

Introduction

- Programmable networking elements offer significant flexibility in the data plane.
- This flexibility facilitates the definition of different network behaviors.
- Students can learn basic protocols as well as some more advanced applications through this approach.
- The **FABRIC** testbed is an online platform crafted to assist and facilitate research endeavors.
- This platform facilitates the use of FPGAs distributed worldwide

Motivation

1) The need for an **educational platform** focusing on protocols and network programming with P4.

2) Use of a federated testbed, such as FABRIC, utilizing as hardware the au280 Alveo FPGA board.

Development, Implementation and Deployment of an Educational Platform for the Teaching of Protocols and Network Programming using P4

Approach

- Create a variety of practice sessions covering topics like IP, TCP, UDP, SDN, P4, and INT.
- Utilize student IDs to customize challenges for each individual, ensuring a unique set of tailored exercises for every student.
- Integrate features for hardware compilation and exploration using FPGA boards, such as the au280 Alveo board through FABRIC.
- Develop a user-friendly interface in **Jupyter Notebook** that fosters active engagement, providing an interactive environment for students to learn about network protocols and programming.
- Implement a **P4 program** capable of performing a range of network functions, enabling students to utilize the switch for various applications.

Laura Serrano Velazquez, Nik Sultana

Results

• The platform will undergo testing with a limited number of students to gather statistics on their learning experiences. The aim is to collect data on the learning outcomes achieved by students using the platform.

• We will provide supporting evidence showcasing the need for this platform as a method for teaching network

protocols and programmability.