
A Case for Remote Attestation in
Programmable Dataplanes

Nik Sultana
Illinois Institute of Technology

Deborah Shands
SRI International

Vinod Yegneswaran
SRI International

ABSTRACT
Programmability is a double-edged sword. It can better tailor
solutions to problems, optimize resource use, and inexpen-
sively patch deployed equipment. But programmability can
also be abused to undermine the security of hardware and that
of its unwitting users. Remote Attestation (RA) is a class of
techniques to provide integrity assurance to remote users of
resources such as hardware, OSs and applications. It is used
to establish well-defined trust relationships among mutually
distrustful principals who provide, use or delegate remote
resources. RA could benefit, for example, tenants of a data-
center or users of IoT equipment such as health monitors.

This position paper considers how RA can be used to en-
able dynamic assessments of network security characteristics
through automated generation, collection, and evaluation of
rigorous evidence of trustworthiness. We introduce a set of
use cases, sketch how the Copland and NetKAT languages
can be combined and extended to make network-aware attes-
tation policies, and propose an extension of P4-programmable
hardware to enforce this mechanism in the network.

CCS CONCEPTS
• Networks → Network security;

KEYWORDS
Remote Attestation, Programmable Networking

ACM Reference Format:
Nik Sultana, Deborah Shands, and Vinod Yegneswaran. 2022. A
Case for Remote Attestation in Programmable Dataplanes. In The
21st ACM Workshop on Hot Topics in Networks (HotNets ’22), No-
vember 14–15, 2022, Austin, TX, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3563766.3564100

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564100

1 INTRODUCTION

Programmability is a double-edged sword. It can better tailor
solutions to problems, optimize resource use, and inexpen-
sively patch deployed equipment. But programmability can
also be abused to undermine the security of hardware and that
of its unwitting users.

The abuse of programmable network equipment was cen-
tral to the “Athens Affair” [20, 24], a cyberattack on a cellular
network operator that “targeted the conversations of specific,
highly placed government and military officials.” This enabled
eavesdropping on the private communications of the prime
minister of Greece and least 100 other high-ranking officials.
The attacker patched software running on programmable net-
work equipment to duplicate digitized voice data streams
associated with a specific list of phone numbers and direct
the duplicate streams to other cellular phones, enabling eaves-
dropping. The rogue software patch activated existing, but
unused, lawful-intercept functions of the equipment. The op-
erators of the network were unaware that their equipment had
been subverted. The attack came to light only by accident,
when an upgrade resulted in a noticeable malfunction. The
pervasive programmability of modern wired and wireless net-
works is risky without rigorous assurance of exactly which
programs are running on the network equipment.

Remote Attestation (RA) [9] could have helped the net-
work operator targeted in the Athens Affair to detect that
rogue software was running on its equipment. RA is a class
of techniques for validating remote resources, such as the
remote execution of a program and the hardware on which
it is executing. These techniques gather evidence to assure
users of the integrity of the resources with which they are
interacting. RA is orthogonal to program verification: RA
can verify a claim that a specific program is running without
verifying claims about the program’s correctness.

In this paper, we sketch a path to tackle both the spec-
ification and the mechanism for RA on programmable
dataplanes. We describe a specification approach that com-
bines the state-of-the-art approaches of Copland [14] and
NetKAT [2] which are used to reason about RA and SDN
respectively. For the mechanism, we describe an extension
of the Protocol Independent Switch Architecture (PISA) [7]
that can participate in RA protocols by attesting its code as
sketched in Fig. 2.

https://doi.org/10.1145/3563766.3564100
https://doi.org/10.1145/3563766.3564100

HotNets ’22, November 14–15, 2022, Austin, TX, USA Nik Sultana, Deborah Shands, and Vinod Yegneswaran

Application,
Configuration,

and Inputs

Hardware Platform

Relying PartyClaim
Challenge

Evidence
ResponseAttester AppraiserResult

Evidence

1

2

3

4

Figure 1: Principals in Remote Attestation. The
Relying Party trusts a remote system based on evidence.

2

4

Hardware
Program

{ },

Evidence

RP 1 RP 2

1

Appraiser

4

3

Attester

Claim

In-band
Evidence

Out-of-
band

Figure 2: PERA: “PISA Extended with RA” (§5). Fig. 1
can be instantiated to leverage this in various ways.

The security of programmable networking equipment has
not yet caught up with its flexibility, and research is needed to
address the gap. Unfortunately, the security risks introduced
by programmability can undermine the benefits of using pro-
grammable network hardware. For example, there has been
excellent progress on leveraging programmable networking
for monitoring [15, 16, 25], but without RA an adversary can
replace a monitoring program with one that produces false
readings, perhaps as part of a Denial-of-Service or Confused
Deputy attack on the network being monitored.

The networking community needs fundamental techniques
for using RA on programmable network hardware. Theoreti-
cal and practical RA techniques developed for other targets
offer helpful stepping stones. For example, practical RA tech-
niques for hosts [5, 10] can be reused for programmable net-
work hardware (e.g., for securing the boot sequence and pro-
viding secure signing and verification of data.) Similarly, ab-
stractions [9] and reasoning techniques about confinement [22]
can be repurposed for programmable dataplanes.

Because existing RA techniques abstract away the network
and focus on peers, new techniques are needed to enable
dynamic, automated assessment of security-critical character-
istics of networks implemented on programmable hardware.
The central hypothesis in this position paper is that RA can be
used to enable dynamic assessments of network security
characteristics through automated generation, collection,
and evaluation of rigorous evidence of trustworthiness.

A realization of the hypothesis is sketched in the remain-
der of the paper which introduces use cases, describes how
NetKAT and Copland can be combined to express the use
cases, and discusses the extension of a P4 [6] switch to
produce and consume evidence. Related work is mentioned
throughout the paper.

2 MOTIVATING USE CASES
We describe motivating practical situations in which having
RA-capable programmable dataplanes improves the security
of network users and operators.

UC1: Configuration Assurance. Using the wrong dataplane
program can have serious consequences for the operator and

its users. For example, using the wrong firewall, forwarding
table, or load-balancer could degrade the network’s security
and performance. In this use case, RA protects against un-
vetted or unwanted dataplane programs that might have been
mistakenly or deliberately swapped for the intended version.
In the “Athens Affair” from §1, the equipment’s software was
deliberately modified to exfiltrate traffic, but it could also have
been modified to malfunction and cause a denial-of-service.

Using RA in this use case would involve producing evi-
dence at some granularity and frequency (at most, per hop
and per packet) along the paths of a network flow, and giving
peers a signed and suitably redacted form of that evidence.
For example, the evidence for a packet 𝑝 could indicate that
𝑝 reached switch 𝑆1

1 on a specific network port, and was pro-
cessed by firewall_v5.p42 and forwarded to 𝑆2 which
was running ACL_v3.p4, that then forwarded 𝑝 to a DPI
appliance that forwarded it back to 𝑆2, that forwarded the
packet to the current node.

UC2: (Authentication) Path Evidence as a Security Factor.
The evidence gathered along a path can be used as a factor
for authentication [1]. For example, a user that forgets their
password or connects from a new device could be permitted
limited access to a resource if they can prove that they are
connecting from their home via an acceptable network path.
This evidence can be used to weakly authenticate different
peers and complement other authentication methods.

In addition to chaining together evidence of the forwarding
decisions made on programmable dataplanes, this evidence
can attest to other packet processing or filtering. Our con-
fidence in a path can be bolstered if the path has specific
features (e.g., if it crosses a specific series of firewalls or
appliances as discussed in UC1.)

UC3: (Authorization) Path Evidence as a Tag. In UC2, evi-
dence was used for authentication. Evidence can also be used
in authorization decisions that affect intra- or inter-domain

1Instead of revealing their actual serial number, switches could be assigned a
per-user pseudonym by the operator.
2Programs can also be assigned pseudonyms that can be lifted by an auditor’s
request or court order.

Remote Attestation in Programmable Dataplanes HotNets ’22, November 14–15, 2022, Austin, TX, USA

handling of traffic. For example, the decision to forward pack-
ets could depend on whether those packet have been processed
by a set of appliances, such as an IDS, firewall, and scrubber.
Packets can be treated differently based on evidence that they
have never left a particular segment of the network. RA can
provide an evidential basis to use cases like those described
for FlowTags [11].

Path evidence could be used for DDoS mitigation: while
under attack, a network could drop traffic for which it lacks
path-based evidence. The next section describes caching of
evidence and varying the level of detail and sampling fre-
quency of evidence to lower the overhead of providing and
consuming evidence.

UC4: (Auditing) Evidence as Documentation. This use case
has two complementary sub-cases: (A): Programmable data-
planes can run filters that match packet types and fields [7]
and distinguish flows [8]. These features can be used to char-
acterize malware communications with command-and-control
nodes [17], which in turn can fingerprint the presence of mal-
ware. This can be captured as evidence that is used to justify
other actions, such as applying for a court order to deactivate
that malware [12]. (B): The subsequent action to deactivate
the malware can also be documented in a similar way (i.e.,
as an appraisable set of network interactions) and stored for
later use as evidence to show the limited and focused action
that was taken to deactivate the malware, to prove compliance
with the authorizing court order. Thus RA can be used to pro-
vide evidence on integrity, transparency, and compliance of
network-related activities to third-parties at a later time [26].

A similar audit trail can be compiled as evidence when gath-
ering data from sensors [13], such as those for atmospheric
radiation sampling, as evidence of the data’s provenance and
to help ensure that the sensor traffic has not been spoofed.

UC5: Cross-Referenced Attestation. Evidence from host-
based and network-based attestation could be composed to-
gether to offer a more complete picture of how host-based
processes interacted with the network, and how the network
processed their traffic. This can help detect and stop exfiltra-
tion attacks by checking whether outward traffic patterns have
been authorized by an unmodified application.

This composed evidence could also be used to show that
the host that produced a specific flow was running a specific
version of a network stack or protocol implementation. This
enables the enforcement of policies that are sensitive to the
network behavior of software. For example, TLS packets
that were produced by a verified implementation [3] could
be allowed to leave the network, while packets produced by
un-verified implementations are blocked.

Another application of this use case involves trusted redac-
tion of evidence for compliance certification of information
processing within a cloud environment: path evidence could

be processed to redact details sensitive to the enterprise cus-
tomer before giving the redacted evidence to a compliance
officer. By using host-based RA, the customer can meet regu-
latory compliance obligations without disclosing unnecessary,
sensitive information to the regulator.

3 THREAT MODEL
We assume that evidence-producing hardware components
(e.g., those that initialize a chip or generate a digital signature)
are trustworthy: they are correctly designed and manufactured
to generate tamper-evident evidence. Larger components or
products into which trustworthy components are integrated
(e.g., switches, NICs) are not assumed to be trustworthy. Ad-
versaries may attempt to exploit insecure intermediate nodes
as well as limitations on hardware resources to potentially
compromise path attestation. An adversary may also perform
supply-chain or organizational insider attacks to actively inter-
fere with hardware, software, and staff. RA leverages outputs
from trusted components to derive security guarantees across
distributed systems that are deployed on third-party nodes
assembled by untrusted manufacturers and run by untrusted
operators (and their employees).

The technique described in this paper enables verification
of the integrity of dataplane programs and their state. This
does not, by itself, ensure confidentiality, integrity, and avail-
ability of data processed by a programmable dataplane, but
it supports improved confidence in the dataplane programs
that are processing data. Our technique does not overcome
physical insecurity of a network device. For example, it does
not protect against a malicious insider installing a passive tap
to siphon network traffic, or installing an intermediary device
to introduce network traffic between two network elements.
RA complements other security techniques, such as physical
access control and network protocols for end-to-end security,
such as TLS and IPsec.

4 REMOTE ATTESTATION
Fig. 1 shows the main principals in RA. The Relying Party
(RP) is the user of a remote program for which Claims (1)
about its execution are met by Evidence (2) produced by the
Attester on behalf of the platform executing that program.
The RP presents this Evidence to an Appraiser (3) (some-
times referred to as the Verifier) which verifies the evidence
to produce an Attestation Result (4). More details can be
found in specifications such as RATS [4, §7].

4.1 Reasoning about Network-aware RA
To use RA to reason about network communication of mul-
tiple parties over time requires a language that enables us
to describe how networking equipment is to generate and
process attestation evidence.

HotNets ’22, November 14–15, 2022, Austin, TX, USA Nik Sultana, Deborah Shands, and Vinod Yegneswaran

The language needs primitives to describe principals and to
chain together processing steps across the network. To work
in general network settings, the language needs some special
primitives. The language must enable us to (Prim1) abstract
over paths, since paths might not be knowable in advance.
To reason about abstract paths, the language must enable
us to (Prim2) abstract over places, since the identities of
intermediate hops along a path might not be known to us.
The language must also enable us to (Prim3) reason about
reachability, and predicate a policy on a collector of evidence
being reachable by producers of evidence.

The next section describes Copland, an existing language
for reasoning about RA. Later we describe our proposal to
extend Copland to provide primitives (Prim1)-(Prim3).

4.2 The Copland Language
Copland separates the specification of RA attestation proto-
cols from the enforcement mechanisms provided by specific
hardware features. It has formal semantics [19] and a verified
compiler toolchain [18]. The separation between policy and
mechanism plays a central role in describing fundamental
principles for flexible RA [14] that accommodates the needs
of different use cases.

We introduce Copland’s syntax by adapting an example
from Rowe et al. [23], in preparation for the language exten-
sion described in the next section. This example is like the
host-based portion of the “verified TLS implementation” part
of use case UC5 in §2: a banking website uses evidence about
the client’s browser extensions to check for malware that
could steal the client’s credentials. The client runs a bmon
process which measures the exts process that represents the
client’s browser extensions. The bank also receives measure-
ments from av, an antivirus program running in the client
device’s kernelspace.

Expressions in Copland describe measurements done by
principals of specific values. Measurements are to be carried
out in certain places as described by the expression. The
results of measurements can be transformed and sent to other
places, in composition with other measurements. Consider
the example below:

∗ bank : @ks [

𝐶1︷ ︸︸ ︷
av us bmon] ++∼ @us [

𝐶2︷ ︸︸ ︷
bmon us exts] (1)

In expression (1), the overbraces are not part of Copland syn-
tax, rather, we use them to label two Copland subexpressions
𝐶1 and 𝐶2. Here, ∗𝑅 : 𝐶 indicates that the unique outer-
most principal 𝑅 is requesting evidence for expression 𝐶, 𝑅 is
the relying party, and the principals mentioned in 𝐶 include
attesters and appraisers.

In the banking website example shown in (1), the bank
is requesting a compound measurement. Starting with the
inner expression 𝐶1 (i.e., “av us bmon”) it means that the

antivirus principal av is to measure principal bmon that is
running in place us (userspace). The expression @𝑃 [𝐶] means
that measurement 𝐶 must be carried out in place 𝑃—so the
measurement𝐶1 would be carried out in ks (kernel space).𝐶1
is used to check that bmon has not been tampared with. 𝐶2
uses bmon to measure the userspace-located exts, to scan for
suspicious browser extensions.

Measurements in (1) are composed using “𝑙𝑟∼”: this means
that both measurements are carried out in parallel (“∼”). The
evaluation of a Copland expression takes in evidence that has
been accrued so far and transforms it into composite evidence.
The values of 𝑙 and 𝑟 indicate whether evidence accrued so far
is passed to each arm of the composition. Symbol “+” means
that evidence is passed on, and “−” means that evidence is
not passed on. Thus “𝐶1

−−∼ 𝐶2” is a parallel composition that
only allows information to flow back from evaluating 𝐶𝑖 .

An active adversary could replace bmon in userspace to
always give a positive measurement, even when exts includes
malware. Ramsdell et al. [21] describe how an active adver-
sary who has userspace but not kernelspace control can cheat
example (1) as follows: it first evaluates 𝐶2 using the cor-
rupt bmon, then it “repairs” bmon in userspace (replacing it
with the non-corrupt version), and only then would it allow
𝐶1 to take place. av would then indicate to bank that bmon
is authentic. This can be mitigated by sequencing the two
measurements using the “<” composition instead of the par-
allel composition, to make it more difficult for an adversary
to “hide their tracks.” Rowe et al. [23] describe adversary
capability models in more detail.

Version (2) improves on version (1), using “
−−
< ” as de-

scribed above and adding two other features.

∗bank : @ks [av us bmon → !]
−−
<

@us [bmon us exts → !] (2)

The first feature introduces the “𝐶 → 𝐷” operator to express
that evidence produced by 𝐶 is to be passed along to be
processed by function 𝐷. The second feature introduces the
signature operator “!” to express that the measurements from
𝐶1 and 𝐶2 are to be separately signed and returned to bank.

5 REMOTE ATTESTATION IN
PROGRAMMABLE DATAPLANES

We first convert the example shown in Fig. 2 into Copland
to show the language being used in a simple network setting.
We then extend Copland to express UC1-UC5 from §2.

We start with the out-of-band variant from Fig. 2: here
the evidence is sent from the switch directly to the appraiser
for certification. The switch first hashes (the # operator) and
then signs (! operator) this evidence. The first relying party,
RP1, receives direct evidence of this appraisal and certifica-
tion. RP2 can later retrieve this evidence from the appraiser.

Remote Attestation in Programmable Dataplanes HotNets ’22, November 14–15, 2022, Austin, TX, USA

Note that both expressions are bound by 𝑛, a nonce parame-
ter following Helble et al. [14]. This parameter is negotiated
separately by RP1 and RP2. Example (3) below uses simpli-
fied syntax to reduce clutter by eliding obvious place details,
and steps ➀-➃ from Fig. 2 are shown in blue to distinguish
them from Copland syntax. Example (3) is described by two
expressions that are evaluated in parallel:

∗RP1, 𝑛 : @Switch [attest

➀: Claim︷ ︸︸ ︷
(Hardware −−∼ Program) → #

→ !]
++
>

➁ & ➂: Evidence
@Appraiser [appraise → certify(𝑛)

→ ! → store(𝑛)]➃: Result

∗RP2, 𝑛 : @Appraiser [retrieve(𝑛)]➃: Result

(3)
The in-band evidence variant (4) is similar except that

the evidence first reaches RP2 who then makes the appraisal
request. Since RP2 learns the result of the appraisal directly,
it does not need to separately enquire for a certificate as in
the out-of-band variant. In this variant, we do not need a
nonce to link the requests by the two Relying Parties (though
a nonce can be used for freshness), and there is no need to
store a certificate for later retrieval by another party. Unlike
the previous example, this setting is described by a single
expression. At the end of this process, both RP2 and RP1
would have received a signed certificate from the appraiser.

∗RP1 : @Switch [attest(Hardware −−∼ Program) → # → !]
→ @RP2 [@Appraiser [appraise → certify → !]]

(4)

5.1 Network-aware Copland
Copland expressions incorporate network topology details
which restricts applicability to network settings where we do
not have full topological visibility into the network. Even if
they have knowledge of the network’s topology, the forward-
ing path between two peers is typically chosen outside their
control, and the path might change without warning due to
routing changes. In the banking example from §4.2, neither
the client nor the bank is likely to have a complete picture
of how their traffic is being forwarded. The banking service
might be running in a cloud, the internal topology of which
is not disclosed to the bank. The client app might be running
behind a NAT which hides details from the rest of the Internet.

We sketch an extension of Copland that incorporates fea-
tures of NetKAT [2] to describe attestation specifications over
networks that can include programmable dataplanes.

This Copland+NetKAT hybrid has the following features:
(Prim1) The

∗⇒ operator is based on NetKAT’s Kleene star
operator and provides path abstraction: the phrase on the left
of this operator can hold for zero or more hops along the
path. (Prim2) The ∀ operator provides place abstraction by
relaxing the requirement to explicitly name places at the time

of writing a policy. (Prim3) Reachability testing is provided
through a combination of the ▶ operator and path abstraction.
The ▶ operator adapts NetKAT’s Boolean test prefix, and
applies a Boolean test to a device before having it produce an
attestation. A node (for which a ▶-test holds) is reachable if
there is a path leading to it. That node can also attest the result
of the test. This test is done for two design reasons: to “fail
early” and avoid the attestation effort, and to apply different
attestations based on which Boolean test succeeds.

AP1 in Table 1 is an example of UC5. It adapts the bank
example we saw earlier, the original parts of which are shown
in blue. Here, the bank is the relying party (RP) as before. The
nonce 𝑛 and property 𝑋 are RP-chosen parameters. 𝑋 is some
property that bank wishes to be attested at each hop—such
as which P4 program and tables were used for forwarding.
AP1 also serves as example of UC1 by extending the property
𝑋 to include other configuration details.

Terms hop and client are abstract place names—the first
will be used for each hop along a path, and the second will
be used to refer to the end of the path. The phrase to the
left of

∗⇒ describes the gathering of evidence from each hop
(which must satisfy test Khop). Evidence is sent to the spe-
cific Appraiser place. Khop and Kclient ensure a pre-existing
relationship between bank, client and each hop. This is not
necessary, and is done to strengthen the specification.

Unlike AP1, AP2 has a switch be the relying party. This
policy is an example of UC4. Except for the use of ▶, this
could have been written entirely in Copland. In this example,
𝑃 is a test being made on a packet. If the test succeeds then
the test result is signed and sent to the Appraiser for storing.

AP3 is a more complex example that shows an attestation
for a path that has specific functions (𝐹1, 𝐹2) running in ab-
stract places (𝑝, 𝑞). An interesting feature of this example is
that 𝑝 passes its evidence to 𝑞 before it reaches Appraiser,
and between 𝑞 and 𝑟 we do not require nodes that support RA.

5.2 Executing RA Policies
After authoring an RA policy, how do we deploy it? The
policy will be compiled by the Relying Party and serialized
into an options header in the transport layer, to be evaluated
along the path of traffic that it is sending out. The Relying
Party will then query named places for evidence.

To interpret this policy on flows we envisage a device that
we call PERA, for “PISA [7] switch Extended with RA”. This
switch will have access to specialized hardware primitives that
can produce and consume evidence. These primitives might
be integrated into the ASIC or might be remotely invoked by
the programmable switch [27].

Fig. 3 sketches this hardware, noting that evidence might be
sent in-band or out-of-band, as illustrated back in Fig. 2. Here,
(A) and (D) show in-band evidence being received and sent by

HotNets ’22, November 14–15, 2022, Austin, TX, USA Nik Sultana, Deborah Shands, and Vinod Yegneswaran

∗bank⟨𝑛, 𝑋 ⟩ : ∀hop, client : (@hop [Khop ▶ attest(𝑛)𝑋 → !]
−+
> @Appraiser [appraise → store(𝑛)]]) ∗⇒

@client [Kclient ▶ @ks [av us bmon → !]
−−
< @us [bmon us exts → !]]

AP1: Bank example from (2) but with path attestation between bank and client. The original expression is shown in blue.

∗scanner⟨𝑃⟩ : @scanner [𝑃 ▶ attest(𝑃) → !]
−+
> @Appraiser [appraise → store]

AP2: Example of UC4: a switch scans for a traffic pattern 𝑃 . RA’s audit trail can then be referenced by other actions.
∗pathCheck⟨𝐹1, 𝐹2, Peer1, Peer2⟩ : ∀𝑝, 𝑞, 𝑟, peer1, peer2 :
@peer1 [Peer1 ▶ !]

−+
> @𝑝 [attest(𝐹1) → !]

−+
> @𝑞 [attest(𝐹2) → !]

−+
> @Appraiser [appraise → store] ∗⇒

@𝑟 [𝑄 ▶ !]
−+
> @peer2 [Peer2 ▶ !]

−+
> @Appraiser [appraise → store]

AP3: Example combining UC2 and UC3, involving attested dataplane programs and network path segments.

Table 1: Examples of Attestation Policies (APs) in Network-aware Copland.

Parse Match + Action
Sign/Verify Programmable

Dataplane

Signature

Evid
ence

Paylo
ad

Table}A
B
C

}D

E Create/Inspect/Compose

Ingress

Egress

Figure 3: An RA-capable programmable switch. Evidence-
handling is tuned to balance performance and security.

Evidence Detail
Sampling

Expansive

In
er

tia

Hardware
Program
Tables
Prog. State
Packets

Evidence
CompositionPointwise

Chained
Traffic Path

Peer 1

AE1

NE

Peer 2

AE2

Figure 4: Inertia, Detail and Composition are the primary
indices in our design space for PERA. The path between
Peer 1 and Peer 2 includes Non-attesting Elements (NE)
and Attesting Elements (AE).

the switch. Cases (B), (C) and (E) show evidence arriving and
leaving separately. For some situations, it might be adequate
to expect evidence to be gathered for each packet, and to add
the RA policy to each packet. But in other situations, such
per-packet overhead might be cumbersome and prohibitive.

In addition to the specification language and execution
mechanism, we envisage a configuration interface that can
tune the level of detail and frequency of evidence. Fig. 4
illustrates the main configuration choices. Inertia refers to
the level of variability of attestable information across time:
at one extreme, the model number of the hardware will not
change, at the other extreme, a packet might be completely
different than those that came before it. High-inertia attesta-
tions are more easily cached since they take longer to expire.

6 CONCLUSION
While programmable networking equipment offers great flex-
ibility, networks implemented on such equipment are at risk
from attacks that dynamically modify security-critical net-
work behavior. This paper has sketched an approach for using
RA techniques to enable dynamic assessment of network se-
curity characteristics. By extending the Copland RA policy
language with elements of the NetKAT SDN programming
language, we can define RA policies for programmable net-
works that specify the generation, collection, and evaluation
of evidence of network program integrity. By implementing
such RA policies, network dataplanes can participate in the
process of proving their own trustworthiness.

ACKNOWLEDGMENTS
We thank the anonymous HotNets reviewers for their feed-
back. This material is based upon work supported by a Google
Research Award, by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-19-C-0106,
and by the National Science Foundation (NSF) under Grant
No. ITE 2226443. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of funders.

Remote Attestation in Programmable Dataplanes HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES

[1] [n. d.]. Multi-Factor Authentication. https://www.cisa.gov/mfa. ([n.
d.]). Cybersecurity & Infrastructure Security Agency.

[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. SIGPLAN Not. 49, 1 (jan 2014),
113–126. https://doi.org/10.1145/2578855.2535862

[3] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. 2017. A Messy State of the
Union: Taming the Composite State Machines of TLS. Commun. ACM
60, 2 (jan 2017), 99–107. https://doi.org/10.1145/3023357

[4] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan. 2022.
Remote Attestation Procedures Architecture. https://www.ietf.org/
archive/id/draft-ietf-rats-architecture-17.html. (June 2022). RATS
Working Group, IETF.

[5] Conor Black and Sandra Scott-Hayward. 2021. A Survey on the Veri-
fication of Adversarial Data Planes in Software-Defined Networks. In
Proceedings of the 2021 ACM International Workshop on Software De-
fined Networks & Network Function Virtualization Security (SDN-NFV
Sec’21). Association for Computing Machinery, New York, NY, USA,
3–10. https://doi.org/10.1145/3445968.3452092

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44,
3 (jul 2014), 87–95. https://doi.org/10.1145/2656877.2656890

[7] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013.
Forwarding Metamorphosis: Fast Programmable Match-Action Pro-
cessing in Hardware for SDN. SIGCOMM Comput. Commun. Rev. 43,
4 (aug 2013), 99–110. https://doi.org/10.1145/2534169.2486011

[8] Xiaoqi Chen, Hyojoon Kim, Javed M. Aman, Willie Chang, Mack Lee,
and Jennifer Rexford. 2020. Measuring TCP Round-Trip Time in the
Data Plane. In Proceedings of the Workshop on Secure Programmable
Network Infrastructure (SPIN ’20). Association for Computing Machin-
ery, New York, NY, USA, 35–41. https://doi.org/10.1145/3405669.
3405823

[9] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan
Millen, Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy,
and Brian Sniffen. 2011. Principles of Remote Attestation. Interna-
tional Journal of Information Security 10, 2 (2011), 63–81.

[10] Mihai Valentin Dumitru, Dragos Dumitrescu, and Costin Raiciu. 2020.
Can We Exploit Buggy P4 Programs?. In Proceedings of the Sympo-
sium on SDN Research (SOSR ’20). Association for Computing Ma-
chinery, New York, NY, USA, 62–68. https://doi.org/10.1145/3373360.
3380836

[11] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and
Jeffrey C. Mogul. 2014. Enforcing Network-Wide Policies in the Pres-
ence of Dynamic Middlebox Actions using FlowTags. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). USENIX Association, Seattle, WA, 543–546. https://www.usenix.
org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh

[12] Eric Geller. 2022. How DOJ took the malware fight into
your computer . https://www.politico.com/news/2022/06/13/
how-doj-took-the-malware-fight-into-\your-computer-00038932.
(2022). Politico.

[13] Andrew Gettelman, Alan J. Geer, Richard M. Forbes, Greg R.
Carmichael, Graham Feingold, Derek J. Posselt, Graeme L.
Stephens, Susan C. van den Heever, Adam C. Varble, and

Paquita Zuidema. 2022. The future of Earth system predic-
tion: Advances in model-data fusion. Science Advances 8,
14 (2022), eabn3488. https://doi.org/10.1126/sciadv.abn3488
arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.abn3488

[14] Sarah C. Helble, Ian D. Kretz, Peter A. Loscocco, John D. Ramsdell,
Paul D. Rowe, and Perry Alexander. 2021. Flexible Mechanisms for
Remote Attestation. ACM Trans. Priv. Secur. 24, 4, Article 29 (sep
2021), 23 pages. https://doi.org/10.1145/3470535

[15] Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford. 2021.
Experience-Driven Research on Programmable Networks. SIGCOMM
Comput. Commun. Rev. 51, 1 (mar 2021), 10–17. https://doi.org/10.
1145/3457175.3457178

[16] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-Directed Hardware Design for
Network Performance Monitoring. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIG-
COMM ’17). Association for Computing Machinery, New York, NY,
USA, 85–98. https://doi.org/10.1145/3098822.3098829

[17] Carlos Novo and Ricardo Morla. 2020. Flow-Based Detection and
Proxy-Based Evasion of Encrypted Malware C2 Traffic. In Proceed-
ings of the 13th ACM Workshop on Artificial Intelligence and Security
(AISec’20). Association for Computing Machinery, New York, NY,
USA, 83–91. https://doi.org/10.1145/3411508.3421379

[18] Adam Petz and Perry Alexander. 2021. An Infrastructure for Faithful
Execution of Remote Attestation Protocols. In NASA Formal Methods
Symposium. Springer, 268–286.

[19] Adam Petz, Grant Jurgensen, and Perry Alexander. 2021. Design and
Formal Verification of a Copland-Based Attestation Protocol. In Pro-
ceedings of the 19th ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 111–117.
https://doi.org/10.1145/3487212.3487340

[20] Vassilis Prevelakis and Diomidis Spinellis. 2007. The Athens Affair.
IEEE Spectrum 44, 7 (2007), 26–33. https://doi.org/10.1109/MSPEC.
2007.376605

[21] John D. Ramsdell, Paul D. Rowe, Perry Alexander, Sarah C. Helble,
Peter Loscocco, J. Aaron Pendergrass, and Adam Petz. 2019. Or-
chestrating Layered Attestations. In Principles of Security and Trust,
Flemming Nielson and David Sands (Eds.). Springer International Pub-
lishing, Cham, 197–221.

[22] Paul D. Rowe. 2016. Confining Adversary Actions via Measurement.
In Graphical Models for Security, Barbara Kordy, Mathias Ekstedt,
and Dong Seong Kim (Eds.). Springer International Publishing, Cham,
150–166.

[23] Paul D. Rowe, John D. Ramsdell, and Ian D. Kretz. 2021. Auto-
mated Trust Analysis of Copland Specifications for Layered Attesta-
tions. In 23rd International Symposium on Principles and Practice
of Declarative Programming (PPDP 2021). Association for Comput-
ing Machinery, New York, NY, USA, Article 23, 15 pages. https:
//doi.org/10.1145/3479394.3479418

[24] Bruce Schneier. 2006. Greek Wiretapping Scandal. https://www.
schneier.com/blog/archives/2006/06/greek_wiretappi_1.html. (June
2006). Schneier on Security.

[25] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith.
2018. Turboflow: Information Rich Flow Record Generation on Com-
modity Switches. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys ’18). Association for Computing Machinery, New York, NY,
USA, Article 11, 16 pages. https://doi.org/10.1145/3190508.3190558

[26] Nik Sultana, Markulf Kohlweiss, and Andrew W. Moore. 2016. Light
at the middle of the tunnel: middleboxes for selective disclosure of
network monitoring to distrusted parties. In Proceedings of the ACM

https://www.cisa.gov/mfa
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1145/3023357
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-17.html
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-17.html
https://doi.org/10.1145/3445968.3452092
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/3405669.3405823
https://doi.org/10.1145/3405669.3405823
https://doi.org/10.1145/3373360.3380836
https://doi.org/10.1145/3373360.3380836
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://www.politico.com/news/2022/06/13/how-doj-took-the-malware-fight-into-\your-computer-00038932
https://www.politico.com/news/2022/06/13/how-doj-took-the-malware-fight-into-\your-computer-00038932
https://doi.org/10.1126/sciadv.abn3488
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abn3488
https://doi.org/10.1145/3470535
https://doi.org/10.1145/3457175.3457178
https://doi.org/10.1145/3457175.3457178
https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/3411508.3421379
https://doi.org/10.1145/3487212.3487340
https://doi.org/10.1109/MSPEC.2007.376605
https://doi.org/10.1109/MSPEC.2007.376605
https://doi.org/10.1145/3479394.3479418
https://doi.org/10.1145/3479394.3479418
https://www.schneier.com/blog/archives/2006/06/greek_wiretappi_1.html
https://www.schneier.com/blog/archives/2006/06/greek_wiretappi_1.html
https://doi.org/10.1145/3190508.3190558

HotNets ’22, November 14–15, 2022, Austin, TX, USA Nik Sultana, Deborah Shands, and Vinod Yegneswaran

SIGCOMM Workshop on Hot topics in Middleboxes and Network Func-
tion Virtualization, HotMiddlebox@SIGCOMM 2016, Florianopolis,
Brazil, August, 2016, Dongsu Han and Danny Raz (Eds.). ACM, 1–6.
https://doi.org/10.1145/2940147.2940151

[27] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. 2021. Flightplan: Dataplane Disaggregation and Place-
ment for P4 Programs. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21). USENIX Association, 571–
592. https://www.usenix.org/conference/nsdi21/presentation/sultana

https://doi.org/10.1145/2940147.2940151
https://www.usenix.org/conference/nsdi21/presentation/sultana

	Abstract
	1 Introduction
	2 Motivating Use Cases
	3 Threat Model
	4 Remote Attestation
	4.1 Reasoning about Network-aware RA
	4.2 The Copland Language

	5 Remote Attestation in Programmable Dataplanes
	5.1 Network-aware Copland
	5.2 Executing RA Policies

	6 Conclusion
	References

