Trace-based Analysis of Network Servers

Nik Sultana’, Achala Rao’, Zihao jinT, Pardis Pashakhanloo®, Henry Zhu’,
Vinod Yegneswaran?, Boon Thau Loo’

"University of Pennsylvania, TTsinghua University, ¥SR|

Presented at CNSM'19. Halifax, Canada

Problem Our solution: Flowdar

® Network servers -- for HTTP, FTP, etc -- are | | |
complex, multi-user systems. ® Configurable tracing using

® This complicates analysing their runtime,

custom + existing tools.

performance- and security-critical systems. application-agnostic and

® How can we better analyse and understand application-specific ways.
their behaviour, to better detect and ® Trace visualisation.
fix problems?

in-deployment behaviour, yet they are @ Trace simplification, in both l 0

Flowdar Design @ Light preprocessing is App ApD
done to eliminate 2l - et R > Output
. , . | ata T
@ Patch application to produce unnecessary details. lizee) Lece Trace@
traces at configurable detail. @ Trace is stored and | |
d t f ' |ter Tra:m?'_ceaqaobr:ed a-cl;r’?(():r?s St[l'erzr:emg Proiaersli'ng Storage
. . | pplicati | |
@ Run workloads on application processed to ) @ G 0 ()
details and analysed in
to generate traces. C . . . ,
an application-specific way to demultiplex different users
@ Traces are put through an sessions, trace activities across threads, etc. Traces are
In-memory pipeline to reduce vastly compressed. We developed a rich visualisation to make
blocking before storage. traces more understandable.

Example 1: Denial-of-Service analysis Example 2: Thread coordination

-lowdar can automatically compare + simplify To mitigate DoS we pipelined Apache's Worker
DOS and non-DoS workloads to find out which threads to have different pools of worker threads.

narts of the application are being affected. Visualisation shows hand-over of the connection

We applied this to the Apache Web Server. record between threads in this pipeline.
Further, this is visualised as a sequence
diagram by our tools:

~

Apache Portable Runtime, Apache APR
an Apache dependency. ;

pre

process

> Pop
clear

queue_pop

thread
queue

trypush
pool

close

I process  socket
ap_ run_
connection
ap_run_
connection
lap_ queue
backend worker
ap_ lingering

apr
lapr
lapr

]
]
l
]

9]
~
]

>F worker_ thread

B
ol
N

3 ot I Memory address of
| I connection record

N
° 00 oN)

Function call's duration

Each red dot represents—= | | 5 queued by first thread.
500us. Excess of 4 dots is :
shown numerically.

400x average difference” o We can observe the
in duration between DoS |k processing of the same
and non-DoS workloads. connection record by a
downstream thread.

We thank Bob DiMaiolo and John Frommeyer for prototyping and systems help. This work is supported
In part by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-16-

C-0056 and HR0011-17-C-0047.



