
IPC Evolution thru Declarative Interface Generation
Position Paper

Nik Sultana
Illinois Tech

USA

Saket
University of Pennsylvania

USA

Andrew Zhao
University of Pennsylvania

USA

Shubhendra Pal Singhal
University of Pennsylvania

USA

Michael Kaplan
Peraton Labs

USA

Rajesh Krishnan
Peraton Labs

USA

Boon Thau Loo
University of Pennsylvania

USA

ABSTRACT
Inter-Process Communication (IPC) mechanisms are sim-
ple, OS-provided communication endpoints that do not typi-
cally accommodate program-level needs on latency, resource
utilization, and mobility. But modern network-connected
devices, particularly in IoT, have a wide variety of custom
needs and frugal capabilities that standard networking stacks
and programming interfaces do not cater for well. Thus IPC
needs to evolve, but programmers would need to commit
to new communication choices through their source code,
which is difficult to change.

This position paper argues for the reimagining of IPC
to benefit IoT through program-level tailoring of compos-
able and reusable protocol building-blocks for computation-
and data-management in distributed systems. We propose
sprockets, a generalization of RPC beyond marshalling and
synchronization. It incorporates programmer annotations
about code semantics, program-level network-related func-
tions, and performance expectations. This is a stepping stone
towards the declarative synthesis of high-level IPC that bet-
ter meets the program’s communication needs.

1 INTRODUCTION
Traditional Inter-Process Communication (IPC)mechanisms—
such as signals, shared memory, pipes, and sockets—present
OS-supported services for the communication of information,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
DAI-SNAC’21, December 7, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9136-8/21/12.
https://doi.org/10.1145/3488661.3494032

CORBA

TCP

WebIDL

Protobufs
gRPC

QUIC
UDP

TLS

Ap
pl

ic
at

io
n 

In
te

gr
at

io
n

Communication Control

Thrift
SunRPC

Avro

RMI

XML-RPC

sprockets
(RPC)

(Transport)

Figure 1: sprockets are a high-level IPC designed to
serve the communication needs in IoT. It unifies fea-
tures of RPC and transport protocols, so that “sprock-
ets > RPC + IPC” (§3). Systems gathered in the dashed
ellipse have significant overlaps in features. Program-
level needs are addressed by RPC implementations,
but these tend to be loosely coupled with transports.
Transports afford more control on communication re-
sources, such as error-correction, latency, timers, and
buffer sizing, but typically do not differentiate be-
tween program data. By revisiting the line of abstrac-
tion between RPC and transports, we could search for
an IPC interface that allows for easier offloading to
hardware of program-level, communication-related
needs such as caching and error handling.

but not for the communication needs of programs that use the
IPC. IPCs typically present simple and fixed APIs for general-
ity, usability and portability. It is then up to the programmer
to wrap and maintain any program-specific communication
behavior around these building blocks.
Communication is very important to modern programs,

and essential in IoT. Programs tend to form part of distributed

https://doi.org/10.1145/3488661.3494032


DAI-SNAC’21, December 7, 2021, Virtual Event, Germany Sultana et al.

systems that involve both frugally-resourced IoT devices
and more highly-resourced local or upstream servers that
coordinate the devices and process their data.
The core problem with current IPC schemes is the lim-

ited intent that programmers can express. Programs have to
“fight physics” [14] and IPC can be more helpful in mediating
program-level communication needs. The absence of com-
municating intent is problematic in two ways: (i) Most ex-
isting IPCs are too “low level”: they are designed to provide
a communication end-point, but do not capture program-
level intent through knowledge of datatypes and function
properties—such as idempotence, associativity, concurrency
constraints, and other limitations on side-effects. We ar-
gue for the development of “high-level” IPCs that provide
program-level abstractions to support modern use-cases.
(ii) IPCs provide little configurability, which often takes the
form of restricted namespaces (e.g., address and protocol
families in the Berkeley sockets interface) or crude protocol
customization through opaque calls to ioctl(). We argue
for a compositional, property-guided approach that captures
the program’s latency and reliability preferences more in-
tuitively, rather than through the rough customization of
TCP’s “one size fits all” approach, for example. In §2 we
motivate this idea further.

IPCs evolve conservatively because of the legacy systems
that rely on them, but there might be evolutionary pathways
that do not disrupt legacy applications. Other parts of the
communication ecosystem have evolved more readily, partic-
ularly in transport protocols such as QUIC [8], MPTCP [12],
specialized datacenter transports such as NDP [5], and spe-
cialized protocols for IoT [2]. This evolution has come at the
cost of interoperability with existing standards, since these
schemes create fresh protocols, but applications are being
modified in tandem with the evolution of protocols and with
the increase in popularity of new protocols. We argue that an
improved IPC can work within and above existing standards
by being transparent to them, by emulating techniques used
in in-network computing and network middleboxes.

This slow evolution of IPC contributes to a growing com-
munication gap betweenwhat programmers need andwhat
IPCs can deliver. Current solutions to this problem fall into
two camps: (i) more featureful Remote Procedure Call (RPC)
interfaces or (ii) more configurable transports. Neither is
ideal by itself, and combining them is not straightforward:
they are separated by a layer of abstraction from one an-
other as shown in Fig. 1, since current approaches tend to
loosely-couple the two.

How IPCs could evolve. In this paper, we argue that new
IPCs are needed to addresses this problem. These IPCs would
be defined by program-level declarations. Such IPCs would

offer better per-program customizability for the IPC’s behav-
ior and features. This would not only improve programmer
convenience but also improve utilization of shared resources
and improve security and performance. Current IPCs do not
provide the right “knobs” to allow the programmer or some
other control system to tune for this.

We propose an example IPC, called sprockets, that consists
of the following: (i)High-level description ofmeta-properties
of data-types and functions, such as side-effects and object
sizes; (ii) High-level description of channel properties and
program expectations, such as the types and quantities of
loss that the program can tolerate, or whether a channel is
simplex or duplex; (iii) High-level description of program-
level behavior that the IPC should provide, such as caching
(and its duration and cache size). (iv) The automatic synthe-
sis of correct, stateful protocols that satisfy the high-level
constraints (i-iii). (v) A custom but stable API, and a per-
formance overhead in which you only “pay for what you
use”. We envisage that sprockets would be library-provided,
application-level mechanisms that expose partly- or wholly-
offloadable functionality to specialized hardware.

sprockets do not replace existing IPCs, but rather build on
them—in the same way high-level languages do not replace
low-level languages. They are intended to provide a richer,
reusable and mature front-end to stable communication in-
terfaces. Further, they only target message-based IPC—not
signals, for example.

There are two core ideas in sprockets’ design: (i) it gener-
alizes RPC to synthesize custom per-program protocols that
are then executed through low-level (existing) IPCs; (ii) it
is configurable both through the inclusion of custom pro-
cessing code and through the combination of pre-packaged
modules—for example, to provide bounded forms of relia-
bility. These ideas enable IPC evolution through the exten-
sible generation of program-level interfaces that combine
OS-provided IPCs with PL-provided abstractions.

Have we been here before? The closest sprocket-style sup-
port that exists at the moment realize a very limited vision
of the high-level, declarative IPC we are proposing. RPC and
systems like protocol buffers [1] are focused on marshalling
state based on type-level data descriptions, and are typi-
cally used in client/server peerings of applications. We envis-
age incorporating more information to the code synthesizer,
such as explicit semantics of functions and function calls,
program-level network-related functions, and performance
expectations. Some of this information will be percolated
down to the transport layer, to use a transport that satisfies
constraints set by the programmer and provide a common
entry point to both RPC and transports, as sketched in Fig. 1.

Core research questions related to declarative IPCs include:
(1)How dowe express program-level communication intent?



IPC Evolution thru Declarative Interface Generation DAI-SNAC’21, December 7, 2021, Virtual Event, Germany

(2) How do we express deployment-related performance ex-
pectations or constraints? (3) How is communication intent
translated into a protocol implementation, or a configuration
of an existing protocol? (4) How do we express and verify
correctness criteria?

2 HOW IPC EVOLUTION BENEFITS IOT
Programs’ communication needs go beyond transferring
bytes. Having a high-level IPC that can interpret more pro-
grammer intent would better address existing and changing
trends in program communication: (i) Modern programs of-
ten run on heterogeneous platforms. More adequate logic is
needed to support modern application designs on modern
platforms. For example, self-adjusting computation [3] is a
general computation approach that can reduce resource use
and improve performance, and could be coupled with an
OS-provided IPC. (ii) Cross-domain reasoning (about what
information can flow between programs) is left entirely to
the programmer. Modern programs can make use of security-
oriented architecture to mitigate against hardware vulnera-
bilities [7] by using trusted hardware and secure enclaves,
but communication across domains is ad hoc. (iii) Commu-
nication patterns of distributed, heterogeneous programs
are more complex, but IPCs currently provide no support
for this despite commonly-occurring needs such as intermit-
tent computation [6] for IoT or opportunistic networking on
smartphones. (iv) Network-connected programs can avail
themselves of different access networks, including WiFi or
5G [15]. Networks are increasingly offering rich communi-
cation and computation fabrics [13] for program-directed
customization of usage, but existing IPCs are too abstract
and leave it to programs to manage mobility [9] or tim-
ing constraints. (v) Future programs may need to distrib-
ute across more systems, such as in inter-cloud systems or
edge clouds, thus strengthening the need for better commu-
nication support. (vi) Current IPCs present limited opportu-
nity for application-oriented cross-layer optimization. While
cross-layer optimization has been researched for specific ap-
plications and workloads [11], there does not exist a general
facility for different applications, workloads, and criteria to
use such optimization. Higher-level IPC can provide such a
facility because of the logic they encapsulate. (vii) More so-
phisticated IPCs can define a larger offload boundary to utilize
additional or specialized hardware, such as programmable
switches [10] or NICs [4] that are already widely available.

3 AN EARLY PROTOTYPE: SPROCKETS
In this section we describe sprockets, an IPC design that
realizes some of goals. sprockets have these features: 1) Gen-
eralize send/receive operations into custom commu-
nication operations. Depending on what an application

needs, functions can be synthesized to both send and re-
ceive a range of data over a set amount of time, and pass
it through custom checks and transformations. Effectively,
this creates a sychronization primitive that is customized
for an application’s needs. 2) Checkpointing of state ad-
jacent to communication endpoints. Transmitted state
and metadata can be persisted for later replay, in case one of
the peers crashes. The programmer is provided with hooks
to either restore state from a checkpoint or to update a check-
point based on persisted data after the last checkpoint. Old
checkpoint information is purged. 3) Annotation of func-
tion metaproperties. Functions are annotated to indicate
whether they are side-effecting since this affects whether
they can be called during a replay without affecting other
state—to implement “at most once” semantics. Functions are
also annotated to indicate whether they are idempotent, in
which case calling the function more than once is a safe op-
eration. This is done when the transport is not required to
guard against repetitions. 4) Communication constraint
annotation. Various communication-related details need
to expressed for the system to generate the right wrapper.
These details include communication with a peer may be
bidirectional, constraints on datagram size and the rate and
latency of transmission. Hooks are provided in case any con-
straints are breached at runtime, so the program can adjust
by signalling to the other end (if bidirectional communica-
tion is possible). Alternatively, fall-backs can be used—such
as using different communication parameters or changing
the IPC’s communication behavior to send less data.

3.1 Protocol schema
Our initial design is based on the idea of a general protocol
schema that can be instantiated to produce different types of
protocols. The general idea is sketched in Fig. 2.
Our early prototype (§3.2) allows us to pick-and-choose

some features from TCP and provide program-level com-
munication processing that goes beyond TCP. This design
combines with third-party systems, including serialization
libraries and protocol transports, to provide better support
for program-level communication needs. This support is cho-
sen by the programmer based on a selectable set of features,
including: largest data structure that can be transferred in
a single unit (made to correspond to the underlying link’s
MTU), the communication’s direction (A → B, B → A, or
both, as shown in Fig. 2), the extent of reliability that is re-
quired (which indicates the required tolerance to loss and
reordering of packets), and constraints on transmission rate
and latency.

Program-level support is provided by selectable metafunc-
tions such as caching, failure-detection and handling, and



DAI-SNAC’21, December 7, 2021, Virtual Event, Germany Sultana et al.

Peer BIPC(A→B)

IPC(B→
A)

f()wz
res = f(w,x,&y,z);

res = myrecv(&a,&b);

...

y

Checkpoint?

1
sprocket_result res;

...

...
9

2
Preprocessing?3
Segmentation?4
Postprocessing?5
Segment track?6
Feedback?8

Peer A

7

Figure 2: Processing stages in a sprocket IPC. ① A
custom communication function is called. It general-
izes both “read” and “write” operations (cf §3), and
abstracts the custom-generated communication logic
managed by sprockets. ② State can be persisted to mit-
igate against faults if the peered functions cannot ig-
nore or recover from loss themselves. ③ Awork-list of
transformations is applied to memory references be-
fore they are serialized for communication.④Depend-
ing on underlying communication constraints, the in-
terface decides what data to send and how to orga-
nize it into datagrams. ⑤ If required by the interface,
additional functions are executed after segments are
transmitted, for example to retransmit segments.⑥ In
parallel, and if required by the interface, segment de-
livery is tracked to ensure reliable transport. ⑦ At
the other end, a complementary interface uses simi-
lar logic to deliver the data to the peer. ⑧ If required
by the interface, response status and data is propa-
gated back to the application synchronously or asyn-
chronously. ⑨ Several ad hoc communication func-
tions can be generated, each with their custom han-
dling by the sprocket IPC.

retaining a program-level log of events to bridge the gap be-
tween the program and the communication channel. By mak-
ing some state explicit we can recover from failure through
retries and checkpointing, as discussed earlier.

This support also relies on labelling the properties of code
blocks and functions—such as idempotence, involution, and
whether a function is side-effecting. This metadata is used to
check whether the combination of constraints can be satis-
fied by the schema. This check is applied before generating a
configuration that links together the invocation of sprockets
with dependencies, such as OS-provided IPCs. Timers as well
as checks related to information-flow control are provided
by a monitor that is triggered by events; this overhead can
be avoided if fewer runtime checks are needed.

3.2 Early evaluation
Our early prototype instantiates a protocol scheme as de-
scribed in the previous section. An example instance is shown

Figure 3: A lightweight protocol that provides a subset
of TCP’s behavior: in-order transmission of data. This
version of the protocol had separate hand-shaking
and transfer phases. This was later simplified into
a single-phase protocol, and combined with call-side
memoization.

in Fig. 3 for a bidirectional exchange between two peers, ei-
ther of which might fail at any moment, and whose commu-
nication can be disrupted. For our prototype we use encapsu-
late data to be transported over UDP. The peers are labelled
“Caller” and “Callee”, and the protocol precisely accounts for
the state that needs to be maintained, failure conditions that
might arise, and how they can be recovered from.
Our current prototype only works for C, and does not

automate the generation—it consists of a manually-invoked
API that uses low-level IPCs. Realizing this vision further
to automate this system across several programming lan-
guages could involve providing language-specific wrappers
of our C code to begin with. We are continuing to expand the
schema and prototype to support a broader range of features
to support program-level communication needs. Additional
features will be provided through interposition, partly in-
spired by in-network computation, and by leveraging fea-
tures of transport protocols.



IPC Evolution thru Declarative Interface Generation DAI-SNAC’21, December 7, 2021, Virtual Event, Germany

ACKNOWLEDGMENTS
We thank the DAI-SNAC reviewers for their helpful feedback.
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR0011-19-C-0106. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of DARPA.

REFERENCES
[1] Protocol Buffers. https://developers.google.com/protocol-buffers/. Last

accessed: January 2021.
[2] The Constrained Application Protocol (CoAP). https://tools.ietf.org/

html/rfc7252. Last accessed: January 2021.
[3] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative Self-

Adjusting Computation. SIGPLAN Not., 43(1):309–322, January 2008.
[4] Adrian Caulfield, Paolo Costa, and Manya Ghobadi. Beyond Smart-

NICs: Towards a Fully Programmable Cloud. In IEEE International
Conference on High Performance Switching and Routing, June 2018.

[5] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, An-
drew W. Moore, Gianni Antichi, and Marcin Wójcik. Re-Architecting
Datacenter Networks and Stacks for Low Latency and High Perfor-
mance. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’17, page 29–42, New York,
NY, USA, 2017. Association for Computing Machinery.

[6] Matthew Hicks. Clank: Architectural Support for Intermittent Com-
putation. SIGARCH Comput. Archit. News, 45(2):228–240, June 2017.

[7] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M.
Smith. SPECS: A Lightweight Runtime Mechanism for Protect-
ing Software from Security-Critical Processor Bugs. SIGPLAN Not.,
50(4):517–529, March 2015.

[8] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,
Wan-Teh Chang, and Zhongyi Shi. The QUIC Transport Protocol: De-
sign and Internet-Scale Deployment. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, SIGCOMM ’17,
page 183–196, New York, NY, USA, 2017. Association for Computing
Machinery.

[9] Yuanjie Li, Qianru Li, Zhehui Zhang, Ghufran Baig, Lili Qiu, and
Songwu Lu. Beyond 5G: Reliable Extreme Mobility Management.
In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIGCOMM ’20,
page 344–358, New York, NY, USA, 2020. Association for Computing
Machinery.

[10] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. DistCache: Provable Load
Balancing for Large-Scale Storage Systems with Distributed Caching.
In 17th USENIX Conference on File and Storage Technologies (FAST 19),
pages 143–157, Boston, MA, February 2019. USENIX Association.

[11] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network Stack
Specialization for Performance. SIGCOMM Comput. Commun. Rev.,
44(4):175–186, August 2014.

[12] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Green-
halgh, Damon Wischik, and Mark Handley. Improving Datacenter
Performance and Robustness with Multipath TCP. SIGCOMM Comput.
Commun. Rev., 41(4):266–277, August 2011.

[13] Ahmad Rostami, Peter Öhlén, Mateus Augusto Silva Santos, and Allan
Vidal. Multi-Domain Orchestration across RAN and Transport for 5G.
In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 613–614, New York, NY, USA, 2016. Association for Computing
Machinery.

[14] Jonathan M. Smith. Fighting Physics: A Tough Battle. Commun. ACM,
52(7):60–65, July 2009.

[15] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Con-
gkai An, Yiming Shi, Liang Liu, and Huadong Ma. Understanding
Operational 5G: A First Measurement Study on Its Coverage, Per-
formance and Energy Consumption. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’20, page 479–494, New York, NY,
USA, 2020. Association for Computing Machinery.

https://developers.google.com/protocol-buffers/
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

	Abstract
	1 Introduction
	2 How IPC evolution benefits IoT
	3 An early prototype: sprockets
	3.1 Protocol schema
	3.2 Early evaluation

	References

