
An extensible evaluation system for DoS research

Nik Sultana
University of Pennsylvania

Shilpi Bose
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania

Abstract
Denial-of-Service (DoS) is a common form of cyber-
attack, and application-layer DoS is an increasingly com-
mon form of DoS that exploits the behaviour of ap-
plications on the network. Running application-layer
DoS experiments is tedious because of the configuration
and dependency-management needed. Currently there is
poor support for researchers to run such experiments on
their clusters, and this in turn hinders the development of
DoS mitigations.

This paper describes DoSarray, a tool for running
application-layer DoS experiments on a computer clus-
ter by using containers to both simplify the experiment
setup and to create networks containing ×10 to ×100
larger address diversity than physical hosts. This tool is
also intended to complement prior work that automates
volumetric DoS experiments on research testbeds.

DoSarray manages most mundane features of exper-
iments: ranging from provisioning and pre-experiment
checks, to measurement, analysis and graphing. We
make the tool available for others to use and extend.

1 Introduction

This paper sets out to answer the question: How do we
run application-layer DoS experiments in our cluster?
We asked ourselves this question while researching DoS
attacks and mitigations, and despite the availability of
DoS attack scripts on the Internet, there lacks a system
to use these scripts as part of an experiment.

There is much more to running a computational exper-
iment than simply running a single computer program.
As with any experiment, a computational experiment re-
quires meticulous care to record the process used to set
up and execute the experiment, gather data and interpret
it. For computational experiments, this includes version
numbers of software and its dependencies, input param-
eters, and configuration.

Figure 1: Steps taken when carrying out an experiment,
detailed further in §4.2. (1) The network and virtual hosts
are configured; (2) the experiment is carried out by (a)
starting the target, (b) starting measurements of avail-
ability, and (c) running the attack(s); (3) load is polled
to assess whether the results might have been skewed;
(4) measurement logs are gathered and (5) analysed and
graphed.

Further, DoS experiments necessitate generating at-
tacks of sufficient scale in order evaluate how the at-
tacks put pressure on systems and defenses. We mean
scale not in the sense of traffic volumes alone, but also
in the sense of address diversity to simulate larger net-
works: one needs to simulate attacks coming from (or
proxied through) a larger number of hosts than are nor-
mally physically available on an academic research clus-
ter. Large attack diversity is necessary to test mitiga-
tions and evaluate how they respond to larger attacks. A
larger number of attackers or proxies puts pressure on
the method that the mitigation uses to record state about
hosts on the network.

In addition to automating the measurement of a DoS
attack’s effect and running larger experiments, there are
two additional important properties of the computational
experiments we seek to make. The first is fidelity: we
prefer to run the actual attacking program, rather than re-
play a short packet sequence to saturate a 10Gbps link for
example. The second property is reproducibility. In ad-
dition to being useful for other researchers, reproducibil-
ity is very useful to the original researchers since an ex-
periment is likely to be run several times, and with varied
parameters during exploratory periods when trying out
new targets, attacks or mitigations.



In this paper we describe the DoSarray system that tar-
gets the scenario described above for running DoS exper-
iments on computer clusters. DoSarray consists of a set
of tools that are used in a workflow. The workflow is
sketched in Fig. 1, and detailed in §4.2. A running exam-
ple of using this workflow is given in §3.

There exists a wealth of research on DoS experi-
ments [15] and automating them [14], and that work
mostly concentrates on volumetric attacks and relies on
a shared research testbed such as DETERLab [11]. By
comparison, the work in this paper facilitates running ex-
periments in one’s own cluster, though there is no reason
why DoSarray would not run on testbeds such as DE-
TER. Running experiments in a cluster facilitates devel-
opment and experimentation, which would be more dif-
ficult in a shared testbed.

Contributions and Paper Outline.

• We describe the design and implementation of a
system for setting up DoS experiments (§4) to as-
sess the success of the attack (and conversely, its
mitigation). We evaluate the system’s effectiveness,
experiment fidelity, and extensibility (§5).

• We develop a novel visualisation, using contour
maps, to compactly show the effect of a DoS attack
on availability and latency (§4.3.1).

• We use DoSarray to carry out a broad evaluation of
various HTTP services, including web servers and
proxies (§6).

• The DoSarray scripts, and the data for the running
example used in this paper are available online (§9).

We next outline the problem’s background and related
work (§2), after which we give an example use of DoSar-
ray (§3).

2 Background and Related Work

The most closely-related work is by Mirkovic et al. [15,
13, 12, 17], who carry out a comprehensive study of DoS
mostly based on experiments on the DETERLab [11]
testbed. Their research ranges from how best to mea-
sure the effects of DoS, to how to automate experiments
for the convenience of researchers.

DoSarray is complementary to testbeds such as DE-
TERLab, on which it could be run. Using testbeds for
development is difficult since the testbed needs to be
shared with other users, and the fluctuating availability of
testbed nodes might slow development. Thus our setup
needs to work on local clusters, on which development is
done, before test and evaluation on a larger testbed.

Other systems for cybersecurity experiments include
NRL CORE [3] and CyberVAN [6], both of which rely
on simulation, and offer sophisticated features to model
various network features, particularly for ad hoc net-
works. DoSarray is much simpler in comparison: it does
not attempt to model specific network devices and prop-
erties.

In addition to research tools, we also came across com-
mercial “stressor” services, that can launch a DoS attack
against a target for a fee, supposedly to test the target’s
resilience. We kept well away from these services since
they are often run by cyber-criminals [2, 1].

There is ample prior work on using virtualisation for
reproducible research [8, 7]. In recent years repro-
ducibility has become a much more valued quality in
research [9], spurred by the difficulty of replicating ex-
periments done by others [4, 5]. DoSarray complements
this line of work by offering a design and tool to help
researchers make their research reproducible for them-
selves and others.

3 Example: Slowloris

In this section we describe a typical experiment scenario
that will serve as a running example in later sections. In
this experiment we test the responsiveness of the Apache
web server when attacked with Slowloris, an HTTP-level
attack that has two effects: (i) it stalls when sending
HTTP headers to the server, and (ii) it can also flood the
server with a large number of connections.

Experiment timeline. After 10 seconds of running
Apache, we attack it from a single host using Slowloris
for 20 seconds. We then let Apache run for 30 more sec-
onds, to watch its recovery, before stopping the experi-
ment.

Setup details. We use Apache version 2.4.26 in default
configuration, and the de facto Slowloris Perl script ob-
tained from the Internet. We measure availability using
httping (§4.2.2), and carry out the experiment in a net-
work of size 281: one host running Apache, another host
running Slowloris, and the remaining hosts measuring
Apache’s availability throughout the experiment.

Results. Fig. 2 shows that the attack succeeds. The
measurement nodes simulate bona fide clients which are
trying to obtain a service from Apache; the DoS attack
succeeds if Apache’s availability is diminished from the
viewpoint of the measurement nodes. The measurement
nodes log their observations, and these logs are pro-
cessed to produce various forms of output. Other outputs
are described in more detail in §4.3.

2



0
10
20
30
40
50
60
70
80
90
100

0 10 20 30 40 50 60

av
ai
la
bi
lit
y(
%
)

time(s)

Figure 2: Availability over time, from our running exam-
ple (§3). “Availability” here consists of the percentage of
measurement nodes who successfully sampled the target
during that point in time: 100% means that the target is
responsive to all measurement nodes, whereas at 0% the
target appears available to none. The vertical red lines
indicate the attack window. The bump in the middle in-
dicates that some measurement nodes briefly managed to
get a response from the target during the attack.

(ii)

B A
Physical NIC

Virtual NIC

Physical bridge

Virtual bridge

Physical hostsi,ii,…
Virtual hostsA,B,…

(i)(iii)

D C

Figure 3: Bridge between physical and virtual hosts. We
run the target (e.g., Apache) directly on physical hosts
and use the virtual hosts for everything else.

4 DoSarray

This section expands on Fig. 1 to describe the design and
use of DoSarray.

4.1 Setup and configuration
We set up a network of hosts on which to run the experi-
ment. We use two kinds of hosts – physical and virtual –
on which we run different kinds of software.

Fig. 3 shows our network setup. For virtual hosts we
use Docker instances since they incur less overhead than
VMs by default [10]. We bridge the physical and vir-
tual networks (which are not NAT’d by the physical host)
and set up static routes between hosts using standard
GNU/Linux tools. Another benefit from using Docker
containers is the ease with which to organise the scripts,
tools, and dependencies, to recreate the exact environ-
ment across different machines.

The hosts run four kinds of programs:

1) Target. This is the software being attacked – such as
Web or DNS servers.

2) Measurement. These are programs that simulate
users trying to use the target, and their output is
used to determine the success of the attack: if mea-
surement programs cannot access the target (or the
quality of access is significantly reduced) then the
attack is succeeding. The measurement data is used
to generate graphs such as Fig. 2.

3a) Attackers. Even the simplest attack scripts can be
used to generate attacks of different intensities, du-
rations, and combinations. This is described further
in §4.2.3.

3b) Proxies. These get used by attackers, for instance
to amplify the attack on the server. Not all attacks
feature proxies.

A physical host is reserved to run the target exclusively
(i.e., no virtual hosts) since we want it to use as many ma-
chine resources as it needs. In comparison, measurement
and application-layer attack (and proxy) scripts usually
require less resources, so we run them in virtual hosts.

In the example (§3) we had 8 physical hosts: we ran
Apache on a physical machine, and used the remaining
machines to instantiate 40 virtual hosts each. One of the
virtual hosts was used to run Slowloris, and the remain-
ing 279 ran the measurement. We can easily configure
DoSarray to have multiple attackers in our experiment,
by adding node names to a list. We can also have differ-
ent kinds of attacks happen simultaneously, by editing a
script.

4.2 Experiment protocol

We now describe each step of the workflow shown in
Fig. 1. We tend to follow the same check-list for each
experiment, but vary the experiment components (such
as the attacker or target) and parameters (such as those
given to the attack scripts, or to the measurement scripts).

4.2.1 Preparation and setup

After having started all the physical machines, we start
the target on one of them, and start Docker on the rest.
We create and start the Docker instances on each phys-
ical machine. We ensure that networking is set up and
working as intended – each virtual instance should have
a distinct IP address that is not NAT’d by the physical
host.

At this point we have completed Step 1 in Fig. 1. We
can then start the experiment. Experiments begin by
starting the target (step 2a in Fig. 1) followed by the mea-
surement scripts (step 2b). Our choice of measurement
is described next.

3



4.2.2 Measurement

For the entire duration of the experiment, we measure.
Measurements fall into two categories: samples and
load-tests. Sampling measurements (e.g., those made us-
ing httping) consist of regular requests made to the tar-
get, to observe its response and the response’s latency.
Load measurements (e.g., using Apache Bench) consist
of bursts of requests made to the target, to observe how
it copes under that load.

Sampling measurements are better suited to our setup
because they provide a stream of indications of the tar-
get’s availability, which is the quality by which we de-
termine whether a DoS attack succeeds. Measurement
nodes play the role of bona fide clients making requests
to the target.

Further, if the measurement nodes are sufficiently nu-
merous, then sampling measurements would also test the
load-management abilities of the target (if the latter has
to service several thousand sampling requests every sec-
ond).

We therefore use sampling measurements in our sys-
tem, and note the round-trip time: the interval between
sending a request and receiving a reply. Our samples
have three parameters: sampling type is the kind of re-
quest made to the target, for instance a statically or dy-
namically generated resource might be requested; sam-
pling frequency is how frequently we make requests; and
sampling interval (or timeout) is the interval of time we
wait for a reply. If a reply is not received during this
interval then we give up and consider the system unre-
sponsive within that interval.

The outputs of the measurement programs are ap-
pended to logs on the physical host that runs the virtual
host on which the measurement program runs. These
logs are gathered at the end of the experiment.

The timing in these measurements is assumed to be
loose and approximate: we do not synchronise the mea-
surement programs in any way to ensure that they all pro-
duce a request at exactly the same instant.

This also means that each time we run an experiment,
the results may vary: but the conclusion from observa-
tions made during the experiment (i.e., whether the at-
tack succeeds or not) does not change. It would not be
sensible to engineer the system for perfect replication;
the overheads would be unbearable since there are many
sources of non-determinism and jitter in a typical com-
modity cluster. Instead we look for a compromise: the
qualitative conclusions are exactly reproducible, but the
quantitative measurements may vary.

In the example (§3) we used httping to request a
(static) index page at a one-second frequency, and that
times-out after one second (to avoid having overlapping
samples).

4.2.3 Attack

An attack is started at some point during the experi-
ment, after the measurement scripts have been started,
and ended before measurement is stopped. We give at-
tacks 3 attributes: type (which attack to run), beginning
(when to start the attack), and duration (for how long to
run the attack).

Attacks can be combined in sequence or in parallel,
as the researcher chooses. We can start multiple (same
or different) simultaneous attacks, or sequence them, as
better suits the experiment. Thus step 2c in Fig. 1 can
consist of multiple concurrent and sequential substeps,
one for each attack.

Attacks are run on virtual hosts. The attacking hosts
do not carry out any measurement. Currently a virtual
host can only run a single attack at a time; thus simulta-
neous attacks must be started from different virtual hosts.

There may also be attack-specific parameters such as
“intensity” but this could also be achieved by starting
multiple simultaneous attacks of the same type.

Finally, we prefer to run attacking scripts rather than
replay attack traffic, since this spares us from having to
rewrite TCP traffic or modulate the traffic to better suit
our link capacity (e.g., if the traffic was captured on a
higher-speed link than the one being used in our setup).

In the example (§3) we ran a single attack, whose type
was Slowloris, and which began 10 seconds into the ex-
periment and lasted for 20 seconds.

4.2.4 Load polling

After measurement (§4.2.2), the second form of data ac-
quisition consists of polling the load on hosts that carry
out measurement, to assess whether they might be over-
loaded. This corresponds to step 3 in Fig. 1. We poll
load since if measurement hosts are overloaded then their
readings might be less credible.

We set a polling frequency (e.g., once every 5 seconds)
to actively probe the physical host for CPU, memory and
network saturation by examining related files in /proc.
If load, memory usage, or network throughput appear ab-
normal (e.g., load is too high) then we lower the number
of virtual hosts residing on that physical host, or the in-
tensity of their activities.

4.2.5 Finishing

At the end of the experiment, the measurement, proxy
and target software are stopped – the attack would have
been stopped earlier. The Docker instances are stopped
too, and can be deleted.

All the logs are gathered from the physical machines
(step 4 in Fig. 1), and downloaded into a machine that is
used for analysis and graphing, described next.

4



0

20

40

60

80

100

0 2 4 6 8 10

in
st
an
ce
s(
%
)

latency(x100µs)

availability

(a) Latency histogram at time = 5s. Since this is a his-
togram, we expect that the curve will collapse during an
attack (since we do not receive latency information from
the overwhelmed target).

0 10 20 30 40 50 60time(s) 0
2

4
6

8
10

laten
cy (

x100
µs)

0
10
20
30
40

in
st
an
ce
s
(%
)

(b) We glue together latency histrograms (e.g., Fig. 4a)
across time to produce this 3D graph, which gives us a vi-
sual summary of the experiment. You can see the distribu-
tion drop and fluctuate during the attack.

Figure 4: Graphical outputs from DoSarray

4.3 Output

We are now at step 5 in Fig. 1: analysing and graph-
ing the data gathered during the experiment. The data
consists of the outputs produced by the measurement
scripts (§4.2.2) which has been appended to a file. The
format and content of these scripts’ output tends to vary
between measurement programs.

We have one file for every virtual host carrying out
measurements during the experiment. We run an analysis
script that digests these files to produce a single file that
contains values extracted from the original output.

The script that processes output from the measurement
scripts must be adapted for each source of measurement
(since they are likely to produce different output), but the
graphing scripts can be reused entirely.

We produce two kinds of graphs: (i) availability and
(ii) round-trip latency. Availability graphs are straight-
forward; an example was given in Fig. 2.

4.3.1 Latency graphs

Round-trip latency consists of measuring the time taken
between issuing a request to the target and receiving the
response. The measurement scripts are issuing such re-
quests regularly.

This information is graphed as a histogram, an exam-
ple of which is given in Fig. 4a for time = 5s, i.e., before
the attack began.

We also build a histogram over time, as shown in
Fig. 4b to produce a summary visualisation of the effect
of the attack on the target, as witnessed by the measure-
ment nodes.

Since accurately interpreting Fig. 4b can be challeng-
ing because of its dependence on the observer’s perspec-
tive, we found it useful to project the graph into a contour
map to more clearly identify variations in latency. An ex-

availability
30 20

10

0 10 20 30 40 50 60
time(s)

0

2

4

6

8

10

la
te

nc
y 

(x
10

0µ
s)

Figure 5: Contour plot of Fig 4b, showing the attack win-
dow.

ample of this is shown in Fig. 5.
In a glance the contour diagram tells us whether the at-

tack succeeded fully (which produces a gap in the attack
window, indicative of unavailability), or partly (evident
by smaller blobs during the attack window, indicating re-
duced availability), and the variation in average latency
(by seeing where the histogram peaks).

Thus the contour diagram became our main summary
visualisation for experiments, and we use it to compare
the effects of different attacks on different systems and
mitigations in §6.

5 Evaluation

We deployed DoSarray in two locations: in a physical
testbed and in a virtualised network of VMs (within a sin-
gle server) during development. In this section we only
report measurements obtained on a physical testbed, be-
cause of their better fidelity.

5



5.1 Scalability

We measure the effect on physical system load when we
increase the number of virtual hosts. Ideally we would
like to run large-scale experiments using the least quan-
tity of physical resources necessary, and to this end it
is useful to know whether there is a limit on how many
virtual nodes can can be afforded for a particular kind
of experiment (without compromising the quality of the
results), and how the quality of results could be compro-
mised if the limit is exceeded.

Our physical setup consists of 8 servers interconnected
via 10GbE links to a switch, and each having an 8-core
Intel Xeon E5-2630L 1.80GHz CPU and 64GB RAM
on a Dell 072T6D v.A01 motherboard. We use Ubuntu
Linux 14.04.5 LTS running v4.4.0-31 of the kernel.

For this experiment we repeat our example from §3
several times, each time using a network (§4.1) that in-
cludes an increasing number of virtual hosts V in each
physical host, and vary V ∈ {15,30,60,120,250} in each
run of the experiment. We used a maximum V of 250
since we assigned a /24 virtual network to each phys-
ical host, but in principle one could assign larger sub-
nets. Our physical network consists of 8 machines,
therefore the total size of the experiment network is
1 physical+V ×7 virtual. Thus the total size of the net-
work ranges from 106 (when V = 15) to 1751 (when
V = 250).

We look for resource saturation or any indication that
V might be too large for the available physical resources.
We did see an increase in utilisation of all resources as
we increased V from 15 to 250, but for all values of
V we tried, there were no network errors, and none of
the main resources (CPU, memory, and network capac-
ity) were exhausted. The results are shown in Fig. 6 for
V = 250. We repeat each experiment 3 times, and the
graph shows the maximum, average, and minimum val-
ues across the three runs.

This suggests that the attack and measurement pro-
grams we used are not sufficiently active to exhaust
our resources for 15 ≤ V ≤ 250. Using multiple in-
stances of the attacker, a larger V , and more resource-
intensive measurement scripts would incur a greater load
of course; polling load during experiments helps indicate
whether the results obtained are trustworthy. We show an
example of excess load in the next section.

5.2 Attack diversity

In DoSarray we can easily customise how attacks are car-
ried out by modifying Bash scripts. This allows us to
easily mix attacks – in sequence or in parallel – and run
simultaneous diverse attacks on the target.

As an example of this, we rerun the 3 experiments for

 0

 0.5

 1

 1.5

 2

 2.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65

lo
a
d

 
(C
P
U
)

time (s)

dedos01
dedos02
dedos03
dedos04
dedos05
dedos06
dedos07
dedos08

(a) CPU load

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

0 5 10 15 20 25 30 35 40 45 50 55 60 65

n
e
tw
o
rk

 
tr
a
ff
c
 
(i
n

 
p
a
c
k
e
ts
)

time (s)

dedos01
dedos02
dedos03
dedos04
dedos05
dedos06
dedos07
dedos08

(b) Network counter value for packets received

Figure 6: CPU and network (Rx) load measured when
overlaying physical hosts with 250 virtual hosts. The ma-
chine ‘dedos01’ is running the target (Apache with Event
MPM); ‘dedos02’ runs the attack and 249 measurement
instances, and the remaining machines all run 250 mea-
surement instances.

V = 250 from the previous section, but modified to per-
form 16 simultaneous attacks (rather than a single attack)
and also increased the intensity of the attack by changing
script-specific parameters (we set Slowloris to start ×10
more connections and use shorter timeouts).

The resulting load is graphed in Fig. 7. Compared with
Fig. 6a, this shows a much higher load, and it shows a
saturation of our 8 CPU cores.

5.3 Use and extensibility

DoSarray follows the Unix philosophy in consisting of a
collection of tools, each geared for a specific purpose (for
example, starting the Docker instances, graphing, etc).

We found it useful to automate the experiments to
eliminate tedious and repetitive commands. Thus each
run of a batch of experiments is started by calling a sin-
gle script that sets up and carries out the experiments,
downloads and processes the results, and some time later
we are presented with the graphs.

6



 0

 10

 20

 30

 40

 50

 60

 70

0 5 10 15 20 25 30 35 40 45 50 55 60 65

lo
a
d

 
(C
P
U
)

time (s)

dedos01
dedos02
dedos03
dedos04
dedos05
dedos06
dedos07
dedos08

Figure 7: Graph showing high contention for CPU time.

At the end of each experiment, all the raw and pro-
cessed data from that experiment, including resulting
graphs, is kept inside a new directory for later reference.
This helped us organise the data from over 100 past ex-
periments we ran using DoSarray using a variation of pa-
rameters, and data from rerun experiments to test new
features of DoSarray.

Changing and extending DoSarray consists of editing
Bash scripts for the operations part, and Python for the
analysis and graphing.

5.4 Target diversity

In this paper we only report on using DoSarray for ex-
periments targetting HTTP, but we have also prepared
container images for experiments targetting SIP. We have
successfully used these images to run experiments, albeit
manually. Setting up the experiments for SIP is more
complex than for HTTP, since it involves pairing UAC
and UAS nodes between which the calls will be started,
rather than having the HTTP service be the focus of the
experiment. But all of this adaptation is expressible in
Bash or Python – for example, we also need to adapt
the log parser to generate graphs – and nothing so far
indicates that DoSarray cannot be extended to automate
SIP-related experiments.

6 Survey of HTTP DoS

We used DoSarray to evaluate various attacks related
to HTTP. In our experiments we used different attacks
(Slowloris, GoldenEye and Tor’s Hammer) to target
HTTP servers (Apache, Nginx, lighttpd), proxies (Var-
nish and HAproxy), and mitigations (e.g., modreqtime-
out, ModSecurity, iptables tuning).

In this section we describe a selection of our results,
based on the contour diagramming method from §4.3.1.

We begin by showing the baseline result for Apache,
i.e., when it is not under attack. We observe that Apache

(v2.4.26) continues to function smoothly during the win-
dow when an attack would have occurred:

Next we look at Nginx v1.13.8 vs GoldenEye: we no-
tice that Nginx is unaffected by the attack, and that the
average latency is lower than that for baseline Apache:

Next we look at HAProxy v1.8.3 vs Slowloris, where
we see both that it is affected by the attack, and that it
has a higher response latency compared to both Nginx
and Apache:

Finally we look at Varnish v5.2.1 vs Slowloris, where
we see it is briefly affected by the attack, but quickly
recovers.

7



7 Conclusion

The design and implementation of DoSarray appear to be
sufficiently simple and general to accommodate DoS ex-
periments on a large class of software. We opted to write
most of DoSarray in Bash since we did not require so-
phisticated programming abstractions. DoSarray mostly
involves doing job control, but specialised for the needs
of running DoS experiments.

As we came to make DoSarray available to others we
had the surprising realisation that we felt conflicted about
making everything easily available: while we are con-
tent making the code available, we are reluctant to make
the container images available since they contain attack
scripts. These scripts were freely downloaded from the
Internet, but we feel awkward about redistributing po-
tentially harmful code further. We still have not arrived
at a satisfactory solution that minimises bureaucracy and
maximise sharing of such research artefacts.

We hope that DoSarray could be developed into an ex-
ecutable compendium of DoS experiments, spanning the
full taxonomy described by Mirkovic et al. [16]. Direc-
tions for future research include adding targets and at-
tacks for different application-layer protocols.

8 Acknowledgments

We thank Daniel Thomas, Joachim Breitner and the
anonymous reviewers for feedback, and Zihao Jin and
Pardis Pashakhanloo for their help with configuring at-
tack scripts. This work is supported in part by the the
Defense Advanced Research Projects (DARPA) under
Contract No. HR0011-16-C-0056, and NSF grants CNS-
1513679 and CCF-1763514.

9 Availability

The DoSarray scripts, documentation, and the data for
the example used in this paper, are available at
https://www.seas.upenn.edu/~nsultana/dosarray/

References
[1] Booters, Stressers and DDoSers. https://www.incapsula.

com/ddos/booters-stressers-ddosers.html. Accessed:
2018-05-09.

[2] DDoS-for-Hire Service Webstresser Disman-
tled. https://krebsonsecurity.com/2018/04/

ddos-for-hire-service-webstresser-dismantled/.
Accessed: 2018-05-09.

[3] AHRENHOLZ, J. Comparison of CORE Network Emulation Plat-
forms. IEEE MILCOM (2010), 166–171.

[4] BAKER, M. 1,500 scientists lift the lid on reproducibility. Nature
533, 7604 (May 2016), 452–454.

[5] BEGLEY, C. G. Reproducibility: Six red flags for suspect work.
Nature 497 (May 2013), 433–434.

[6] CHADHA, R., BOWEN, T., CHIANG, C., GOTTLIEB, Y.,
POYLISHER, A., SAPELLO, A., SERBAN, C., SUGRIM, S.,
WALTHER, G., MARVEL, L., NEWCOMB, A., AND SANTOS, J.
CyberVAN: A Cyber Security Virtual Assured Network Testbed.
IEEE MILCOM (2016), 1125–1130.

[7] CLARK, B., DESHANE, T., DOW, E. M., EVANCHIK, S., FIN-
LAYSON, M., HERNE, J., AND MATTHEWS, J. N. Xen and the
Art of Repeated Research. In USENIX Annual Technical Confer-
ence, FREENIX Track (2004), pp. 135–144.

[8] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., LANTZ, B.,
AND MCKEOWN, N. Reproducible network experiments using
container-based emulation. In Proceedings of the 8th interna-
tional conference on Emerging networking experiments and tech-
nologies (2012), ACM, pp. 253–264.

[9] KRISHNAMURTHI, S., AND VITEK, J. The Real Software Crisis:
Repeatability As a Core Value. Commun. ACM 58, 3 (Feb. 2015),
34–36.

[10] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER,
S., SATI, S., YASUKATA, K., RAICIU, C., AND HUICI, F. My
VM is Lighter (and Safer) Than Your Container. In Proceedings
of the 26th Symposium on Operating Systems Principles (New
York, NY, USA, 2017), SOSP ’17, ACM, pp. 218–233.

[11] MIRKOVIC, J., BENZEL, T. V., FABER, T., BRADEN, R., WRO-
CLAWSKI, J. T., , AND SCHWAB, S. The DETER Project: Ad-
vancing the Science of Cyber Security Experimentation and Test.
IEEE International Conference on Technologies for Homeland
Security (Nov. 2010).

[12] MIRKOVIC, J., E.ARIKAN, WEI, S., FAHMY, S., THOMAS, R.,
AND REIHER, P. Benchmarks for DDoS Defense Evaluation. In
Proceedings of the IEEE AFCEA MILCOM (2006).

[13] MIRKOVIC, J., FAHMY, S., REIHER, P., AND THOMAS, R. K.
How to Test DoS Defenses. In Conference for homeland secu-
rity, 2009. CATCH’09. Cybersecurity applications & technology
(2009), IEEE, pp. 103–117.

[14] MIRKOVIC, J., FAHMY, S., REIHER, P. L., AND THOMAS,
R. K. Automating DDoS Experimentation. In Proceedings of
the USENIX DETER workshop (2007).

[15] MIRKOVIC, J., HUSSAIN, A., FAHMY, S., REIHER, P., AND
THOMAS, R. K. Accurately Measuring Denial of Service in Sim-
ulation and Testbed Experiments. IEEE Transactions on Depend-
able and Secure Computing 6, 2 (2009), 81–95.

[16] MIRKOVIC, J., AND REIHER, P. A taxonomy of DDoS attack
and DDoS defense mechanisms. ACM SIGCOMM Computer
Communication Review 34, 2 (2004), 39–53.

[17] MIRKOVIC, J., REIHER, P., FAHMY, S., THOMAS, R., HUS-
SAIN, A., SCHWAB, S., AND KO, C. Measuring Denial of Ser-
vice. In Proceedings of the 2nd ACM workshop on Quality of
protection (2006), ACM, pp. 53–58.

8


