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Abstract—Splitting software into distributed compartments is
an important software security technique that limits the effect of
vulnerabilities. Unfortunately the resulting systems are difficult
to analyze or debug interactively when compared to the original.
Not only are compartments distributed and executed in parallel,
but they may also be strongly isolated by being sandboxed or
run in minimal environments that lack debugging facilities.

This paper is the first to study practical debugging techniques
for strongly-isolated distributed compartments. We adapt ideas
from other remote or distributed debugging settings to this
domain, and implement and describe two radically different
approaches to this problem. We evaluate these approaches both
qualitatively and quantitatively, and using both toy examples
and real-world open-source software. Our main finding is that
out of the two approaches, using GDB remote stubs presents a
good balance of performance, flexibility and usability, and we
characterize this more precisely in our evaluation.

Index Terms—software compartments, distributed debugging,
development tools

I. INTRODUCTION

Applied to software, the Principle of Least Privilege (PoLP)
involves minimizing the privileges that a system needs in order
to function. But systems might require a large number of
privileges even if only small subsets of privileges are used
at different times of a system’s operation. For example, at
different—and possibly concurrent—phases of its lifetime, a
web server needs access to the network and to different parts of
the file system—to retrieve user accounts, retrieve content, and
write logs—and access to back-end systems such as databases.
But when handling a remote session the server usually only
needs access to a subset of these—for example, the sub-system
interacting with the database should not need network access.

When applied to software the granularity of PoLP is im-
proved by splitting monolithic software into smaller spe-
cialised components which are called compartments in this
paper. Each compartment is then accorded the subset of
privileges that it needs to function. A compartment executes as
a separate process. Further, each compartment is often sand-
boxed to seal off the compartment from system services that
it does not need, and limit its access to other compartments.

As a result of this splitting, if there is an exploitable bug
in a compartment’s code then an adversary will be limited
in what they can accomplish: they can only leverage the
compartment’s subset of privileges, and only operate within
the sandbox. This technique has been applied to widely-used

software that processes untrusted inputs, including Internet-
connected servers and consumer software [12], [14].

Further, a compartmentalized system can be strongly com-
partmentalized by executing the compartments in separate
machines, VMs [11], or enclaves [8], to achieve greater
isolation.

The approach described so far yields more secure systems,
but this comes at the expense of “in-place” interactive de-
bugging and analysis. The resulting systems are difficult to
analyze or debug interactively, especially if the compartments
are strongly isolated from one another or run in minimal
environments that lack debugging facilities, thus impeding the
development of more secure systems. As a compromise, the
system could be run as a single program during the develop-
ment phase, making it amenable to standard debuggers such
as GDB [10], but this approach lacks fidelity to the ultimately
distributed deployment environment. For example, there may
be resource- or permission-related bugs that only surface in
the distributed setting. To retain fidelity with the deployment
environment, we need to allow non-root and remote users to
interactively debug across distributed compartments.

While distributed and remote debugging has been explored
in other settings, there have been no studies on tools and
techniques for debugging strongly compartmentalized systems.
There is therefore a lack of understanding of which existing
ideas and techniques can be borrowed into this domain, and
what new issues arise in this domain.

In this paper we describe the design, implementation and
evaluation of two approaches to carry out interactive debug-
ging of compartmentalized software. Both approaches involve
incorporating a small debugger into the distributed compart-
ments themselves to service requests from a remote debugging
client, but the two approaches occupy radically different points
in the design space.

Our methodology consisted of first creating a custom debug-
ger for distributed compartments, and implementing various
standard features found in debuggers. Second, we adapted
GDB’s approach for remote debugging to work with the same
compartments. This methodology allowed us to contrast the
strengths of both approaches, including performance, flexibil-
ity and usability.

This serves as a first study of in-place interactive debug-
ging of strongly-compartmentalized software and lays the



groundwork for follow-up research on distributed debugging of
compartmentalized systems—in particular, how to retain and
expand the debugger’s functionality without compromising the
system’s security.

We evaluate both debuggers using both synthethic and real-
world applications. We find that both debuggers are usable for
debugging simple and real-world applications but they place
different demands on the user. The main differences between
the two approaches are as follows: Our custom debugger
requires more source code modifications to work, compared to
using the GDB approach; The custom debugger operates on a
thread-based system, allowing the client to switch between
debugging compartments while the GDB stub only allows
a stable, single continuous connection to each compartment;
Quantitative results show that the GDB stub is more efficient
in the compartment’s image size and its performance. The
primary reason for GDB’s performance advantage is that the
entire state is managed by the GDB client rather than the
GDB stub itself. Compared to the GDB approach, the custom
approach induces greater than 70% image size overhead, and
2× time overhead.

The rest of the paper is structured as follows: Section 2
describes the background and related work, Section 3 presents
a tutorial-style example of debugging a common issue when
working with compartmentalized software. Section 4 describes
the design goals for the debuggers, and Section 5 provides
more details on both approaches we implemented. Section 6
describes the evaluation of the debuggers. Section 7 discusses
our results further and Section 8 concludes.

II. BACKGROUND AND RELATED WORK

Compartmentalizing splits an application into compart-
ments, where each is given a certain amount of access to
code or data. This is done to prevent privilege escalation [12]
and has been applied to Internet-facing software including
the Chromium Web browser sandbox and OpenSSH. Com-
partmentalization serves to limit the attack surface available
to an attacker by constraining the privileges held by each
compartment, thus lessening the effects of a compromise.
Existing tools for compartmentalization exist in frameworks
such as PrivMan [7], SOAAP [5] and PtrSplit [9]. In addi-
tion to user-space techniques, kernel modifications to support
compartmentalized applications have also been researched [3].

Typical tools for user application debugging include GDB,
LLDB and WinDbg. These tools typically rely on high levels
of access in order to debug a program. Usually when operating
a debugger, a user requires a token which allows them to
attach, read and write to a specific process. The ability to
write to memory is crucial to debugging a process because,
for certain architectures, breakpoints are set by overwriting
instructions with a debug instruction or by setting certain
processor-specific registers.

The need for remote debugging has arisen in other contexts,
such as the development of embedded systems, hardware
systems and large batch processing systems. These techniques
are described in the next few paragraphs.

GDB remote stubs [2] have been used in related work such
as bare-metal OS development and embedded systems. While
GDB is a debugger commonly used to debug C code for well
known and tested systems, a remote stub that implements the
GDB stub protocol can used to debug processes in lesser-
resourced environment.

BigDebug [6] introduces a specialized debugger meant for
large scale applications. BigDebug uses a record-level tracing
system to debug the applications and significantly reduce
overhead from debugging. BigDebug uses simulated break-
pointing which records state and allows the user to debug the
application in a previous state while the application continues
to run.

PhD [13] introduces a domain specific language to generate
program debugging support for programs running on FPGAs.
The approach works in many ways similar to the way our
custom debugger works. The custom debugger requires the
user to modify the source code to debug the process while the
domain specific language mentioned in the paper also requires
the user to write code to generate code.

There are existing debugging tools such as GDB that are
able to debug compartmentalized software, but they are not
convenient to use. If the compartmentalized software exists
as a single process, the software can be easily debugged as
any other normal piece of software would be. Nit existing
traditional debuggers such as GDB are inconvenient when
debugging programs with multiple compartments because their
tools are not compartment-aware in the same way that they
are process-aware or thread-aware. For example, a user cannot
easily place breakpoints into two different compartments and
view what functions were called and how data is manipulated
in different compartments.

III. USAGE EXAMPLE

This section provides a tutorial-style presentation of how a
typical program might be compartmentalized, shows a typical
problem that arises, and how that problem can be debugged
using both the approaches studied in this paper.

Trying to compartmentalize existing software is no easy
task. Even if the compartmentalized program compiles nor-
mally after splitting the original software into compartments,
there can be an enormous amount of work needed to en-
sure that the program behavior is not changed beyond what
was desired. This is where a debugger can help. In the
following section, we present an example of an attempt to
compartmentalize a program using libcompart, a framework
for compartmentalizing software, and walk through a common
mistake people tend to make.

1 typedef struct Info
2 {
3 char* name;
4 char* password;
5 } Info;
6

7 // Pack structure into extension data to be
sent from non-privilege compartment over
to privilege compartment



8 struct extension_data
ext_verify_login_to_arg(Info* info)

9 {
10 struct extension_data result;
11 result.bufc = sizeof(*info);
12 memcpy(result.buf, info, sizeof(*info));
13 return result;
14 }
15

16 // Pack structure into extension data to be
sent from privilege compartment over to
non-privilege compartment

17 Info* ext_verify_login_from_arg(struct
extension_data data)

18 {
19 Info* result = malloc(sizeof(*result));
20 memcpy(&result, data.buf, sizeof(*result))

;
21 return result;
22 }
23

24 #define INFO_VERIFY_NAME "admin"
25 #define INFO_VERIFY_PASSWORD "admin"
26

27 #define LOGIN_SUCCESS 1
28 #define LOGIN_FAILED 0
29

30 // non-privileged code
31 void Login(Info* info)
32 {
33 Info info = { .name = INFO_VERIFY_NAME, .

password = INFO_VERIFY_PASSWORD };
34 struct extension_data arg =

ext_verify_login_to_arg(&info);
35 int logged_in = ext_int_from_arg(

compart_call_fn(ext_verify_login, arg
));

36 if(logged_in == LOGIN_SUCCESS)
37 {
38 ...
39 }
40 }
41

42 // Privileged code
43 struct extension_data ext_verify_login(

struct extension_data data)
44 {
45 Info* info = ext_verify_login_from_arg(

data);
46 if(!strcmp(info->name, INFO_VERIFY_NAME)

&& !strcmp(info->password,
INFO_VERIFY_PASSWORD))

47 {
48 return ext_int_to_arg(LOGIN_SUCCESS);
49 }
50 return ext_int_to_arg(LOGIN_FAILED);
51 }

In the example above, the program attempts to verify
the user’s credentials contained in the info struct (line 1)
in order to successfully login to the system. The func-
tion Login() on line 31, constructs the info struct with
INFO VERIFY NAME and INFO VERIFY PASSWORD,
which are hard-coded correct user and password to verify
with on lines 24 and 25, and marshalls the info structure
into an intermediate buffer that is returned as arg to be

Fig. 1: CompartDebug Example

sent to the other compartment. Then, on line 35, the call to
compart call fn tells the priviledged compartment to execute
ext verify login along with arg, the buffer that contains the
info struct, as a parameter. The privileged compartment sends
back a status, packed in another extension data struct that
is unmarshalled by calling ext int from arg, indicating if
the user has logged into the system or not. The privileged
function, ext verify login on line 43, verifies the user’s info
by comparing the user’s info with INFO VERIFY NAME and
INFO VERIFY PASSWORD, which are hard-coded user and
passwords on line 27 and 28. Fig 1 depicits the flow.

This simple program looks like it would execute perfectly
fine, but it actually results in a segfault. Using the debugger,
we can figure out why.

In this example, we use the GDB stub:
1 // lower privileged compartment
2 (gdb) b login_interface.c:49
3 Breakpoint 1 at 0x4011a5: file login_interface.c, line

49.



4 (gdb) c
5 Continuing.
6 Breakpoint 1, ext_verify_login_to_arg (info=0

x7ffe16fd11a0) at login_interface.c:49
7 49 memcpy(result.buf, info, sizeof(Info));
8 (gdb) n
9 (gdb) p *info

10 $2 = {name = 0x404e88 "admin", password = 0x404e88 "
admin"}

11 (gdb) p (char*)result.buf
12 $3 = 0x7ffe16fd0f68 "\210N@"
13 (gdb) p result.bufc
14 $4 = 16
15

16 // higher privileged compartment
17 (gdb) b login_interface.c:76
18 Breakpoint 1 at 0x401222: file login_interface.c, line

76.
19 (gdb) c
20 Continuing.
21 Breakpoint 1, ext_verify_login_from_arg (data=<error

reading variable: Cannot access memory at address 0
x7ffe16fcfad0>)

22 at login_interface.c:76
23 76 memcpy(&result, data.buf, sizeof(Info));
24 (gdb) n
25 84 return result;
26 (gdb) p result
27 $1 = (Info *) 0x404e88
28 (gdb) p *result
29 $2 = {name = 0x6f6c006e696d6461 <error reading variable

>,
30 password = 0x6e692064656767 <error: Cannot access

memory at address 0x6e692064656767>}$

We begin by placing a breakpoint on
ext verify login to arg, the function that transforms the
info structure into an intermediate struct to be passed to the
privileged compartment, after the data has been copied over
into extension data on line 2. We can see that result.buf on
line 11 contains a string that does not match the user and
password from the info struct on line 9. To further verify, we
check the data received on the privileged compartment on line
17. When we print out the contents of the marshalled info
struct on line 29, GDB catches that the name and password
character pointers are indeed not valid.

We could also debug the example using the custom debug-
ger:
1 Prompt ("stop" to quit): connect login_compartment
2 Prompt ("stop" to quit): list variables
3 Num File Function Line Name
4 0 login_interface.c ext_verify_login_to_arg 55 result
5 Prompt ("stop" to quit): r 0 0
6 {
7 "name": "extension_data",
8 "address": "0x7fff32eecb50",
9 "val": [

10 {
11 "name": "bufc",
12 "address": "0x7fff32eecb50",
13 "type": null,
14 "size": 8,
15 "val": 16
16 },
17 {
18 "name": "buf",
19 "address": "0x7fff32eecb58",
20 "type": null,
21 "size": 512,
22 "val": null
23 }
24 ]
25 }
26 Prompt ("stop" to quit): c
27 Continuing breakpoint 0...
28 Prompt ("stop" to quit): connect other_compartment
29 Connected to other_compartment
30 Prompt ("stop" to quit): r 0 0

31 {
32 "name": "Info*",
33 "address": "0x7fff32eeb690",
34 "val": "0x405214"

35 }

We begin by connecting to the non-privileged compartment
(login compartment) on line 1. This compartment sends a
request to the privileged compartment (other compartment) to
verify the info struct as shown by printing out extension data
on lines 5-25. We allow the login compartment to continue
execution, so that we can connect and inspect the privileged
compartment’s state on line 28. Then, on lines 30-35, we
inspect the info struct, which contains an invalid pointer value
that refers to the first pointer contained in the info struct in
the login compartment.

To point out the issue, the marshalling functions
ext verify login to arg and ext verify login from arg are
incorrect. These functions only copy over the raw data struc-
ture and thus, the data sent over is only the pointer addresses
to the name and password strings rather than the characters
contained in the strings. The correct version is shown as
follows:

1 // Pack structure into extension data to be
sent from non-privilege compartment over
to privilege compartment

2 struct extension_data
ext_verify_login_to_arg(Info* info)

3 {
4 struct extension_data result;
5 result.bufc = sizeof(*info);
6

7 int current_len = 0;
8 current_len = strlen(info->name) + 1;
9 strcpy(result_to_arg.buf, info->name);

10 strcpy(result_to_arg.buf + current_len,
info->password);

11 current_len += strlen(info->password) + 1;
12 result_to_arg.bufc = current_len;
13

14 return result;
15 }
16

17 // Pack structure into extension data to be
sent from privilege compartment over to
non-privilege compartment

18 Info* ext_verify_login_from_arg(struct
extension_data data)

19 {
20 Info* result = malloc(sizeof(*result));
21

22 char buf[1000] = { 0 };
23 int current_len = 0;
24 strcpy(buf, data.buf);
25 current_len = strlen(buf) + 1;
26 result_from_login->name = malloc(sizeof(

char) * current_len);
27 strcpy(result_from_login->name, buf);
28

29 strcpy(buf, data.buf + current_len);
30 current_len = strlen(buf) + 1;
31 result_from_login->password = malloc(

sizeof(char) * current_len);
32 strcpy(result_from_login->password, buf);



33

34 return result;
35 }

The correct version copies the entire string into the marshall
buffer instead of copying the address of the strings into the
marshall buffer.
1 (gdb) b login_interface.c:59
2 Breakpoint 1 at 0x401241: file login_interface.c, line

59.
3 (gdb) c
4 Continuing.
5

6 (gdb) p (char*)result_to_arg.buf
7 $5 = 0x7ffdacd5d768 "admin"
8 (gdb) p (char*)result_to_arg.buf + 6
9 $6 = 0x7ffdacd5d76e "admin"

10

11 (gdb) b login_interface.c:86
12 Breakpoint 1 at 0x4013a4: file login_interface.c, line

86.
13

14 // privileged
15 (gdb) b login_interface.c:86
16 Breakpoint 1 at 0x4013a4: file login_interface.c, line

86.
17 (gdb) c
18 Continuing.
19

20 (gdb) p *result_from_login

21 $2 = {name = 0x1db22b0 "admin", password = 0x1db22d0 "
admin"}$

x‘We break on the ending on ext verify login to arg and
print out the contents of the buffer on lines 6 and 8. We
can see here that the contents of both of the strings are
successfully stored in the buffer. On the other end, the privi-
leged compartment constructs the info struct from the buffer
in ext verify login from arg. We break on the end of the
function and print out the constructed info struct, which shows
that both the name and password contain “admin” as a string.
The info struct now contains what we expect.

IV. DESIGN GOALS

Our goals in designing a compartment-friendly debugging
system include providing the basic features one would expect
from a modern debugger. To meet user expectations, the
debugger must provide the following features to all compart-
ments:

• Read and write to memory
• Insert and remove breakpoints
• Conditional breakpoints
• Backtracing
• Print out variables

On top of these, we provide the following:
• Query and switch between compartments.
• Debug multiple, concurrently-executing compartments si-

multaneously, as part of the same program.
• Communicate remotely with compartments, which might

be running in separate machines or VMs.
• Debug each compartment without requiring special priv-

ileges beyond those already held by the compartment
(Assuming that the compartment is reachable over the
network)

A minimum set of requirements for a basic debugger
consists of reading and writing to memory, stopping and

Fig. 2: Custom Debugger Server

continuing a program and inserting and removing breakpoints.
Additionally, any modern debugger should have conditional
breakpoints, backtracing, and the ability to print variables.

The most important feature of our debugger is the ability to
debug multiple compartments. Therefore, remote communica-
tion between the debugger and the programs’ compartments
must be required because compartmentalized software does
not have to run on only one machine. To achieve that goal, both
of our implementations— the custom debugger and the GDB
stub—use TCP for compartment communication. In addition,
the debugger may not require higher privilege than the current
privilege of the compartment because doing so could invalidate
the compartment’s security and possibly change the control
flow of the compartment.

V. PROTOTYPE DEBUGGERS

This section refines the design goals from the previous sec-
tion into implementation details of both approaches studied in
this paper, which will later be evaluated for their performance,
flexibility and usability.

Both the custom and GDB-based approaches consist of two
parts: a remote client used by the user, and a compartment-
embedded server that responds to debugging-related requests
from the client.

A. Custom debugger

The custom debugger is broken down into three different
units, as shown by Figures 2, 3, and 4.

In Fig 2, the process that is being debugged launches the
server on the compartmentalized program and eventually, a
remote client connects to the server and is able to debug the
process via communication to the server. The server first parses
and loads a configuration file specific to a compartment, which
will be explained in the next segment. Then, the server calls
the SpawnDebugThread() function from the debugger’s API to
create a listener thread for any clients to connect. Once a client
connects, another thread is spawned to service the client’s



Fig. 3: Custom Debugger Client

Fig. 4: Custom Debugger Configuration

requests over a TCP connection. The client sends commands
over the network to be serviced by the thread.

In Fig 3, the client parses the configuration file and obtains
the information about the compartments in the server. The
client has to connect to a compartment. Once connected, the
client can send commands to the server and the server sends
back the results to the client. The client displays the results to
the client.

In Fig 4, there is another preprocessing step that is required
for custom debugger to work. This preprocessing step does
not modify the source/binary code at all. Using DWARF [1],
a standardized debugging data format debug information gen-
erated by the binary, the preprocessing step locates all the
important information such as location of variables and break-
points into the configuration file in the JSON format, which
is loaded by both the server and client. Debugging the usage
example under the custom debugger would require running
the example through preprocessing step in order generate the
debug information necessary for the debugger to operate.

Some of the features, such as breakpoints, are implemented
by modifying the source code. However, actions on features
such as enabling or creating a condition on a breakpoint can be

done at runtime. Other features that do not modify the source
code include backtracing and reading memory.

The setup process for the debugger on the server can be
done in two steps:

• First, the user any compile-time feature modifications
using the debugger API to insert breakpoints, load in the
configuration file and indicate the compartment demarca-
tions to the compartment-aware debugger

• Second, the user has to run the preprocessing step to gen-
erate the configuration file to be loaded by the program

In Appendix A, we provide the precise command set for
this approach.

The custom debugger including the preprocessor is imple-
mented in around 2000 lines of code.

B. GDB remote stub debugger

GDB is a widely-available debugger on UNIX-type oper-
ating systems and is a standard tool for debugging C code.
A GDB stub is an implementation of the GDB protocol that
allows a GDB client to communicate with the host. Usually
custom GDB stubs are implemented for environments with a
lack of tools to support debugging such as bare metal OSes or
virtual machines. However, GDB stubs can be used for debug-
ging compartmentalization as well. The implementation of the
GDB stub is a modified version of a GDB stub implementation
meant for debugging a bare-metal x86 Intel machine [4]. The
GDB client features many common commands as such as
breakpoints, printing variables and backtracing as well as more
complex features such as scripting.

The GDB protocol uses an efficient data transfer scheme to
allow the client to request information from the server. The
server is required to implement the callbacks for a number
of commands sent by the GDB client. As for changes to
the original repository, modifications were made to support
communication via TCP and handle breakpoint interrupts with
signal handlers, which are handlers that can be registered to
handle hardware signals. Specific amd64 assembly was used to
write trap instruction that can fire a hardware breakpoint signal
(‘int3’) when the instruction is executed and to read/write to
specific registers.

Because the GDB stub setup is contained in one single
function call, the user is only required to include the setup
call per compartment.

The original GDB stub is implemented in around 1800 lines
of code. The modified GDB stub supporting compartments has
400 lines of modifications to the original GDB stub (added +
deleted).

C. Comparison

In Fig 5, there are some noticeable differences between
the GDB stub and the custom debugger. The GDB stub
has to implement architecture and platform specific code in
order to support breakpoints while the custom debugger is
not strongly coupled to platform and architecture. The main
change necessary for the custom debugger to support other
platforms is to remove thread support. The custom debugger



Feature Custom GDB Stub
Support on any architecture 3 7
Support on any platform 3 7
Breakpoints 3 3
Reading/Writing memory 3 3
Reading/Writing registers 7 3
Conditional Breakpoints 3 3
Scripting 7 3
Backtracing 3 3
Structure parsing 3 3
Source code modification 3 3
Hardware breakpoints 7 7
Source level stepping 7 3
Assembly level stepping 7 3
Send signal to process 7 7

Fig. 5: Feature comparison. Here architecture refers to the
CPU the machine is running on, and platform refers to the
OS or distribution (e.g. Windows, Ubuntu, Fedora).

requires the user to modify the source code in order to setup
the debugger as well as to insert breakpoints. On the other
hand, the GDB stub only requires modifications to the source
code for setting up the debugger.

VI. EVALUATION

Our evaluation is structured into three parts:
• a head-to-head comparison of debugger features

in §VI-A,
• measurement and analysis of different overheads

in §VI-B, and
• an experience report on the development and use of the

two debugging approaches in §VI-C.
The snippet below is drawn from an example in the PtrSplit

paper [9], consisting of a simple program that has a string
format vulnerability that mimics a problem that has occurred
in real deployments.

1 void initkey() {
2 for (int i = 0; i < 50; i++) {
3 key[i] = ’a’;
4 }
5 }
6

7 void greeter (char *str) {
8 printf(str); printf(", welcome!\n");
9 }

10

11 int main (int argc, char **argv) {
12 char username[64], text[1024];
13 char *key_ptr = key;
14

15 initkey();
16

17 printf("Enter username: ");
18 fgets(username, sizeof(username), stdin);
19 greeter(username);
20 ...
21 }

Fig. 6: PtrSplit-Fig2

In the greeter function, printf(str) contains the vul-
nerability where the user has control over the format string.
Running the program normally and inputting %13$s results in
printing out an offset on the stack as a string, which results in
the program printing out the secret key, “aaa...”. The GDB
debugger can be used to observe the control flow of the
program under a compartmentalized version of the program
and see how the vulnerability is not leaked anymore.

In Fig 6, the program flows as follows. The program is
compartmentalized into two separate programs, which are the
non-privileged and privileged compartments. The privileged
compartment now holds the key, which the non-privileged
compartment no longer has access to. The non-privileged
compartment is able to obtain the input and still has control
over the string format vulnerability in the greeter function.
Since the correct key is no longer in the non-privileged
compartment, the key is not exposed to the user as shown
by printing out the key on line 19 where the key does not
have the value of “aaa...”.
1 // GDB:
2

3 (gdb) b toy-patched.c:greeter
4 Breakpoint 1 at 0x40183f: file toy-patched.c, line 18.
5 (gdb) c
6 Continuing.
7

8 // User:
9 // Enter username: %13$s

10

11 // GDB:
12

13 (gdb) b toy-patched.c:18
14 Breakpoint 1 at toy-patched.c:18



15 (gdb) p str
16 $1 = 0x7fffb86a1a30 "%13$s\n"
17 (gdb) p key
18 $2 = ’\000’ <repeats 63 times>

19

The key is not exposed anymore since the actual key is
contained in the privileged compartment.

So far, we have demonstrated debuggers on toy programs.
A more complex example would be Netpbm, a real-world
application. Netpbm is an open-source graphics program that
is capable of parsing multiple types of graphics formats such
as .png, and .tiff. A library under Netpbm is LibTIFF, which
is a tool to read, write and manipulate .tiff files. One program
in particular is tifftopnm, which converts .tiff files to another
graphics format, .pnm.

1 struct CmdlineInfo cmdline;
2 ...
3 struct extension_data arg;
4 args_to_data_CommandLine(&arg, argc, argv

);
5 arg = compart_call_fn(

parseCommandLine_ext, arg);
6 args_from_data(&arg, &cmdline);

1 1703 arg = compart_call_fn(parseCommandLine_ext, arg
);

2 (gdb) n
3

4 Breakpoint 1, main (argc=2, argv=0x7fff05ff15d8) at
tifftopnm.c:1704

5 1704 args_from_data(&arg, &cmdline);
6 (gdb) p cmdline
7 $1 = {inputFilename = 0x7fff05ff1344 "/other/tifftopnm",

headerdump = 3324591320,
8 alphaFilename = 0x7fbdc6012000 "\177ELF\002\001\001",

alphaStdout = 39, respectfillorder = 32701,
byrow = 100603104,

9 orientraw = 32767, verbose = 100602696}$

10

We begin by breakpointing on compart call fn to convert
the arguments into CmdlineInfo structure. The information
about the command line is sent over to the privileged com-
partment, which parses the arguments and converts it to a
CmdlineInfo. This is obtained at args from data(&arg, &cmd-
line). When we print out cmdline, it prints out the information
necessary such as the input filename that was passed to the
program as well as some information about the file itself.
1 Prompt ("stop" to quit): connect netpbm_compartment
2 Prompt ("stop" to quit): list variables
3 Num File Function Line Access

Name
4 0 tifftopnm.c ext_verify_login_to_arg 1707 RW

result
5 Prompt ("stop" to quit): r 0 0
6 {
7 "name": "cmdline",
8 "address": "0x7fff320b5240",
9 "val": [

10 {
11 "name": "inputFilename",
12 "address": "0x7fff05ff1344",
13 "type": null,
14 "size": 8,
15 "val": null
16 },
17 {
18 "name": "headerdump",
19 "address": "0x7fff05ff134c",
20 "type": null,
21 "size": 8,
22 "val": 3324591320

Fig. 7: Binary size (kilobytes)

23 },
24 {
25 "name": "alphaFilename",
26 "address": "0x7fff05ff1354",
27 "type": null,
28 "size": 8,
29 "val": null
30 }
31 ...
32 ]
33 }

34

Under the custom debugger, the cmdline variable can be
viewed as well at the same breakpoint.

A. Features

Since the feature set of the custom debugger is mostly
a subset of GDB, the GDB stub is much easier to debug
with because the custom debugger requires more commands
to perform same action the GDB stub is capable of in one
command. There are only eleven commands that the custom
uses, of which ten are a subset of GDB’s commands For
example, a data structure with pointers to strings or complex
data structure requires the user to first print out the structure
to obtain the addresses that the pointers hold. Then, the user
has to cast each field that is a pointer along with its address
with another command to obtain the contents at the address.
On the other hand, using GDB, it is as simple as “p structure”
to print out the entire structure along with subfields such as
strings and pointer to other complex structures. However, the
custom debugger allows the user to disconnect and reconnect
to and from any compartment on a single client, compared with
the GDB client where the user has to stay connected to the
server and each GDB client can only select one compartment
to connect to from the start.

B. System overhead

We measure the space and time overhead of each approach
using several software examples.

In our results, “test compartment” refers to the example
program shown in Section 3, and “hello compartment” is
another simple toy compartmentalized program, which simply
adds ten to an int in the privileged compartment.



Fig. 8: Time overhead measured in CPU cycles

Fig. 9: Source code line changes

In Fig 7, measurements were done under linking the pro-
grams statically and compiling the program with no optimiza-
tions. The GDB stub’s impact on binary size is much smaller
due fact that the debug information parsing is done by the
GDB client. On the other hand, the custom debugger host
handles the debug parsing, which increases the binary size.

In Fig 8, measurements were done with an architecture-
specific time-measuring instruction (RDTSC). The time dif-
ference is measured after the server receives information
and before the server sends information to the client. The
measurements were done as the difference between the start
and end of the server processing the client’s request. The
values listed in Fig 8 are an average of ten measurements. The
CPU used is an Intel Xeon E3-12xx v2 running with 3392.302
MHz and runs Ubuntu 16.04.5 LTS under Linux kernel version
4.4.0-137-generic. The GDB stub is faster because data sent
from the client is more compact and easier to parse than the
data to parse in the custom debugger.

Key quantitative results from the Fig 7 show that the
custom debugger and GDB stub incur 171% and 71% binary
size increase respectively. In Fig 8, the custom debugger has
approximately a 2.05× overhead on average for reading and
writing primitives compared to the GDB stub. The GDB stub

transfers exactly 8 bytes for reading primitive while the custom
debugger transfers 20 bytes on a 64-bit machine. On average,
the custom debugger requires more than twice the amount of
source code line changes for setup. In total, the source code
line changes average around a 325% increase when using the
custom debugger.

The GDB stub is much more efficient in binary size and
performance than custom debugger is. The GDB stub does
not keep state on server and uses an efficient protocol to
transfer data to and from the client. On the other hand, the
custom debugger manages all the state on the server and uses
a simple, but inefficient protocol to transfer data to and from
the client and server, which incurs an penalty in creating data
that matches the protocol. This results in a bigger binary size
and a performance penalty hit for the custom debugger.

C. Experience report

Implementing and using the approaches described in this
paper taught us about what kinds of problems seem to surface
more frequently when debugging compartmentalized systems.
Setting up the system for debugging seems especially prone to
problems. For example, there was an instance where the GDB
client was able to debug compartmentalized software using the
wrong symbols. There were two versions of the executable file
where one file was older than other. The GDB client was not
able to pick up on the differences and continued debugging
with information that did not match the source code. Setup
with the custom debugger can be extremely tricky at times
and missing a certain step can lead to time lost. The key
transformations for the custom debugger are:

1) transform the source code correctly to setup the com-
partments,

2) run the preprocessor code to generate the configuration
for the debugger to use, and

3) make sure the configuration file generated has compart-
ments that match the compartments in the source code.

If any of the steps is not performed correctly, finding the error
can be extremely difficult because it is hard to pinpoint where
the issue is. There were many cases where we tried to figure
out an error and had to meticulously go through each of the
above steps in order to pinpoint the problem. In most cases,
this did not point to fundamental problems of an approach,
but rather the prototypical nature of the tools.

VII. DISCUSSION

Writing code can always introduce bugs. The debugging
tools themselves can introduce new bugs that can compromise
the security of a compartment. By locking down the compart-
ments when debugging, we can avoid sacrificing security for
more convenient debuggability. In both our implementations,
the debugging instances has the same level of privilege as the
compartment it is attached to.

In our prototype, we do not protect the debugging inter-
face or connection—for instance, the information exchanged
between the debug client and server is not encrypted and can



be manipulated by third parties. Further research is needed to
secure this interface without impoverishing its functionality.

In addition, better usability is another important practical
consideration. Currently, the setup for the custom debugger
is much more complicated than the setup for the GDB stub.
Automated code transformation of the source code would help
generate the necessary setup function for the custom debugger.

VIII. CONCLUSION

There is a lack of debugging tools for compartmentalized
software. Traditional debuggers such as GDB and LLDB are
not suited to debug compartments since compartments are
interfaced differently from programs that the traditional debug-
gers are designed for. This paper presents and evaluates two
approaches to address that gap. Both approaches can be used
on strongly compartmentalized systems, in which different
compartments execute on separate machines or VMs. These
approaches provide the necessary debugging primitives to in-
spect memory and to pause the compartments, as well as more
advanced features such as the ability to inspect data structures
and create conditional breakpoints. These approaches occupy
different points in the design space, and our evaluation showed
their usability and performance characteristics.
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APPENDIX

Command Meaning
connect compartment name connect to compartment with the name

compartment name
info b print information about the breakpoint
bd n disable the breakpoint ’n’ where n is the

index of the breakpoint from info b
be n enable the breakpoint ’n’ where n is the

index of the breakpoint from info b
c continue execution
list variables list the variables at the current breakpoint
r n v read the variable with the index ’v’ at

breakpoint index ’n’
rr (type)address read a structure of type at address. Ex. rr

(int)0x8000 reads an int at address 0x8000
w (type)address value writes a primitive type of value at address

Ex w (int)0x800000 100 writes an int
containing 100 at address 0x800000

bc n v comparison value make a breakpoint at index n, checking
value against the variable’s value at vari-
able index v with the comparison. Com-
parison can be of [’!=’, ’==’, ’<’, ’>’,
’≤’, ’≥’]. Ex. bc 0 0 == 100

TABLE I: Custom debugger commands


