
Making Break-ups Less Painful: Source-level Support for
Transforming Legacy Software into a Network of Tasks

Nik Sultana
University of Pennsylvania

Achala Rao
University of Pennsylvania

Zihao Jin
Tsinghua University

Pardis Pashakhanloo
University of Pennsylvania

Henry Zhu
University of Pennsylvania

Ke Zhong
Shanghai Jiao Tong University

Boon Thau Loo
University of Pennsylvania

ABSTRACT
“Breaking up” software into a dataflow network of tasks can improve
availability and performance by exploiting the flexibility of the
resulting graph, more granular resource use, hardware concurrency
and modern interconnects. Decomposing legacy systems in this
manner is difficult and ad hoc however, raising such challenges as
weaker consistency and potential data races. Thus it is difficult to
build on battle-tested legacy systems.

We propose a paradigm and supporting tools for developers to
recognize task-level modularity opportunities in software. We use
the Apache web server as an example of legacy software to test
our ideas. This is a stepping stone towards realizing a vision where
automated decision-support tools assist in the decomposition of
systems to improve the reuse of components, meet performance
targets or exploit new hardware devices and topologies.

CCS CONCEPTS
• Computer systems organization→Maintainability and main-
tenance; • Software and its engineering→Extra-functional prop-
erties; Software post-development issues;

KEYWORDS
program analysis; program transformation; distributed systems

ACM Reference Format:
Nik Sultana, Achala Rao, Zihao Jin, Pardis Pashakhanloo, Henry Zhu, Ke
Zhong, and Boon Thau Loo. 2018. Making Break-ups Less Painful: Source-
level Support for Transforming Legacy Software into a Network of Tasks.
In FEAST ’18: 2018 Workshop on Forming an Ecosystem Around Software
Transformation, Oct. 15, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
The benefits of modular system design have long been appreciated
in engineering both to improve the complexity of designing a system
by decomposing it into simpler parts, and to improve the system’s

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FEAST ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5997-9/18/10.
https://doi.org/10.1145/XXXXXX.XXXXXX

void f (…) {
 1: int* x = malloc(sizeof(*x));
 2: g(x);
 5: …
 6: free(x);
}

void g (int *x) {
 3: …
 4: …
}

void f (…) {
 1: int* x = malloc(sizeof(*x));
 2: g(x);
}

void g (int *x) {
 3: …
 enqueue(x, …);
}

void g2 () {
 int *x;
 dequeue(&x, …);
 4: …
 f2(x, …);
}

void f2 (int* x, …) {
 5: …
 6: free(x);
}

Analyze + transform

Split point

Th
re

ad
 A

Th
re

ad
 B

Si
ng

le
 th

re
ad

[
[

Queue

Figure 1: Transforming the subroutine call/return control-flow
paradigm to one based on enqueue/dequeue over channels be-
tween threads. We must analyse programs to ensure that suf-
ficient context is passed from one thread to the next, that the
transformation will not produce name clashes or type errors,
and to avoid introducing data races between threads (e.g., if one
thread frees a resource before another thread finishes using it).

operation through subsystems operating in parallel. In program-
ming, the concept of component-based software traces its roots back
decades to proposals for component-based operating systems [6],
databases [2], networking [11], and service-oriented architectures
for web services [16].

In recent years, fine-grained component-based programming has
resurged with the advent of microservices-based cloud services
partly as a reaction to the unnecessary duplication of features when
using system- or OS-level virtualization. The increased interest in
microservices was also complemented by improved architectural
support for parallelism in off-the-shelf multicore devices, ongoing

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

research into manycore designs [1], and more modern intercon-
nects within and across cores, sockets, machines and racks of ma-
chines [15].

Legacy code usually cannot take advantage of these improvements
without extensive modifications. One can make use of component-
based frameworks by coarse-grained blackbox encapsulation of
legacy code as outsize components, as often done in NFV [19] where
third-party vendors package network functions as reusable compo-
nents for composition. However making fullest use of component-
based frameworks (e.g. as done in Click [11]) requires either a
clean-slate rewrite of existing code into components (e.g., as for
TCP [13]), or painstaking manual work in retrofitting legacy code
into components (e.g. Scalanytics [8]).

Decomposing or splitting legacy code into components is a chal-
lenging problem that different communities have explored for some
time, as outlined in §5. Some of the challenges include determining
the right granularity of decomposition, and whether decomposed
modules can interact with each other efficiently. This can involve a
combination of static and runtime analysis of code (§5). This line of
work has so far not resulted in significant wide-spread use, largely
due to the complexity of software systems which makes it difficult
to devise general automatic methods.

Despite the above challenges, we argue that such decomposition
of legacy software can bring several practical benefits. First, one
can debloat complex software by dynamically recomposing it (i.e.
assemble only what you need) to meet application requirements.
Second, one can better mitigate resource misuse (e.g., leaks) and
abuse (e.g., denial-of-service attacks) due to finely-granular sharing
of resources [4]. Third, by organizing software into a dataflow net-
work we can take better advantage of more hardware cores available
on modern architectures. Finally, by reducing more application-level
behavior into network-level behavior we can scale applications as we
would scale networks: for example through increased redundancy,
more careful routing, and service differentiation. As we demonstrate
in our Apache example later, this decomposition can be used to
have applications meet service-level objectives to improve overall
availability [20].

In this paper, we present the Chopflow tool that aims to make
it easier to modify legacy software when splitting it up into finer-
grained communicating elements. Chopflow is generally applicable
to any userspace software, though our initial focus is on network-
centric applications.

In a nutshell, we view splitting as introducing or reorganizing
the thread tasking of a program, and setting up channels over which
the legacy and new threads communicate, as illustrated in Fig. 1.
Unlike prior approaches aiming for full automation, our approach
is designed to involve the human in-the-loop, where analysis tools
assist programmers to evaluate where and how to split in order to
meet their performance objectives.

Our approach involves static analysis of software to manage the
combinatorial exploration on behalf of the human, but leaves the final
partition decision to the domain experts. We argue that this approach
is more likely to work across a wide-range of complex software,
where full automation is not achievable, and facilitate better control
of application-level behavior (such as managing sessions or user
quotas) that a programmer is more likely to understand and debug
successfully.

(1) System
selection

(2) Workload
selection

(3) Visibility
selection

Workload Workload

Visibility

Profile

(A) Planning (B) Profiling (C) Splitting

Workload

Visibility

(D) Evaluation

Figure 2: Steps taken in splitting an application and finding
feasible split points.

We make the following contributions:

∙ Chopflow tool. We are developing the Chopflow tool, that
analyzes application source code then provides the program-
mer with advice on what auxiliary changes to make when
splitting. As we note later in the paper, this is nontrivial in
legacy and portable multithreaded software that evolved their
own runtime platforms, such as Apache.
∙ Case study and preliminary evaluation. We give an exam-

ple of using Chopflow on the Apache web server, a non-trivial
network-based application whose performance is mission-
critical to many. We describe how we apply our tool to Apache
when splitting it to mitigate a low-volume denial-of-service
attack.

Based on our initial findings we describe some of the challenges and
opportunities ahead.

2 SPLITTING METHODOLOGY
Figure 2 shows the steps we take when splitting up an application.
We proceed in four phases: (A) Planning, (B) Profiling, (C) Splitting,
and (D) Evaluation.

In the Planning phase (A), we pick the application to be split (1).
The input to our methodology consists of the application source code
(including any libraries that it uses, if available).

We then find workloads that expose interesting behavior (2). For
example, as we will later show in the Apache use case, the workload
is selected to identify code-splitting strategies to mitigate against
attacks.

Finally in this phase, we determine how much of the system to
observe (3). Given that the source code can be large, the cut-off to
visibility abstracts away non-essential details to focus our attention
on (parts of) the application and supporting libraries. This steps
trades off visibility and analysis time. The larger the system we
analyse, the more information we might have to sift through, a lot of
which might be redundant.

In the Profiling phase (B) we run the application using the work-
load in order to generate a runtime profile. We compare the profiles
of the software when running different workloads (e.g., normal and
abnormal workloads), to localise the workload’s symptoms in the
source code. This gives us clues about where to split.

Source codeControl Flow
Graph (CFG)

Annotated CFG
Query

Answer

Analysis

Transformation

Parameters

Transformed source code

1

2

Parameters

Figure 3: Chopflow processes source code to produce two kinds
of outputs: (1) Answers to queries about the source code, and
(2) transformed source code.

Next in the Splitting phase (C) we use the information gathered
during profiling to consider where to split the software. We split be-
fore unwanted behavior is triggered, and rearchitecture the software
to avoid the unwanted behavior. The key activities when splitting
consist of: 1) splitting sequences of statements (across or within
functions) into threads; 2) setting up queues between these threads,
and starting these threads up at a suitable point in the system startup
(and “joining” with these threads at a suitable point at system shut-
down); 3) replacing sequential advancement or function call/return
with enqueuing/dequeuing.

Our work is primarily intended to help the programmer discover
opportunities for carrying out the first and third of these activities,
and in future, provide support for automated program rewrites for
the second step. This paper describes the design of a tool to provide
this support.

Finally, in the Evaluation phase (D) we rerun the workloads to
measure the performance implications of the split. The process might
iterate several times, for instance, if we find that more visibility into
the system is needed, or if the split did not achieve the desired
behavior change.

3 CHOPFLOW
Chopflow is the decision-support tool we are building for software
splitting. It works by abstracting source-code into a graph that mod-
els the program’s control flow. This graph can be annotated with
further information supplied by the user (e.g., which entry point they
want to set, and which functions are related to the allocation and
freeing of resources). The resulting model is then used to (1) answer
queries made by the user (e.g., would there be a leak or data race if
a program were split at a given line), or (2) transform the software
(either by inserting annotations, or by splitting one thread into two),
as shown in Fig. 3.

Chopflow is designed to be easily extensible to include the pro-
gram’s API in its model. Unlike previous approaches, we allow the

program model to be enriched with user-supplied details on char-
acterising functions: for example, which functions terminate the
program, which functions are related to enqueuing and dequeuing,
and which functions implement resource acquisition and release.
This improves our reasoning about the program, even if the program
does not directly use a well-known API (e.g., POSIX). Furthermore,
Chopflow is able to detect and use so-called junctions between
threads: these are locations where one thread enqueues work for a
later thread to process. Junctions are used to analyse the continuity
of processing of data between threads.

When starting up, Chopflow performs initial checks on the pro-
gram: it ensures that the program can be parsed (by leveraging
Clang/LLVM [12]), and, if asked about a split, it checks that the split
point intersects the code paths we care about. If either of these are
false, then the analysis does not proceed further.

After the initial checks, we use knowledge of the characterising
functions to 1) compute data flows to determine what other code
needs to be “moved forward” from one scope to another to preserve
the relative temporal order: for instance, cleanup on data cannot
occur in the original thread if that data is still being processed by a
downstream thread. 2) we check whether the thread can indeed hand-
off the computation: this cannot be done for example if the thread is
alternating between processing two connections that influence each
other (e.g., as in a proxy). In this case, it is likely that the split needs
to hand-off both connections in order to preserve dependencies.

Our current implementation of Chopflow only performs analyses
for question-answering. We are currently extending it with additional
heuristic analyses, and to perform source-code transformations.

4 USE-CASE: SPLITTING APACHE
We use the Apache web server as our driving example to illustrate in
more detail the steps to identify and implement possible split points
in a software. Apache has been developed over more than 20 years
and is a very widely-used system.1 It supports multiple protocols
including multiple versions of HTTP, and legacy features that are
retained for backward compatibility. Apache works on a variety of
operating systems and their compilers and TCP implementations,
and tries to address a wide variety of needs over a long period
of existence. These qualities make it a good example of a legacy
network-facing server application.

Apache uses an abstraction API called “multi-processing mod-
ules” (MPMs) to organize its processing, and the most mature multi-
threaded MPM is the worker MPM which dedicates a thread for the
entire duration of a connection.

The worker MPM is sketched below: a listener thread queues
connection descriptors to be serviced by a worker thread drawn from
a worker pool. Workers carry out a sequence of computations on a
connection; we will split this sequence into cooperating threads.

Worker carries
 out followed by .
(

)

1https://news.netcraft.com/archives/category/web-server-survey/

https://news.netcraft.com/archives/category/web-server-survey/

The splits we describe in the next section involve building deeper
pipelines than what the standard MPMs provide.

Objective for split. In this case study, our goal when splitting
Apache is to address its vulnerability to low-volume denial-of-
service attacks, and in this paper we focus on SlowLoris.2 Our
strategy to mitigate such DoS attacks involves reducing the applica-
tion into a dataflow network to utilize resources better and contain
the effect that clients have on one-another.

In the rest of the section, we describe by example the phases
described in Fig. 2.

Phases A and B: Preparation and Profiling
Workload selection. We used different workloads to understand

Apache’s behavior in various conditions: 1) downloading a small
file; 2) downloading a large file; 3) Apache Bench for latency and
throughput measurements; 4) SlowLoris attack script. These work-
loads are used to compare normal from abnormal Apache behavior,
hence allowing us to compare profiles to identify code hotspots
or slowdowns caused by attacks. The thinking here is similar to
experiment design, and the workloads need to be repeatable.

Visibility selection. We initially focused our attention on the
Apache system alone: i.e., the core server and all the modules, ig-
noring other parts of the system. We later decided to also profile the
Apache Portable Runtime (APR) to understand the function calls
made by Apache into the APR since some calls were related to queue
and resource management, and were therefore important to us.

There are many details of Apache that were removed from our
visibility. Apache’s operation is inherently complex because it inter-
acts with various other features of a system, such as the OS’ access
control system, file system, language interpreters, back-end database,
etc.

Profiling. For each workload we measured the amount of time
that was spent in different functions. This provided us with an initial
approximation about which part of Apache was being stalled by
SlowLoris.

Phase C: Splitting
Splitting is a hypothesis-guided activity based on the semantic un-
derstanding acquired about the system during the previous steps.

From profiling we have a rough idea of by when to split at the
function call granularity, but one cannot simply split at any line
of code preceding the point where “good” and “bad” workloads’
profiles diverge. We need to find a feasible split point at or before
a major divergence point. We define feasibility to mean that 1) the
majority of execution paths pass through it, 2) little code needs to
be changed elsewhere to accommodate the split, 3) the split does
not break any dependencies in the code. The combination of these
qualities allows us to safely implement the sketch from Fig. 1.

The Chopflow tool establishes feasibility heuristically by stati-
cally analysing the program’s source code. As described in §3, we
are able to compensate for static analysis’ lack of precision by using
knowledge of characterising functions to annotate our model of the
program.

2https://en.wikipedia.org/wiki/Slowloris_(computer_security)

We picked a point at which to split the worker thread just after
the connection has been initiated and then established by the listener.
To mitigate SlowLoris, which is an application-level attack, the
processing in the first worker pool must not reach a stage that is
exploited by SlowLoris.

After splitting at this point, we end up with two kinds of workers
organized along a pipeline. The listener thread queues jobs for a
first worker pool which after doing some processing hands over to
a second worker pool. We then partition the second worker pool
into two groups to load-balance depending on the client’s IP address.
Note that we do not alter the number of threads, but rather partition
them into different roles:

The small green boxes along the white and pink boxes we saw
previously indicate that splitting introduces new code to send and
receive values over queues. This design is intended to make it harder
for a few bad apples to spoil it for all clients: the effects of clients
are contained by partitioning the threads that clients can influence
using SlowLoris.

The resulting change to the worker MPM is in the order of 100
lines. From the original worker thread we gather descriptors into a
record and push them into a queue:

+struct conn_queue_entry * entry =
+ apr_pcalloc(p, sizeof *entry);
+entry->conn = current_conn;
...
+rv=apr_queue_trypush(destination_q ,entry);
-ap_process_connection(current_conn , sock);
-ap_lingering_close(current_conn);

and we remove subsequent clean-up to avoid a race with the thread
that will dequeue the connection record. Then in the second-stage
worker we dequeue, update some internal descriptor information
(to refer to the current thread), do the processing, and carry out the
clean-up. We use APR facilities for threads and queues in our patch;
mixing concurrency frameworks would be asking for trouble. This
supports our view that it is best to keep a human in the loop to make
splitting decisions.

We continued generalizing our code to parametrically split the
backend worker pool into N disjoint groups, and implemented work-
stealing by workers in idle groups when other groups’ queues exceed
a certain threshold.

Phase D: Evaluation
In this phase we check Apache’s availability when under a SlowLoris
attack. We compare the release version of Apache version 2.4.26
against a partitioned copy of 2.4.26 that was modified as described

https://en.wikipedia.org/wiki/Slowloris_(computer_security)

above. We used the default Apache configuration for both experi-
ments, and our split Apache uses the same number of threads as the
original.

The experiments consisted of a machine running Apache and two
client machines: one running Apache Bench and the other running a
SlowLoris attack against the server. The machines were connected
over 1 Gbps links via a switch.

The results are shown below, and indicate that the split software
has improved availability, as was intended by the splitting. This
was achieved because the resources (worker pool) were partitioned,
which also effectively partitioned the clients who can indirectly
allocate work to each pool. This partitioning enables us to contain
the abuse that one set can carry out on another.

Average latency ±
std.dev. (ms)

Attack Split Connect Total KReq/s

N
N 0 ± 0.2 9 ± 0.9 5.2
Y 0 ± 0.3 11 ± 1.6 4.5

Y
N 0 ± 0.2 1099 ± 4818.0 0.039
Y 0 ± 0.3 11 ± 1.3 4.5

The table shows latency and throughput, both measured by Apache
Bench applied to the stock and partitioned versions of Apache 2.4.26.
The experiment was done twice: first running Apache Bench in nor-
mal conditions, and second running it during a SlowLoris attack.

5 RELATED WORK
Software decomposition has been researched for different objec-
tives in different programming languages [3, 5, 14, 17]: 1) security
through compartmentalization [9, 18], 2) offloading and “cyber for-
aging” [25], 3) automatic parallelization [24], and 4) scalability
research in networking [4, 21, 22] and more generally [7, 23] to
better utilize hardware cores. Our approach is also related to the
general idea of profile-guided optimization [10], but seeks to be
application-oriented (as opposed to application-transparent as in
just-in-time compilation, for example). From the related work, we
make the following observations about software splitting:

∙ The most successful automation in prior work is done to
achieve low-level objectives (e.g., keeping more cores busy)
rather than application-level objectives (e.g., handling part of
a request to stymie a denial-of-service attack).
∙ Part of the difficulty when partitioning legacy software con-

sists of recognizing the concurrency (and auxiliary functions,
such as locking) that already exists in the software.
∙ Handling state is crucial, and related work describes the man-

agement of different kinds of state [21, 22], but leaves unan-
swered the question of how to support the isolation of that
state.

6 CONCLUSION
Our approach to software decomposition and parallelisation acknowl-
edges the difficulties identified in earlier work and seeks to improve
the problem’s tractability by implementing a suite of analyses to
help the programmer discern possible mappings of a program into
topologies of tasks.

We believe that this approach offers the programmer more control
over how the program is decomposed, and enables reuse of facilities
that an application already uses, as in the Apache use-case (§4). This
makes the split code more homogeneous and thus simpler.

In ongoing work we are i) splitting more software to develop
additional use-cases, ii) implementing more analyses to support
the automated splitting of subroutines into a pipeline of threads,
iii) automating this transformation, and iv) exploring how to adapt
our thread-based approach to work with event-based systems (such
as Apache’s Event MPM, and Nginx).

ACKNOWLEDGMENTS
We thank Bob DiMaiolo for early assistance with this project, and
John Frommeyer for systems support. This material is based upon
work supported by the Defense Advanced Research Projects Agency
(DARPA) under Contracts No. HR0011-17-C-0047 and No. HR0011-
16-C-0056, and NSF grants CNS-1513679 and CNS-1563873. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of DARPA or NSF.

REFERENCES
[1] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,

Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
Matthew Matl, and David Wentzlaff. 2016. OpenPiton: An Open Source Manycore
Research Framework. SIGPLAN Not. 51, 4 (March 2016), 217–232.

[2] Don Batory and Sean O’Malley. 1992. The Design and Implementation of Hier-
archical Software Systems with Reusable Components. ACM Trans. Softw. Eng.
Methodol. 1, 4 (Oct. 1992), 355–398.

[3] István Bozó, Viktoria Fordós, Zoltán Horvath, Melinda Tóth, Dániel Horpácsi,
Tamás Kozsik, Judit Köszegi, Adam Barwell, Christopher Brown, and Kevin Ham-
mond. 2014. Discovering Parallel Pattern Candidates in Erlang. In Proceedings of
the Thirteenth ACM SIGPLAN Workshop on Erlang (Erlang ’14). ACM, 13–23.

[4] Ang Chen, Akshay Sriraman, Tavish Vaidya, Yuankai Zhang, Andreas Haeberlen,
Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wenchao
Zhou. 2016. Dispersing Asymmetric DDoS Attacks with SplitStack. In ACM
Workshop on Hot Topics in Networks (HotNets).

[5] David del Rio Astorga, Manuel F. Dolz, Luis Miguel Sanchez, and J. Daniel
García. 2016. Discovering Pipeline Parallel Patterns in Sequential Legacy C++
Codes. In Proceedings of the 7th International Workshop on Programming Models
and Applications for Multicores and Manycores (PMAM’16). ACM, 11–19.

[6] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An Operat-
ing System Architecture for Application-level Resource Management. In ACM
Symposium on Operating Systems Principles. 251–266.

[7] S. M. Farhad, Yousun Ko, Bernd Burgstaller, and Bernhard Scholz. 2012. Profile-
guided Deployment of Stream Programs on Multicores. SIGPLAN Not. 47, 5
(June 2012), 79–88.

[8] Harjot Gill, Dong Lin, Xianglong Han, Cam Nguyen, Tanveer Gill, and Boon Thau
Loo. 2013. Scalanytics: A Declarative Multi-core Platform for Scalable Compos-
able Traffic Analytics. In Proceedings of the 22Nd International Symposium on
High-performance Parallel and Distributed Computing. ACM, 61–72.

[9] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. 2015.
Clean Application Compartmentalization with SOAAP. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’15). ACM, 1016–1031.

[10] Erik Johansson and Sven-Olof Nyström. 2000. Profile-guided Optimization Across
Process Boundaries. SIGPLAN Not. 35, 7 (Jan. 2000), 23–31.

[11] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297.

[12] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Run-
time Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA,
75–. http://dl.acm.org/citation.cfm?id=977395.977673

[13] Rafael Laufer, Massimo Gallo, Diego Perino, and Anandatirtha Nandugudi. 2016.
CliMB: Enabling Network Function Composition with Click Middleboxes. SIG-
COMM Comput. Commun. Rev. 46, 4 (Dec. 2016), 17–22.

http://dl.acm.org/citation.cfm?id=977395.977673

[14] Mihai T. Lazarescu and Luciano Lavagno. 2015. Interactive Trace-Based Analysis
Toolset for Manual Parallelization of C Programs. ACM Trans. Embed. Comput.
Syst. 14, 1, Article 13 (Jan. 2015), 20 pages.

[15] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Rowstron, Hugh
Williams, and Xiaohan Zhao. 2016. XFabric: A Reconfigurable In-Rack Network
for Rack-Scale Computers. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, 15–29.

[16] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. 2015. Web
Service Composition: A Survey of Techniques and Tools. ACM Comput. Surv. 48,
3, Article 33 (Dec. 2015), 41 pages.

[17] Huiqing Li and Simon Thompson. 2013. Multicore Profiling for Erlang Programs
Using Percept2. In Proceedings of the Twelfth ACM SIGPLAN Workshop on
Erlang (Erlang ’13). ACM, 33–42.

[18] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic Ap-
plication Partitioning for Intel SGX. In USENIX Annual Technical Conference.
USENIX Association, 285–298.

[19] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI’14). USENIX Association, Berkeley,
CA, USA, 459–473. http://dl.acm.org/citation.cfm?id=2616448.2616491

[20] Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch. 2017. Thinking about Avail-
ability in Large Service Infrastructures. In Proc. HotOS XVI.

[21] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Escape Capsule: Explicit State is Robust and Scalable. In Proceedings of the 14th
USENIX Conference on Hot Topics in Operating Systems (HotOS’13). USENIX
Association, 10–10.

[22] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Split/Merge: System Support for Elastic Execution in Virtual Middleboxes. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). USENIX, 227–240.

[23] Ram Rangan, Neil Vachharajani, Guilherme Ottoni, and David I. August. 2008.
Performance Scalability of Decoupled Software Pipelining. ACM Trans. Archit.
Code Optim. 5, 2, Article 8 (Sept. 2008), 25 pages.

[24] Margo Seltzer. 2015. Automatically Scalable Computation. In Proceedings of
the 29th ACM on International Conference on Supercomputing (ICS ’15). ACM,
283–283.

[25] M. Sharifi, S. Kafaie, and O. Kashefi. 2012. A Survey and Taxonomy of Cyber
Foraging of Mobile Devices. IEEE Communications Surveys Tutorials 14, 4 (April
2012), 1232–1243.

http://dl.acm.org/citation.cfm?id=2616448.2616491

	Abstract
	1 Introduction
	2 Splitting methodology
	3 Chopflow
	4 Use-case: Splitting Apache
	5 Related work
	6 Conclusion
	Acknowledgments
	References

