, which are not natively
supported on all P4-programmable hardware platforms. The need
for in-network fractional calculation is recognized in the literature,
mainly clustered around two application domains: (1) approximation
techniques for network functions [18, 19] including active queue
management and load balancing [14], and (2) to provide in-network
support to Machine Learning applications [22].

This paper describes a new technique for fractional calculations
in Scientific Computing workloads. The scripts and source code
are made available for others to build on and explore its applica-
tion in other domains.1 This technique is a form of numerical
analysis that can generate R-algebras that are customized to
the accuracy needs of a given application, and sensitive to the
resources provided by a specific programmable network plat-
form. It can be applied to a large class of widely-used R-valued
functions, including cos, log and exp. The technique consists of
two elements: (1) fixed-point representation of numerals, which
provides more predictable accuracy across all numeral ranges com-
pared to IEEE754-based floating-point encodings, and (2) offline
computation of the 𝑁 th-degree Taylor polynomial’s coefficients to
approximate a given function [6]. Unlike existing techniques, this
approach does not rely on table look-ups to evaluate functions; in-
stead it reduces function approximation to simple arithmetic over
coefficients calculated in step (2), and which can be carried out in
the dataplane. The technique works by synthesizing a P4 program
based on users’ accuracy- and resource-tradeoff. This technique has
been evaluated on BMv2, and is being ported to hardware targets.

Compared to existing techniques, this approach (1) provides pre-
dictable accuracy across the entire number line, (2) replaces use of

1https://github.com/ShivamPatelShivamPatel/Photon
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Work

Existing/
New

Target

FLoating/
FIxed
Point

Variable
Precision

Beyond
Arithmetic

FPISA [22] N L × ×
PF [17] E L × √

InREC [12] E L × √

NetFC [9] E L × ×
This paper E I

√ √

Table 1: Features of related techniques.

tables with ALUs, (3) provides tunable, per-application trade-off
between resources and accuracy.

Limitations. The technique used in this paper is only applicable
to real analytic functions—this includes many commonly-used func-
tions, as shown later. For other functions, this technique would be
combined with complementary techniques.

Paper outline. The rest of the paper proceeds as follows: §2
discusses related work, §3 describes our motivating use-case, and
§4-§6 describes this technique, its implementation, and its evaluation
respectively. §7 discusses the findings in this paper and future work
directions.

2 Related Work
This section contrasts the technique described in this paper with
techniques in related work that targets P4 or PISA-like hardware [5].
Table 1 categorizes closely-related work in the following dimensions:
(1) Whether they target existing P4 platforms or new ones—most
work targets existing hardware or software platforms, but are re-
stricted by the capabilities of those targets. (2) Support for floating-
or fixed-point encoding of fractional numbers—virtually all existing
work uses floating-point numbers, in most cases deviating from the
IEEE-754 standard [1]. For example, NetFC [9] removes the NaN
(“Not a Number”) representation, and PF [17] (for the “Pseudo-
Floating Point” representation it uses) removes the encoding of the
exponent. In comparison, we use fixed-point representation which
avoids unexpected behaviors [15] and provides an evenly-spaced
representation of numerals to benefit the accuracy-sensitive Scien-
tific Computing applications we target.2 (3) Support fixed or variable
precision—IEEE-754 was devised as a generic approach over fixed
precision classes, but for the applications targeted in this paper
we devise a technique for customizable, per-application precision.
(4) Whether the approach goes beyond arithmetic (addition, subtrac-
tion, multiplication, division) to support special and trigonometric
functions. Applications in Scientific Computing often require more
than arithmetic.

Among existing work, Sankaran et al. [17] is the most closely
related. They described a P4-based streaming analysis of image data
and an approximation scheme for the natural logarithm function, and
applied it to a Scientific Computing use-case. In comparison, this
paper presents a mathematically-founded, general resource-aware
derivation approach that works for more functions. Sankaran et
al. provide an inspiring use-case that could be adapted to use the

2Recall that the encoding standarized in IEEE-754 separates numbers into disjoint
classes that are afforded different (sometimes variable) accuracy, and involves a normal-
ization stage. This is difficult to emulate in P4.

Processing Stages

DeparserParser

1

2

3

Custom packet format.

Custom forwarding, packet rewriting and duplication.

Data encoding, and calculations over data.

Needs of SC applications:
- Non-integer data types.
- Different and mixed-
   precision arithmetic.
- Hardware abstraction.

Programmable Switch Elements

Technical challenges:
- Trading-off accuracy vs
   usage of on-switch 
   resources.
- Trading-off on- vs
   off-switch resource use.
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Figure 2: In-network support for photon path modeling.

technique described in this paper, and future work could compare
hardware implementations of both approaches.

3 Use-case: Light Propagation Modeling
This section describes an application from scientific computing (SC)
and the role we envisage for programmable switching. Fig. 1 summa-
rizes our analysis of how programmable networking can contribute
to SC. This paper focuses on step ❷ which presents a significant
technical difficulty because of the mismatch between P4 and the
needs of the SC workloads.

Use-case. Surgery is often the first line of treatment for patients
diagnosed with solid cancer, where complete removal of the tumor(s)
is not always achieved owing to challenges in detecting remaining
cancer cells. Surgery of head and neck cancers is especially challeng-
ing because of particularly complex anatomy [11], which can lead
to incomplete surgical removal. To improve the surgical removal of
tumours, cancer-targeted fluorescence agents can be injected into pa-
tients prior to surgery to help better identify remaining cancer in their
patients so that it can be removed. This uses specific wavelengths of
light to illuminate tumours, which enables their identification and
subsequent removal [4, 13, 20, 21].

Optimization of these strategies requires accurate understanding
of how fluorescent light propagates through biological tissue at the
margins of cancer resections. However, accurate simulations are
restrictively time-consuming using current methods. To assist with
these efforts, we have been developing advanced imaging strategies
to help detect even the smallest amounts of cancer. This understand-
ing is obtained through detailed simulations of photon propagation
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across different tissues. However, accurate simulations are resource
intensive and time-consuming to produce. To assist with these ef-
forts, we explore the use of programmable switching to distribute
simulation load consistent with photon trajectories in a volume, and
also absorb some of that load through in-switch calculation.

Algorithm and primitive constituents. Through collaborators who
are active researchers in biomedical science specializing in this
application area, we obtained a description of the basic algorithm.
This was first prototyped in Python then ported to P4. Photons are
modeled as decaying energy. Once a sufficient amount of energy has
been lost, the photon’s location can be determined. We model this as
a pseudo random distance 𝑑 that is the natural logarithm of a physical
constant, where the randomness corresponds to the percentage which
the photon is obeying the constant. We exponentially decay the
energy, and use the most recently computed 𝑑 as the distance traveled.
After this calculation, we obtain the photon’s location in R3 in polar
coordinates, and we then use standard trigonometric formulas to
convert to Cartesian coordinates.

Contribution from Programmable Switching. Fig. 2 shows how
switch programmability supports this experiment. ➀ Initial photon
coordinates are loaded from the Storage Bank and sent to a host on
the Compute Bank. ➁ Switch S3 amplifies the number of photons,
volumetrically placing them according to a given distribution. Our
prototype amplifies by ×100. Amplification involves the switch:
(i) parsing the packet contents and interpreting photon coordinates;
(ii) storing an approximation of the distribution on the dataplane,
in tables and registers; (iii) cloning and recirculating packets to
amplify the original batch of photons. ➂ Switch S1 rewrites the
destination address and forwards packets according to the photons’
coordinates they carry, so that photons in the same sub-volume will
be sent to the same host. This partitioning of the Compute Bank
to handle different sub-volumes of a space is intended to model
different materials that photons encounter—such as different skin
layers, blood, and blood vessels. Switches S1 and S2 can amplify,
process, and forward photons further.

4 R-algebra Approximation in P4
Taylor Approximation [6] is a well-established technique to approxi-
mate non-linear R-valued functions such as cos, log and exp. We
adapt this technique to develop a P4 code synthesizer (§4.2) for
tunable accuracy and resource usage.

This approach provides tunability by varying the degree of the
Taylor polynomial that is generated. This degree correlates with the
accuracy of the function’s approximation and with the resources
that will be needed to evaluate the approximation at runtime. The
coefficients of this polynomial are pre-calculated and stored on the
P4 target. The target uses the coefficients to evaluate the function
approximation at runtime in the dataplane.

This tunability is essential to balance generality with practical-
ity. A person working in hard science may require precision levels
of 10−6 or more, but someone needing to compute probabilities in
another domain may only need precision levels of 10−2. The preci-
sion needed by the function and that needed to encode numerals are
scaled in tandem; we give worked examples of this below.

4.1 Approximating Real numbers
Recall the definition of 2’s complement integer representations. For
𝑛 ∈ Z, 𝑛 can be represented as:

𝑛 = (−1)𝑥𝑝−12𝑝−1 +
𝑝−2∑︁
𝑗=0

𝑥 𝑗2𝑗
where 𝑝 ≥ ⌈𝑙𝑜𝑔2 ( |𝑥 | + 1)⌉ + 1

and 𝑥𝑘 ∈ {0, 1}
(1)

For example, to encode 𝑛 = 42 then we would require 𝑝 =

⌈𝑙𝑜𝑔2 ( |42| + 1)⌉ + 1 = 6 + 1 = 7 bits. Therefore 𝑝 = 7 is the smallest
possible choice in Eqn 1. When written as a sum of powers of 2,
42 = (−1) · 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20,
corresponding to the 2’s complement bit string 0101010. This paper
relies on fixed-point encoding, which extends Eqn 1 to the real line
by adding a component that represents the fractional part. Suppose
now that 𝑥 ∈ R, then using a construction based on Dedekind cuts
we can show that it has a representation as:3

𝑥 = (−1)𝑥𝑝−12𝑝−1 +
𝑝−2∑︁
𝑗=0

𝑥 𝑗2𝑗 + lim
𝑞→∞

𝑞∑︁
𝑖=1

𝑥−𝑖2−𝑖 (2)

We tune the representation of a numeral by taking a finite trunca-
tion of the sum on the right (finite 𝑞 ∈ N) leading to what is referred
to as “𝑝.𝑞 fixed-point encoding”.

Worked example: approximating 𝜋 . To observe how the 𝑝.𝑞 en-
coding works, take 𝑥 = 𝜋 and observe that 𝜋 = ⌊𝜋⌋ + (𝜋 − ⌊𝜋⌋) = 3+
(𝜋−3). Using the rule for 𝑝 in (1), since ⌈𝑙𝑜𝑔2 ( |3| + 1)⌉+1 = 2+1 = 3
we require at minimum 𝑝 = 3 for a 2’s complement representation.
We see that 3 = (−1) ·0 ·22+1 ·21+1 ·20. Now to approximate 𝜋−⌊𝜋⌋,
suppose we want to estimate it to be within 𝜖 = 10−10 of its real value.
Since 𝜋 is irrational, it does not have a representation as a finite sum
of powers of 2. If we wish to approximate it up to 𝜖 = 10−10, then we
need 𝑞 ≥ ⌈|𝑙𝑜𝑔2 ( 1

10−10 ) |⌉ = 34. We will take 𝑞 = 38 since position
2−34 has a coefficient of 0, with the next “1” appearing alongside
2−38. The techniques used to compute the significant terms are ex-
pressed as for 0 < 𝑦 < 1, 𝑠1 = ⌊log2 (𝑦)⌋, 𝑠𝑛 = ⌊log2 (𝑦 −

∑𝑛−1
𝑖=0 2𝑠𝑖 )⌋.

Given our requirement of 𝑞 ≥ 34 and our choice of 𝑞 = 38 we can
terminate the expansion whenever |𝑠𝑛 | ≥ 38 to have our estimate be
within 𝜖 = 10−10. For the sake of completeness we will enumerate
the sum in an inequality | (𝜋−3)−(2−3+2−6+2−11+2−12+2−13+2−14+
2−15 +2−16 +2−18 +2−19 +2−21 +2−23 +2−25 +2−29 +2−33 +2−38) | <
10−10. Observe the −3 in parenthesis with 𝜋 . If we acknowledge that
3 = (−1) · 0 · 22 + 1 · 21 + 1 · 20, factor out a negative, and merge it
with the estimate of (𝜋 − 3) we can observe that | (𝜋 − ((−1) · 0 · 22 +
1 · 21 + 1 · 20 + 2−3 + 2−6 + 2−11 + 2−12 + 2−13 + 2−14 + 2−15 + 2−16 +
2−18 + 2−19 + 2−21 + 2−23 + 2−25 + 2−29 + 2−33 + 2−38) | < 10−10. This
can be made more explicit by padding-in the 2−𝑖 that have 0 as a
coefficient, and recognize this as the 41-bit 2’s complement fixed
point number 011.00100100001111110110101010001000100001
with scaling factor 38.

4.2 Approximating functions
To approximate function 𝑓 we start with the Taylor Polynomial of

degree 𝑁 :
∑𝑁
𝑘=0

𝑓 (𝑘 ) (𝑎)
𝑘! (𝑥 − 𝑎)𝑘 , where 𝑓 (𝑘) is the 𝑘th derivative of

𝑓 , and 𝑎 is an expansion point where the domain of the approxima-
tion is centered. We gather the coefficients of this polynomial offline

3The accompanying technical report provides more background [16].
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and generate P4 code that evaluates the polynomial at runtime. 𝑁
represents accuracy and is related to the 𝑝 and 𝑞 choices. If we are
seeking specific 𝑝.𝑞 (to operate on 𝜋 from the previous example)
then we iteratively search for an 𝑁 that yields the closest match for
𝑝.𝑞.

Once a polynomial that approximates a function has been gener-
ated, performing the calculations using that polynomial uses constant
space and linear time. The linearity is in terms of 𝑁—the degree of
the polynomial.

To evaluate the polynomials, we synthesize P4 functions that
implement a Multiply-Add-Accumulate(MAC) operation that cor-
responds to polynomial evaluation. The technique is a variant of
Horner’s method [8] and is computed by updating an index vari-
able that selects the 𝑘-th coefficient and then performing fixed-point
multiplies and adds.

Algorithm 1 generates a P4 function called operation_𝑓 _𝑝_𝑞(𝑥)
and supporting definitions to approximate a given function 𝑓 . Note
that the algorithm: (1) also takes parameter 𝑎, which is a point on
the line for which we expect highest accuracy; (2) generates a P4
program 𝑃 by accumulating definitions and statements; (3) is exe-
cuted offline before the in-network computation begins; (4) generates
P4 that only involves arithmetic on unsigned words that we use to
store 𝑝.𝑞 fixed-point encodings of R-values. The computation of
derivatives and factorials is done offline. Once the P4 program is
synthesized, it is compiled and installed on the switch.

The accuracy and resource usage of this algorithm is evaluated in
the next section. We now analyze the algorithm a little further. The
offline part of the algorithm involves computing the coefficients to a
Taylor polynomial of degree 𝑁 . It also builds a program—consisting
of 𝑝.𝑞-sized register definitions and initializations, and an unrolled
loop that carries out the evaluation of the polynomial in the dataplane.
The unrolled loop consists of repetitions of the final block of code,
which updates the res value that is returned by the action.

Worked example: log. Take log(𝑥) on the domain ( 1
1000 , 2

−5) with
expansion point 𝑎 = 2−6. Following Algorithm 1, initialize res = 0
and m = 0. The𝑚th derivative of log(𝑥) on our domain evaluated at
our expansion point 𝑎 is log(2−6) = −6 log(2) if 𝑚 is 0, otherwise
it is (−1)𝑚−1 (𝑚 − 1)!(2−6)−𝑚 = (−1)𝑚−1 (𝑚 − 1)!(26)𝑚 . From the
definition of 𝑑𝑖 in Algorithm 1, for all the 𝑐𝑚 where 𝑚 > 0, we have
𝑐𝑚 = (−1)𝑚−1 (2

6)𝑚
𝑚 . In this case x_sub_a = (𝑥 − 2−6), and at the

end of the 𝑚th repetition (before incrementing the register reader
variable m) we have x_sub_a_m = (𝑥 − 2−6)𝑚 . At the end of the
code repetition we will see res contain the value of −6 log(2) +∑𝑁
𝑚=1 (−1)𝑚−1

(26)𝑚
𝑚 (𝑥 − 2−6)𝑚 .

4.3 Optimized approximation
There are two optimizations we found useful. First, when the deriva-
tive terms are complicated, it is beneficial to simplify the polynomial,
since it will use fewer resources without compromising accuracy.
A typical example would be to simply precompute fixed-point nu-
merals for each of the needed reciprocal factorial terms and then
incrementally compute the numerator of the 𝑘th term from within
the P4 code. For example, the final expression in the previous exam-
ple can be simplified to

∑𝑁
𝑚=1

(−1)𝑚−1
𝑚 (26𝑥 − 1)𝑚 . Another example

Algorithm 1 Generate approximator for 𝑓 .

Require: Parameters 𝑓 , 𝑁 , 𝑝, 𝑞, 𝑎 where 𝑎 is center point and 𝑓 is
real analytic.

Ensure: Program 𝑃 has length ≤ 𝑓 (𝑁, 𝑝, 𝑞)
𝑃 ← ∅ ⊲ Initialize 𝑃 to empty P4 program.
for 1 ≤ 𝑘 < 𝑁 do

𝑑𝑖 ← | (𝑓
(𝑘 ) (𝑎))
𝑘! | ⊲ Compute kth derivative scaled by 𝑘!.

𝑝𝑖 , 𝑞𝑖 ← conv2 (𝑝, 𝑞, 𝑑𝑖 ) ⊲ Encode 𝑑𝑖 as 𝑝.𝑞.
𝑃 ← defReg(Reg𝑖 , 𝑝 + 𝑞) ⊲ Define register, width 𝑝 + 𝑞.
𝑃 ← writeReg(Reg𝑖 , concat(𝑝𝑖 , 𝑞𝑖 )) ⊲ Initialize.

end for
𝑑 ← (𝑓 (𝑘 ) (𝑎))

𝑘!
⊲ Define approximation that’s contributed to the function’s value.
Typedef ‘R’ is a bit vector of width 𝑝 + 𝑞.
𝑃 ← defineAction(op_𝑓 _𝑝_𝑞(x) with P4 template:

⊲ Handle case𝑚 = 0, and 𝑥0

R m = 0; R prod = 0; R c_m = read_reg(m);
R res = c_m; R xsuba = x-a; R xsuba_m = x-a;
m = m + 1;

⊲ Make 𝑁 − 1 copies of the following block:
c_m = read_reg(m;)
prod = (int<p+q>)(((int<2p+2q>)(xsuba_m)

* (int<2p+2q>)(c_m)) >> q);
if (d > 0) res = res + prod;
else res = res - prod;
xsuba_m = (int<p+q>)(((int<2p+2q>)(xsuba_m)

* (int<2p+2q>)(xsuba)) >> q);
m = m + 1;

involves the use of the half-angle formula4 to obtain good precision
with a smaller 𝑝.𝑞-type by mapping the value of 𝑥 to a subset of the
domain.

Second, formulas can be simplified if the problem does not re-
quire the general case. For an example from our use-case, we take
the natural logarithm of a value used to calculate 𝑑—the distance
traveled by the photon in our simulation. To determine how much
energy it lost—which is used to model its passage through different
tissues—we evaluate 𝑒−0.02𝑑 and use this to exponentially decay the
energy remaining for that photon. Since 𝑒−0.02( ·) is only used for
this purpose in our procedure, we restricted its domain to be the
image of log prior to constructing an approximator for it. The reason
for restricting the domains of functions that need to be approximated
is that typically a smaller domain corresponds to less computational
effort and higher precision. This is similar to how for the case of log,
since we knew that it was only going to be used on a subinterval of
(0, 1) corresponding to random percentages, it was advantageous to
approximate log on that subinterval rather than all of (0, 1).

5 Prototype Implementation
The implementation was 847 lines of P416 code targeting BMv2’s
simple_switch. Most of this code consisted of the implementa-
tions of the functions such as sin, cos, arccos, log, and exp. It uses
8.56 fixed-point encoding which amounted to using 64-bit words.
For each function that we sought to make a Taylor Polynomial in P4,

4sin(𝑥) = 2 sin( 𝑥2 ) cos(
𝑥
2 )
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Function 𝑓 Degree 𝑁 LOC #Registers
log( 𝑥) 20 133 20
𝑒−0.02𝑥 18 120 18
cos(𝑥) 9 77 9
sin(𝑥) 9 + 8 77 + 65 9 + 8

arccos(𝑥) 20 137 20
Table 2: Resource use for the functions in “photon.p4” (§3).
Since sin is expressed in terms of cos, it adds to the resources
needed by cos. In §7 we discuss eliminating the need for registers
by inlining constants. #Registers is the total registers that are
needed, across all stages.

we estimated how many terms were needed for the polynomial, and
computed the coefficients using the spfpm module in Python.

We ran the prototype in a small network model for in-network
simulation of photon propagation and captured the computed values.
The captured values were analyzed for accuracy by comparing them
to the outputs from a reference Python implementation that uses
floating-point numbers. The next section shows graphs that compare
the accuracy of P4-computed values with that of reference values
computed using Python’s approximation of real numbers.

We designed a packet format to encode each photon’s coordinates.
The format includes a a field to encode the photon’s energy. Each
packet contains information about a single photon that was emitted
by the light source. Packets were then streamed through the network
and processed by the P4 program.

The P4 program receives a photon packet, computes its new
coordinates and recirculates it if needed to exponentially decay
its energy. The calculation done in the switch involves updating
polar coordinates, which involves trigonometric functions that were
approximated using approach described in §4. Once the energy is
sufficiently low, coordinates were changed from Polar to Cartesian
and the packet is sent to a destination host for capture.

After capture, we analyzed the photon values against a reference
implementation that was written in Python, and which used floating
point types. We also visualized the distribution of photons in the 3D
volume representing the tissue that was traversed by photons.

6 Evaluation
We evaluate (1) the accuracy of the resulting functions when com-
pared to that of Python implementations that scientists will be fa-
miliar with; (2) the resource complexity of the resulting function
approximations: how much space (registers) and steps they require
to execute, giving us a back-of-the-envelope approximation of this
technique’s use of ALUs when it will be ported on real hardware.

Accuracy. Fig 3 shows the accuracy of function approximations
when using different 𝑝 and 𝑞. For each function in our use-case (§3)
we generated 1000 points at random in the domain we were targeting.
These points were converted into 8.56 fixed-point encodings. We
then ran the workload through the P4 program and captured packets
containing the resulting calculations. We then took the absolute
difference with the result of Python’s Math library. The precision of
the P4 implementations were on the order of 10−4 to 10−7.

Increasing the number of fractional bits improves precision. The
difference in the error distributions vary according to the function

Function 𝑓 Domain #Coefficients #Constants
log(𝑥) ( 1

1000 , 2
−5) 𝑁 6

𝑒−0.02𝑥 Im[log] ( 1
1000 , 2

−5) 𝑁 11
cos(𝑥) (−𝜋, 𝜋) 𝑁 8
sin(𝑥) (−𝜋, 𝜋) 2𝑁 16

arccos(𝑥) (−1, 1) 𝑁 8
Table 3: Resources used for functions used in the prototype
of our use-case (§3). Notation Im[𝑓 ] (𝑆) denotes the image of 𝑓
under 𝑆 . sin requires 2𝑁 because it includes the definition of cos.

and the polynomial used. In particular, for the computation of cos
we used the half-angle formula to define cos(𝑥) in terms of cos(𝑥/4)
to obtain greater precision.

Resource complexity. The general method we use statically bounds
the resource complexity as described in §4.2: constant space and
linear time. Our evaluation provides a sampling of resource usage
for functions that were approximated for our use-case (§3). This
sampling is reported in two tables. Table 2 shows the lines-of-code of
synthesized P4 and the number of registers that it contains. Note that
the definition of sin includes that of cos because of the half-angle
formula (described in §4.3). Table 3 shows the linear complexity of
#Coefficients—note that sin’s cost is higher because of the defini-
tion in terms of cos. The #Constants column shows actual values
for the number of coefficients.

7 Discussion
This paper described and evaluated a proof-of-concept of a new
approach for fractional calculations in P4. This approach is based
on Taylor approximation, and the resulting P4 approximation uses
linear resources and does not use tables.

The focus of this paper involved adapting this technique to work
within the constraints of the P4 language. The next phase of this
work involves porting this approach to run on programmable net-
work hardware, and addressing the constraints of specific hardware
targets as distinguished from constraints of the P4 language. These
targets are typically conservatively designed around networking
use-cases [10] and present target-specific constraints. For example,
public documentation of a Tofino-like target [2] describes support
for registers of sizes 8 bits, 16 bits, and 32 bits, or pairs of values
of those sizes. According to that documentation, ALUs can add on
sizes 8, 16, and 32 bits, but not multiply. Thus the P4 code synthesis
will be adapted to only invoke specific operations over specifically-
sized registers. We also plan to explore the P4-to-FPGA generation
path, to evaluate this paper’s technique on non-ASIC targets.

Another direction of future work involves optimizing this tech-
nique further. An easy first step involves eliminating the need for
coefficient-storing-registers by in-lining constants into the code.
Note that the coefficients are not updated at runtime, and therefore
they can be hardcoded in the synthesized P4. This will simplify Algo-
rithm 1, shorten the generated P4 code, and lessen the values in the
“#Registers” column. Another optimization technique involves using
a technique similar to half-angle reduction for non-trigonometric
function. We are developing an approach based on a conjecture
that provides this for the log function, which we will then evaluate
against the approximation provided by the Taylor polynomial.
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Figure 3: Absolute Error between functions encoded in P4 compared to their Python counterparts.

Finally, we are developing another use-case that will be used to
evaluate this approach further. It involves online processing of signal
data from a model of the upcoming Deep Underground Neutrino Ex-
periment [7] (DUNE), whose detectors will stream data continuously
at several TB/s. We are exploring the use of programmable switching
to move the simple data acquisition (DAQ) and reduction algorithms
involving fractional calculations into the network to support this
use-case. We envisage that data streaming out of the detector will
be processed in-flight before they reach the DAQ compute cluster,
freeing up resources in the DAQ for more sophisticated algorithms
normally performed offline and offsite. We are developing a P4 pro-
totype and validating it using waveform data generated by a DUNE
simulator featuring high-fidelity particle models [3]. Collaborators
provided us the DUNE filtering algorithms and these are being pro-
totyped in P4. We envisage that other SC use-cases can benefit from
the fractional calculation primitives that this paper described.
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