
Experience Report: Using the FABRIC Testbed to teach a
Graduate Computer Networking course

Alexander Wolosewicz
Illinois Institute of Technology

Chicago, Illinois, USA

Prajwal Somendyapanahalli
Venkateshmurthy

Illinois Institute of Technology
Chicago, Illinois, USA

Nik Sultana
Illinois Institute of Technology

Chicago, Illinois, USA

Abstract
The curriculum for a graduate Computer Networking course in
Computer Science typically includes activities that help students
gain a variety of practical skills that complement the theoretical
knowledge they learn during the course. These skills are developed
through exercises that present students with scenarios in which
they are to understand or cause specific communication behavior
over a network. These exercises are constrained by the computer
resources that students use for learning. Ideally those resources can
be tuned to increase the fidelity of the network that a student is
managing—and ultimately allow each student to fully control their
own network.

This paper describes the motivation, process, and challenges
of delivering a graduate course in networking using resources on
FABRIC—a publicly-funded, international testbed for research in
networking. The paper analyzes the experience of teaching three
graduate courses on networking, and reflects on using FABRIC to
(1) ensure that students have equal access to a high-quality network
environment (rather than rely on students’ individual laptops or self-
managed school equipment), and (2) exploit the research testbed’s
flexibility to develop a rich range of exercises for students. We
discuss our lessons learned and share advice for other instructors.

CCS Concepts
• Social and professional topics → Computing education; •
Networks → Programmable networks;

Keywords
Research testbed, Computer networking, Jupyter notebooks

ACM Reference Format:
AlexanderWolosewicz, Prajwal Somendyapanahalli Venkateshmurthy, andNik
Sultana. 2025. Experience Report: Using the FABRIC Testbed to teach a Grad-
uate Computer Networking course. In Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE TS 2025), February
26-March 1, 2025, Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3641554.3701923

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701923

1 Introduction
Students who take a graduate Computer Networking course in Com-
puter Science learn about the exciting combination of technologies
that support the communication, business, and government plat-
forms that many use daily. The curriculum of such a course has long
been composed of teaching both theoretical and practical skills [27].

Practical skills are developed through exercises that present
students with increasingly complex scenarios in which they are
to understand or cause specific communication behavior over a
network. Examples of exercises include: configuring a network
formed of a set of devices, measuring the performance of transfers
between those devices, analyzing network traffic to determine com-
munication patterns, diagnosing connection problems, and writing
software that uses the network.

Students use computer resources to carry out these exercises.
Examples of resources include: (1) a student’s own laptop on which
each student virtualizes [24, 28] or simulates [33] a network on
which they carry out the exercises; (2) a university-provided server
on which the virtualization or simulation software is installed; or
(3) resources provided by a third-party, such as a publicly-funded
testbed or a cloud service like AWS or Azure.

In this paper, we describe the motivation, process, and challenges
of delivering a graduate course on Computer Networking that uses
resources on FABRIC. In Section 4, we analyze the experience of
teaching three graduate courses on Computer Networking over
three years. Each course made a different choice between (1-3).
These choices are analyzed in Section 5. We found that choice (1)
disadvantages students with older laptops and causes amaintenance
burden for instructors to support different laptop platforms (e.g.,
Apple Silicon vs x86); choice (2) does not scale well with class
size and exercise complexity; and choice (3) involved sharing the
network infrastructure with several other users, but this option
proved to be the best in our experience. For choice (3) we used
FABRIC [12]—a publicly-funded, international testbed for research
in networking. Section 6 describes the design of the course that
uses FABRIC, and Section 7 discusses lessons learned and shares
advice for other instructors.

The FABRIC testbed has been under development for several
years, but only entered its operational phase in October 2023. FAB-
RIC encourages using the testbed for teaching [4]. It provides a
Jupyter notebook interface [25] for testbed users to describe net-
work configurations and computations. This enabled us to teach
through a form of literate programming [26]—where code was
interspersed with explanation—and use live coding [34] in lectures.

All network and configuration operations can be done by writ-
ing Python code in a Jupyter notebook, with which students were

https://orcid.org/0009-0008-6400-6504
https://orcid.org/0009-0004-8830-0725
https://orcid.org/0009-0004-8830-0725
https://orcid.org/0000-0002-8166-1200
https://doi.org/10.1145/3641554.3701923
https://doi.org/10.1145/3641554.3701923


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Wolosewicz et al.

already familiar. This Python interface encapsulates configura-
tion and invocation commands that are executed directly on the
network—allowing the skills learned in this course to transfer to
non-FABRIC settings. FABRIC handles the allocation of resources,
and allows each student to fully control their own network. This
minimizes the operation and maintenance burden for instructors,
and ensures that students have equal access to a high-quality net-
work environment that can be used through older laptops.

FABRIC scaled well with class size, and its flexibility enabled us
to develop a rich range of exercises for students. This included exer-
cises on recent topics in Computer Networking, such as Software-
DefinedNetworking (SDN) [21], P4 programming [17], and BPF [30].

As an unplanned benefit, we found that using a research testbed
provided an excellent stepping stone for students who become in-
terested in doing research in computer networking after the course,
or in learning more specialized skills. In our case, two students
went on to carry out independent study projects by building on the
assignments and skills they developed during the course, and used
FABRIC as their development and testing environment.

Figure 1: The first Jupyter notebook in the course shows
how to set up a slice (a set of resources forming a student’s
network), configure those resources, and use that network.
This is done using FABRIC’s Python-based API.

2 Background: FABRIC Testbed
FABRIC [12] is a distributed testbed [11] that spans 33 sites—29 in
the US, 3 in Europe, and 1 in Asia. FABRIC users can allocate “slices”
of resources across all these sites. FABRIC provides high-capacity
network resources [7] and it is part of a long-term, international ef-
fort to advance our understanding of networks and their application
in research [11, 15, 31].

Access to FABRIC is mediated by CILogon [13], which stream-
lines the authentication process for academic institutions. FABRIC
uses a JupyterHub instance to host Jupyter notebooks [25], and it
is configured by writing Python programs as shown in Figure 1.
FABRIC also offers a web interface. Figure 2 shows the slice that
was started in Figure 1 being visualized on this web interface.

Once a slice is started, users connect to individual nodes by using
Secure Shell (SSH). Nodes consist of Virtual Machines (VMs) that
are started in one of the FABRIC sites, and in which software can be

Figure 2: FABRIC visualization of the network topology cre-
ated using the notebook in Figure 1. Nodes “n1” and “n2” are
both linked to the “net” network through their network in-
terfaces (“n1-iface1” and “n2-iface1”). These resources were
allocated in the Los Angeles (LOSA) FABRIC site.

installed for research or learning. Different slices are isolated from
one another, and different users’ resources do not interfere with
one another. Nodes are accessed through a bastion host—or “jump
server”—to securely separate FABRIC resources from the Internet.

3 Related Work
The teaching of computer network is an active research area [35]
that is driven by the need to make learning material accessible,
engaging, and comprehensive. Teaching on testbeds is not a new
idea [39]. The contribution of this paper consists of (1) an analysis
of the features provided by FABRIC for teaching (Section 5), the
design of a course that heavily integrates with FABRIC (Section 6),
and a discussion of opportunities, challenges, and recommendations
for other instructors (Section 7).

Zhuang et al. [40] describe a cloud computing course that uses a
combination of distributed testbeds: PlanetLab [19], Emulab [29],
Seattle [18], and GENICloud [14]. In comparison, this paper ana-
lyzes the use of FABRIC to teach a graduate networking course.
PlanetLab and GENICloud are no longer operated, Emulab pro-
vides more frugal resources compared to FABRIC. Seattle relies on
contributed resources that have different capabilities—in compari-
son, FABRIC has a dedicated pool of similarly-resourced hardware,
which supports a more consistent usage experience.

SEED [20] emulates Internet infrastructure—going beyond the
emulation of the network to include services that manage the net-
work, such as BGP. It presents a Python interface and visualizations.
SEED is complementary to this paper’s approach, which lever-
ages FABRIC’s abundant access to lower-level network resources.
Bonaventure et al. [16] describe an online, interactive textbook
for networking that extends Mininet [28] running in a single VM.
Bonaventure et al.’s work is complementary to this paper, and in
the future it would be interesting to port exercises from SEED and
Bonaventure et al.’s textbook to run on FABRIC.

Pan [32] and Gomez et al. [23] describe teaching infrastructure
that uses private university resources. In comparison, this paper
focuses on the use of publicly-funded, shared infrastructure.



Experience Report: Using the FABRIC Testbed to teach a Graduate Computer Networking course SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

4 Platform choices across three courses
This section outlines the exercise platforms that were used for three
graduate courses on Computer Networking. The courses differed
by class size and course type: the first two courses were project-
and reading-based seminar courses with no exams, while the third
course was a regular course with assignments and exams.

Over the period in which these courses were taught, we grav-
itated towards the use of FABRIC because of the advantages it
provides both students and instructors—this will be analyzed in
Section 5. Each course was taught once during a three-year period,
and the experience of each course informed the logistics for the
following course. That is, (C1) was taught during the first year,
(C2) during the second year, and (C3) during the third year. Table 1
summarizes this information.

Course C1 [6]. This was a small graduate seminar course that fo-
cused on scalability in networking. Students were assessed through
two individual projects. The course had no exams. The projects con-
sisted of programs that controlled the network’s behavior. Students
could propose their own projects and would give weekly updates
and demos to the whole group. During (C1), students developed the
projects entirely on their laptops (see Table 1) using Hangar [36], a
Virtual Machine (VM) that was provided by the instructor. The VM
packaged together all the software that the students would need
for the course, to simplify the setup for students. The VM was used
to ensure uniformity in the setup of different students—that is, to
avoid different behavior on different students’ laptops because of
different versions of software being used.

Course C2 [8]. This was a larger graduate course that focused on
Software-Defined Networking (SDN). 50% of the course assessment
consisted of a project, and the rest consisted of assignments and
exams. Students worked on an individual project of their choice
during the second half of the course. The project involved a substan-
tial design and programming task to control network behavior. The
students used an Internet-connected, university-provided server
on which to develop their assignments and project (see Table 1).
For each student, this server ran an instance of Hangar [36], the
VM used in (C1).

Course C3 [10]. While (C1) and (C2) were electives focusing on
advanced topics, (C3) was a general, core course. It did not involve
a project, and assessment consisted of exams and assignments. The
students used FABRIC to develop their assignments (see Table 1).
FABRIC was also used as a demo platform during teaching, to
walk students through examples. Section 6 describes the design
of the course in more detail. Instead of using a VM like in (C1)
and (C2), students were provided with Jupyter notebooks in (C3).

Course Type # Students Platform for exercises

(C1) Seminar < 10 Individual student laptops
(C2) Seminar < 15 University server
(C3) Regular > 50 FABRIC testbed

Table 1: Course types, class sizes (number of students), and
exercise platform used in courses (C1), (C2) and (C3).

Quality (C1) (C2) (C3)

Low-Effort (Student) ✔ ✔ ✔

Low-Effort (Instructor) ✔ ✔

Inclusion ✔ ✔

Scalability ✔ ✔

Usability ✔ ✔ ✔

Isolation ✔ ✔ ✔

Flexibility ✔ ✔ ✔

Low cost ✔ ✔

“Grows with the student” ✔ ✔

Table 2: Analysis of platform choices—see Section 5.
Color is alternated (black and gray) to aid readability.

These notebooks would then instantiate and configure VMs on
FABRIC for use by each student. Each student controlled their own
resources.

5 Analysis of platform choices
This section analyzes the platform choices described in Section 4
before the rest of the paper zooms in on the opportunities and chal-
lenges of the platform used in (C3). To streamline the presentation,
we will use “(C𝑖)” both to reference the course (C𝑖) and the platform
used in course (C𝑖)—the exact denotation will be clear from context.

Table 2 summarizes the comparison of qualities of the three
platform choices. Each quality will be explained next.

Low-Effort (Student): For a student, a low-effort platform is
easy to access and use. (C1-3) are all low-effort for students,
since they involve standard, mature tools. Accessing and
using those tools is well-understood by graduate students in
Computer Science, since the students would have encoun-
tered those tools in other courses that involve using VM
software and using the Operating System shell.

Low-Effort (Instructor): For an instructor, a low-effort plat-
form is easy to provide to students. In (C1), this consists of
telling students where to download the VM. In (C3), this
consists of adding students’ university email addresses to
FABRIC. In (C2), this consists of manually adding each stu-
dent to access a machine that is hosting VMs and instanti-
ating a VM for each student. Occasionally a student might
damage their VM (e.g., by deleting important files), and the
instructor will need to recreate that student’s VM.

Inclusion: This means that all students have the same (excel-
lent) access to the resource, and they can use it from any-
where. (C2) and (C3) are accessible over the Internet, and
all students get equal access to resources. (C1) is sensitive
to students’ laptop resources—students with older laptops
are at a disadvantage. Newer laptops also caused challenges:
shortly before (C1) began, Apple released their M1 proces-
sor. We found that the VM software we were using had not
yet been ported to M1, and this necessitated the VM to be
converted to use a different type of software.

Scalability: (C1) scales with class size (since every student has
access to a computer on which they can install the VM). The
size of the VM we used was around 2GB. Larger VMs could



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Wolosewicz et al.

be more difficult for students to accommodate, since the VMs
would require more resources from students’ machines. (C3)
scales well too—FABRIC has more than enough resources
to accommodate the class. Scalability of (C2) is limited by
the server used to host student VMs. We used a server with
a 48-core Xeon CPU and 128GB RAM, but with increasing
class or VM size, we would need more machines.

Usability: (C1-3) all involved using mature interfaces and
tools that are familiar to students.

Isolation: This means that one student’s use of the resource
does not affect or disrupt other students. (C1) provides the
strongest isolation between students—since each student
runs a separate VM on their laptop—but (C2) and (C3) also
provide strong isolation. We monitored the server running
(C2) and never found it to be close to resource-exhaustion.
(C3) forces resource-usage to be limited-duration—i.e., slices
expire—to ensure that resources are shared more fairly.

Flexibility: (C1-3) all provide flexibly-configurable environ-
ments, since they all ultimately rely on VMs.

Low cost: For the instructor, (C1) and (C3) are no cost. (C2)
involved acquiring, setting up, and configuring a server for
the course.

“Grows with the student” (C1) and (C3) can be used by stu-
dents after the course has completed. (C2) is more restricted:
since a relatively frugal resource is being shared by several
students, its use is more carefully managed to avoid disrup-
tion.

Rationale for the (C1)→(C2)→(C3) transition. Finally, we discuss
the transitions from (C1) to (C2), and from (C2) to (C3). Table 2
shows that the transition from (C1) to (C2) was less optimal. But
that transition had one key motivation: improving inclusion in the
course (even at higher cost and instructor effort) after observing
that some students struggled to run the VM on their laptops during
(C1). The transition from (C2) to (C3) was motivated by scalability
(while retaining inclusion) since the class size was being quadrupled,
and fortunately this transition brought several other advantages.

6 Design of a course that uses FABRIC
This section describes a graduate Computer Networking course that
makes heavy use of FABRIC—this is course (C3) from Section 4. The
next section discusses lessons learned and offers recommendations
for others who plan to use FABRIC for teaching or learning.

6.1 Course Goals
As a graduate-level, general course on Computer Networking, this
course spans various topics. It is designed to help students learn
about the theory and practice of networking. It serves as a founda-
tion for more specialized courses on Computer Networking, and as
preparation for internships, jobs, and future research that students
might pursue. It maximizes the choices that students can make.

The course was designed for a three credit-hour, 16-week semes-
ter, and required around nine hours of student effort weekly.

6.2 Course Materials and Student Resources
For a lot of the lecture content, the course relied heavily on the
book by Tanenbaum, Feamster, and Wetherall [38]. This provided
students with a well-established and mature learning resource.

The course also developed new, cohesive learning materials for
using FABRIC. These consisted of notebooks that were used for
in-lecture examples and for assignments. They will be described
further below. They complement the resources by Fund [22], the
FABRIC’s forum [2], and teaching resources [4, 5].

For advice and feedback, students could attend office hours with
TAs and with the instructor. These office hours were staggered to
run three times each week, to maximize opportunities for students
to attend.

6.3 Course Structure
The course follows the “bottom-up” approach to teaching network-
ing [35]. This involves starting at the physical layer and progres-
sively building up to higher layers that abstract lower-layer details.
This approach was chosen in order to set the foundations for the
practical skills that this course sought to develop, which focused on
low-level programmability. Setting these foundations would have
been delayed had the course proceeded “top-down”.

Table 3 shows the course assignments. The first assignment con-
sisted of a simple task to start familiarizing students with FABRIC.
Most assignments involved interpreting and writing programs. An
initial demo was given during a lecture or provided as a recording
before students were given a related assignment. The course had
three exams: an initial exam, mid-term exam, and final exam.

6.4 Using FABRIC for Teaching
We used FABRIC in two ways: (1) to give interactive demos during
lectures, (2) as a platform for evaluating student assignments.

Demos were used to explain new tools or idioms by example,
particularly when teaching students how to use packet capture and
generation tools, and the P4 [17] and BPF [30] languages.

FABRIC was also used as a platform for evaluating student as-
signments to ensure consistency with the environment in which
students developed their assignments—this avoids problems where
different environments (that use different versions of a library, for
example) would produce slightly different behavior. We created
“grading notebooks” which help streamline the grading of student
assignments that were prepared on FABRIC.

Using live coding [34] during demos helped show students the
process of writing programs in a new paradigm. This was made
interactive during the lecture, by soliciting student input on how
to progress or how to problem-solve an issue.

6.5 Use of FABRIC for Learning
From conversing with students and observing their use of FABRIC,
we saw that students quickly adapted to using Jupyter notebooks,
and they were comfortable with using Python. FABRIC was avail-
able to both in-person and online students, and it was accessible
around the clock. It provided all students with the same experience
regardless of what type of laptop a student has, or the laptop’s age.

Jupyter notebooks served as simple, self-contained resources that
students could study and extend. Students would receive notebooks



Experience Report: Using the FABRIC Testbed to teach a Graduate Computer Networking course SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Assignment Weight Time Description

1. FABRIC account 4% 2 Students created their account on FABRIC.
2. Packet analysis 10% 2 Students were given a packet trace and a set of questions about it.
3. Packet generation 10% 2 Students were tasked with generating a packet trace that fulfilled a given description.
4. P4 Programming 10% 4 Introduction to programming in the P4 language [17].
5. P4 Programming 10% 2 More advanced P4 programming.
6. BPF Filters 10% 2 Students were asked to interpret and generate BPF filters [30].
7. Extra Credit 6% 1.5 Reflecting on difficulties encountered during assignments and how they were solved.

Table 3: Course assignments. Time is the interval (in weeks) between an assignment’s release and its deadline.

through the university’s Learning Management System, upload
them to their FABRIC account, and start using them there.

While observing students, we did notice some students strug-
gling. The next section analyzes challenges that students faced, and
makes recommendations for mitigations.

7 Lessons Learned and Recommendations
This section reflects on challenges and opportunities related to
using FABRIC in a graduate Computer Networking course, based
on our observations while running this course. It also compiles
recommendations for other instructors who use FABRIC.

7.1 Challenges
We found a small set of common challenges among a subset of
students. This section focuses on those challenges. We regularly
use FABRIC for research, and we did not experience any difficulties
in adapting our use of FABRIC for teaching. We have on-boarded
several research students onto FABRIC, and that experience greatly
helped our preparation for teaching with FABRIC. Teaching with
FABRIC involves on-boarding dozens of students to use FABRIC
within a short time window however, and helping them to become
familiar with the system. Only one student in the course had used
FABRIC before—the vast majority of students were completely new
to it. To help students scale this learning curve, we used demos and
factored enough time into assignment deadlines—the assignment
durations can be seen in Table 3.

The remainder of this section focuses on challenges that were
experienced by some students: (1) Some students did not respond
to an account verification step that is emailed to new users, and
their account creation was therefore not completed. Mitigation: We
clarified the instructions to students.

(2) Using FABRIC requires creating and using cryptographic
keys for authentication. Some students created the keys but did not
update their configuration. Without that update, they were unable
to use the newly-created keys. (2.1) Some students configured the
keys incorrectly—for example, swapping two types of keys that
were created. (2.2) Keys expire, but the symptom of an expired key
is a failed authentication, which can create confusion. (2.3) When
the configuration is incorrect, slice creation takes a long time to
fail, because of retries and accumulated timeouts [3]. This keeps
students waiting and the unsuccessful authentication outcome is
confusing to them. Mitigation: We provided clearer guidance on
how to configure keys and how the system behaves, and referred

students to FABRIC’s documentation on credentials [1]. In a re-
cent version, FABRIC also verifies the setup to provide users with
feedback before they start creating slices.

(3) Some students confused the JupyterHub host and FABRIC
nodes—see Section 2. For instance, they would change code in the
JupyterHub host without updating the code in the node. Or they
would only upload code to the JupyterHub host and not to the
FABRIC node. Some students initially ran commands in the Jupyter-
Hub host that were intended to be executed in a node. Mitigation:
Clearer guidance to distinguish the two types of environment.

(4) FABRIC occasionally fails to allocate a slice successfully—a
previously-allocated resource might have not yet been fully re-
turned to the pool for allocation to other users, or a site might
be found to lack resources. This can happen if a large number of
FABRIC users decide to use the same site simultaneously, creating a
demand spike for resources at that site. Mitigation: We treat this as
“known behavior” (see Section 7.3) and advise students to delete the
slice and try again. If a site has insufficient resources, then students
are advised to try a different site.

(5) From time to time, some resources on FABRIC might be down
because of maintenance or because of an outage. If users attempt
to use those resources, then the slice allocation fails. Mitigation:
We advise students to check FABRIC’s dashboard and forums for
outage notifications, and to try recreating the site on different sites.
See Section 7.3 for more on this topic.

(6) Slices expire, and their resources are returned to the pool.
(6.1) Students might return to a slice after it expired, recreating the
slice, but not running all intermediate cells in the notebook. This can
result in unexpected (and incorrect) output. (6.2) JupyterHub tokens
can expire, requiring a reset of the hub to regenerate the tokens.
Mitigation: Expiration is a feature rather than a bug; it teaches
students to make sure their notebook encapsulates everything they
need, and that their environment can be recreated later.

(7) Some students tried creating several slices with the same
name. This results in an error, since slice names must be unique.
Mitigation: We helped students interpret this error, and ensure that
a slice is deleted first if it is to be recreated.

7.2 Benefits and Opportunities
(1) Students appreciated the persistence of their notebooks and data
on FABRIC’s JupyterHub during the semester. They remarked that
this made it easier to find everything they needed for this course.
(2) The environment is disposable—that is, if the VM or notebook



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Wolosewicz et al.

Figure 3: Jupyter notebook shows the output obtained by
running external tools. This example shows the execution
of a custom tool that was compiled on FABRIC after being
modified by students as part of an exercise.

Figure 4: Notebook that sets upP4 development environment.

is damaged by the student, then it is easy to load an earlier copy.
(3) The repeatability of notebook behavior helped students make
progress on their work, and helped them share any problems with
us. We would easily reproduce those problems since we were all
using the same infrastructure. (4) Students found using Jupyter
easy and intuitive. Students also remarked about the flexibility with
which a network is defined and created on FABRIC. (5) Notebooks
are segmented into sequences of commands, and students remarked
that this helps them make progress in small steps. For example,
Figure 3 shows an example where a purpose-built traffic analysis
program is executed on FABRIC and returned its output in the note-
book. This output shows captured packets and a hexadecimal digest
that summarizes the packet. This example also underscores that
notebooks could encapsulate everything needed for assignments in
this course. (6) Students appreciated rapid deployment of complex
toolchains. Even when the specific software dependency versions
of a demo example or assignment were only obtainable through
GitHub (rather than through a packaging system), this could easily
be accommodated in a notebook—Figure 4 shows an example of
a carefully-tested setup for P4 programming, to ensure that the
toolchain would work consistently for students. (7) More than one
student received support on FABRIC’s online forum. Forum answers
are discoverable by other students. (8) We were struck by students’
excitement about learning something new, using a top-of-the-range
resource infrastructure, and fresh learning materials.

7.3 Recommendations
The challenges encountered while using FABRIC (Section 7.1) pro-
vided great teaching opportunities about the reality of using dis-
tributed systems, the best-effort network service model, and learn-
ing about industry-standard authentication techniques. It is normal
for systems to have maintenance windows, occasional outages, and
intermittent faults. The time scales in the course were calibrated
to allow plenty of slack for issues to be resolved—particularly for
assignment deadlines (see Table 3).

By the same thinking, however, because the system is not al-
ways guaranteed to be fully operational, we do not recommend
its use for exams at the present time. We considered setting exam
tasks that would use FABRIC, and plan to return to this idea when
Quality of Service (QoS) constraints are included in FABRIC’s slice
specifications to guarantee reliability.

In addition to using the JupyterHub interface, FABRIC can make
use of locally-hosted Jupyter notebooks running on students’ com-
puters. Our research students use both interfaces, but for teaching
we found it best to use the JupyterHub interface since (1) it sim-
plifies the setup, and (2) minimizes the reliance on student laptop
resources—see “Inclusion” in Section 5.

Breaking down the assignment notebooks in Table 3 into small
steps allowed students to make incremental progress. We also rec-
ommend providing in-person and recorded demos associated with
each assignment, to help students understand the goal of the as-
signment, and get started.

8 Conclusion and Future Work
Using FABRIC to teach a graduate Computer Networking course
provided a great teaching and learning experience, and the chal-
lenges we observed could themselves be turned into teaching op-
portunities. When we teach this course again, we plan to build on
this experience and add further course features: (1) Cover more ad-
vanced material by using the programmable hardware on FABRIC
and more diverse experiment examples from scientific network-
ing [37]. (2) Use CREASE [9] to provide students with FABRIC-
based tools for debugging and diagnosis. Using CREASE’s pre-
generated VM image on FABRIC also lessens the setup time for
students because it avoids students’ VMs having to install all the
dependencies each time a slice is created. (3) Adapt our teaching
materials into interactive notebooks in the spirit of Bonaventure et
al. [16], but using Jupyter notebooks and FABRIC resources.

Acknowledgments
We thank the students who took our courses, for their feedback. We
thank Mert Cevik, Paul Ruth, Michael Stealey, and Komal Thareja
from FABRIC/RENCI; Zongming Fei and Jim Griffioen from FAB-
RIC/UKentucky; Jim Basney and Terry Fleury from CILogon/UIUC;
and Ilya Baldin from Jefferson Lab for the help they gave us and our
students. This work was supported by a URA Visiting Scholars Pro-
gram Award #24-S-23 and by the National Science Foundation (NSF)
under award 2346499. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of funders.



Experience Report: Using the FABRIC Testbed to teach a Graduate Computer Networking course SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References
[1] [n. d.]. FABRIC Credentials Overview. https://learn.fabric-testbed.net/

knowledge-base/fabric-credentials-overview/. Last Update: 2023-12-04. Ac-
cessed: 2024-07-13.

[2] [n. d.]. FABRIC Educators. https://learn.fabric-testbed.net/forums/forum/fabric-
educators/. Accessed: 2024-07-13.

[3] [n. d.]. FABRIC Forum: Slice creation fails. https://learn.fabric-testbed.net/
forums/topic/slice-creation-fails/. Last Update: 2024-06-10. Accessed: 2024-07-
13.

[4] [n. d.]. FABRIC Information for Instructors. https://learn.fabric-testbed.net/
knowledge-base/fabric-information-for-instructors/. Last Update: 2023-08-26.
Accessed: 2024-07-13.

[5] [n. d.]. Jupyter Examples for Fabric Testbed. https://github.com/fabric-testbed/
jupyter-examples/tree/main. Accessed: 2024-07-13.

[6] 2022. CS595 Designing Large-Scale Networked Systems (Spring 2022). http:
//www.cs.iit.edu/~nsultana1/teaching/S22CS595/. Accessed: 2024-10-10.

[7] 2022. NSF FABRIC project announces groundbreaking high-speed network infras-
tructure expansion. https://learn.fabric-testbed.net/knowledge-base/nsf-fabric-
project-announces-groundbreaking-high-speed-network-infrastructure-
expansion/. Accessed: 2024-01-26.

[8] 2023. CS543 Software-Defined Networking (Spring 2023). http://www.cs.iit.edu/
~nsultana1/teaching/S23CS543/. Accessed: 2024-10-10.

[9] 2024. CREASE Project: Causal REasoning and Attestation for Scientific Experi-
mentation. http://crease.cs.iit.edu/. Accessed: 2024-10-10.

[10] 2024. CS542 Computer Networking (Spring 2024). http://www.cs.iit.edu/
~nsultana1/teaching/S24CS542/. Accessed: 2024-10-10.

[11] Jay Aikat, Ilya Baldin, Mark Berman, Joe Breen, Richard Brooks, Prasad Calyam,
Jeff Chase, Wallace Chase, Russell J. Clark, Chip Elliott, Jim Griffioen, Dijiang
Huang, Julio Ibarra, Tom Lehman, Ibrahim Matta, Inder Monga, Christos Pa-
padopoulos, Mike Reiter, Dipankar Raychaudhuri, Glenn Ricart, Robert Ricci,
Paul Ruth, Ivan Seskar, Jerry Sobieski, Jacobus Van der Merwe, Kuang-Ching
Wang, Tilman Wolf, and Mike Zink. 2018. The Future of Distributed Network
Research Infrastructure. SIGCOMM Comput. Commun. Rev. 48, 2 (May 2018),
46–51. https://doi.org/10.1145/3213232.3213239

[12] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S. Monga, Kuang-
Ching Wang, Tom Lehman, and Paul Ruth. 2019. FABRIC: A National-Scale
Programmable Experimental Network Infrastructure. IEEE Internet Computing
23, 6 (2019), 38–47. https://doi.org/10.1109/MIC.2019.2958545

[13] Jim Basney, Heather Flanagan, Terry Fleury, Jeff Gaynor, Scott Koranda, and Benn
Oshrin. 2019. CILogon: Enabling Federated Identity and Access Management for
Scientific Collaborations. In Proceedings of International Symposium on Grids &
Clouds 2019 — PoS(ISGC2019), Vol. 351. 031. https://doi.org/10.22323/1.351.0031

[14] Andy Bavier, Yvonne Coady, Tony Mack, Chris Matthews, Joe Mambretti, Rick
McGeer, Paul Mueller, Alex Snoeren, and Marco Yuen. 2012. GENICloud and
transcloud. In Proceedings of the 2012 Workshop on Cloud Services, Federation,
and the 8th Open Cirrus Summit (San Jose, California, USA) (FederatedClouds
’12). Association for Computing Machinery, New York, NY, USA, 13–18. https:
//doi.org/10.1145/2378975.2378980

[15] Mark Berman, Piet Demeester, Jae Woo Lee, Kiran Nagaraja, Michael Zink, Didier
Colle, Dilip Kumar Krishnappa, Dipankar Raychaudhuri, Henning Schulzrinne,
Ivan Seskar, and Sachin Sharma. 2015. Future Internets Escape the Simulator.
Commun. ACM 58, 6 (may 2015), 78–89. https://doi.org/10.1145/2699392

[16] O. Bonaventure, Q. De Coninck, F. Duchêne, A. Gégo, M. Jadin, F. Michel, M.
Piraux, C. Poncin, and O. Tilmans. 2020. Open educational resources for computer
networking. SIGCOMM Comput. Commun. Rev. 50, 3 (jul 2020), 38–45. https:
//doi.org/10.1145/3411740.3411746

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[18] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom Anderson.
2009. Seattle: a platform for educational cloud computing. SIGCSE Bull. 41, 1
(mar 2009), 111–115. https://doi.org/10.1145/1539024.1508905

[19] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. 2003. PlanetLab: an overlay testbed for broad-
coverage services. SIGCOMM Comput. Commun. Rev. 33, 3 (jul 2003), 3–12.
https://doi.org/10.1145/956993.956995

[20] Wenliang Du, Honghao Zeng, and Kyungrok Won. 2022. SEED emulator: an
internet emulator for research and education. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks (Austin, Texas) (HotNets ’22). Association for
Computing Machinery, New York, NY, USA, 101–107. https://doi.org/10.1145/
3563766.3564097

[21] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The Road to SDN: An
Intellectual History of Programmable Networks. SIGCOMM Comput. Commun.
Rev. 44, 2 (apr 2014), 87–98. https://doi.org/10.1145/2602204.2602219

[22] Fraida Fund. [n. d.]. Teaching on Testbeds. https://teaching-on-testbeds.github.
io/. Accessed: 2024-07-13.

[23] Jose Gomez, Elie F. Kfoury, and Jorge Crichigno. 2022. Enabling P4 Hands-
on Training in an Academic Cloud. In 2022 18th International Conference on
Distributed Computing in Sensor Systems (DCOSS). 426–429. https://doi.org/10.
1109/DCOSS54816.2022.00077

[24] Rob Jansen, Jim Newsome, and Ryan Wails. 2022. Co-opting Linux Processes
for High-Performance Network Simulation. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 327–350. https:
//www.usenix.org/conference/atc22/presentation/jansen

[25] Jeremiah W. Johnson. 2020. Benefits and Pitfalls of Jupyter Notebooks in the
Classroom. In Proceedings of the 21st Annual Conference on Information Tech-
nology Education (Virtual Event, USA) (SIGITE ’20). Association for Computing
Machinery, New York, NY, USA, 32–37. https://doi.org/10.1145/3368308.3415397

[26] Donald Ervin Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
[27] Linda B. Lankewicz. 1998. Resources for teaching computer networks. SIGCSE

Bull. 30, 1 (mar 1998), 112–116. https://doi.org/10.1145/274790.273173
[28] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:

rapid prototyping for software-defined networks. In Proceedings of the 9th ACM
SIGCOMMWorkshop on Hot Topics in Networks (Monterey, California) (Hotnets-IX).
Association for Computing Machinery, New York, NY, USA, Article 19, 6 pages.
https://doi.org/10.1145/1868447.1868466

[29] W. David Laverell, Zongming Fei, and James N. Griffioen. 2008. Isn’t it time you
had an emulab? SIGCSE Bull. 40, 1 (mar 2008), 246–250. https://doi.org/10.1145/
1352322.1352223

[30] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In USENIX winter, Vol. 46. 259–270.

[31] Deep Medhi and Peter A. Freeman. 2009. Research challenges in future networks:
a report from US-Japan workshop on future networks. SIGCOMM Comput.
Commun. Rev. 39, 3 (jun 2009), 35–39. https://doi.org/10.1145/1568613.1568621

[32] Jianping Pan. 2010. Teaching computer networks in a real network: the technical
perspectives. In Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association for
Computing Machinery, New York, NY, USA, 133–137. https://doi.org/10.1145/
1734263.1734311

[33] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.
Springer Berlin Heidelberg, Berlin, Heidelberg, 15–34. https://doi.org/10.1007/
978-3-642-12331-3_2

[34] Marc J. Rubin. 2013. The effectiveness of live-coding to teach introductory pro-
gramming. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Comput-
ing Machinery, New York, NY, USA, 651–656. https://doi.org/10.1145/2445196.
2445388

[35] Jürgen Schönwälder, Timur Friedman, and Aiko Pras. 2017. Using Networks to
Teach About Networks (Report on Dagstuhl Seminar #17112). SIGCOMM Comput.
Commun. Rev. 47, 3 (sep 2017), 40–44. https://doi.org/10.1145/3138808.3138814

[36] Nik Sultana. 2022. Demo: The Hangar environment for Teaching and Research
in Programmable Networking. In 30th IEEE International Conference on Network
Protocols, ICNP 2022, Lexington, KY, USA, October 30 - Nov. 2, 2022. IEEE, 1–2.
https://doi.org/10.1109/ICNP55882.2022.9940410

[37] Nik Sultana, Yatish Kumar, Chin Guok, James B Kowalkowski, and Michael H
L S Wang. 2024. Shape-shifting Elephants: Multi-modal Transport for Integrated
Research Infrastructure. In To appear in the Proceedings of the ACM Workshop on
Hot Topics in Networks (HotNets ’24). Association for Computing Machinery, New
York, NY, USA. (Accepted for publication).

[38] A. Tanenbaum, N. Feamster, and D. Wetherall. 2021. Computer Networks, 6th
edition. Pearson.

[39] Charlie Wiseman, Ken Wong, Tilman Wolf, and Sergey Gorinsky. 2008. Opera-
tional experience with a virtual networking laboratory. SIGCSE Bull. 40, 1 (mar
2008), 427–431. https://doi.org/10.1145/1352322.1352280

[40] Yanyan Zhuang, Chris Matthews, Stephen Tredger, Steven Ness, Jesse Short-
Gershman, Li Ji, Niko Rebenich, Andrew French, Josh Erickson, Kyliah Clarkson,
Yvonne Coady, and Rick McGeer. 2014. Taking a walk on the wild side: teaching
cloud computing on distributed research testbeds. In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
535–540. https://doi.org/10.1145/2538862.2538931

https://learn.fabric-testbed.net/knowledge-base/fabric-credentials-overview/
https://learn.fabric-testbed.net/knowledge-base/fabric-credentials-overview/
https://learn.fabric-testbed.net/forums/forum/fabric-educators/
https://learn.fabric-testbed.net/forums/forum/fabric-educators/
https://learn.fabric-testbed.net/forums/topic/slice-creation-fails/
https://learn.fabric-testbed.net/forums/topic/slice-creation-fails/
https://learn.fabric-testbed.net/knowledge-base/fabric-information-for-instructors/
https://learn.fabric-testbed.net/knowledge-base/fabric-information-for-instructors/
https://github.com/fabric-testbed/jupyter-examples/tree/main
https://github.com/fabric-testbed/jupyter-examples/tree/main
http://www.cs.iit.edu/~nsultana1/teaching/S22CS595/
http://www.cs.iit.edu/~nsultana1/teaching/S22CS595/
https://learn.fabric-testbed.net/knowledge-base/nsf-fabric-project-announces-groundbreaking-high-speed-network-infrastructure-expansion/
https://learn.fabric-testbed.net/knowledge-base/nsf-fabric-project-announces-groundbreaking-high-speed-network-infrastructure-expansion/
https://learn.fabric-testbed.net/knowledge-base/nsf-fabric-project-announces-groundbreaking-high-speed-network-infrastructure-expansion/
http://www.cs.iit.edu/~nsultana1/teaching/S23CS543/
http://www.cs.iit.edu/~nsultana1/teaching/S23CS543/
http://crease.cs.iit.edu/
http://www.cs.iit.edu/~nsultana1/teaching/S24CS542/
http://www.cs.iit.edu/~nsultana1/teaching/S24CS542/
https://doi.org/10.1145/3213232.3213239
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.22323/1.351.0031
https://doi.org/10.1145/2378975.2378980
https://doi.org/10.1145/2378975.2378980
https://doi.org/10.1145/2699392
https://doi.org/10.1145/3411740.3411746
https://doi.org/10.1145/3411740.3411746
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/1539024.1508905
https://doi.org/10.1145/956993.956995
https://doi.org/10.1145/3563766.3564097
https://doi.org/10.1145/3563766.3564097
https://doi.org/10.1145/2602204.2602219
https://teaching-on-testbeds.github.io/
https://teaching-on-testbeds.github.io/
https://doi.org/10.1109/DCOSS54816.2022.00077
https://doi.org/10.1109/DCOSS54816.2022.00077
https://www.usenix.org/conference/atc22/presentation/jansen
https://www.usenix.org/conference/atc22/presentation/jansen
https://doi.org/10.1145/3368308.3415397
https://doi.org/10.1145/274790.273173
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1352322.1352223
https://doi.org/10.1145/1352322.1352223
https://doi.org/10.1145/1568613.1568621
https://doi.org/10.1145/1734263.1734311
https://doi.org/10.1145/1734263.1734311
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/3138808.3138814
https://doi.org/10.1109/ICNP55882.2022.9940410
https://doi.org/10.1145/1352322.1352280
https://doi.org/10.1145/2538862.2538931

	Abstract
	1 Introduction
	2 Background: FABRIC Testbed
	3 Related Work
	4 Platform choices across three courses
	5 Analysis of platform choices
	6 Design of a course that uses FABRIC
	6.1 Course Goals
	6.2 Course Materials and Student Resources
	6.3 Course Structure
	6.4 Using FABRIC for Teaching
	6.5 Use of FABRIC for Learning

	7 Lessons Learned and Recommendations
	7.1 Challenges
	7.2 Benefits and Opportunities
	7.3 Recommendations

	8 Conclusion and Future Work
	Acknowledgments
	References

