Trace-based Analysis of Network Servers Nik Sultana*, Achala Rao*, Zihao Jin[†], Pardis Pashakhanloo*, Henry Zhu*, Vinod Yegneswaran[‡], Boon Thau Loo^{*} *University of Pennsylvania, [†]Tsinghua University, [‡]SRI #### **Problem** - Network servers -- for HTTP, FTP, etc -- are complex, multi-user systems. - This complicates analysing their runtime, in-deployment behaviour, yet they are performance- and security-critical systems. - How can we better analyse and understand their behaviour, to better detect and fix problems? ## **Our solution: Flowdar** - Configurable tracing using custom + existing tools. - Trace simplification, in both application-agnostic and application-specific ways. App + Tracer Early Storage Presented at CNSM'19. Halifax, Canada Streaming #### Flowdar Design - Patch application to produce traces at configurable detail. - Run workloads on application to generate traces. - Traces are put through an in-memory pipeline to reduce blocking before storage. - Light preprocessing is done to eliminate unnecessary details. - (5) Trace is stored and Tracing-enabled processed to filter details and analysed in Application Processing actions Trace (5)an application-specific way to demultiplex different users' sessions, trace activities across threads, etc. Traces are vastly compressed. We developed a rich visualisation to make traces more understandable. ### **Example 1: Denial-of-Service analysis** Flowdar can automatically compare + simplify DoS and non-DoS workloads to find out which parts of the application are being affected. We applied this to the Apache Web Server. #### **Example 2: Thread coordination** To mitigate DoS we pipelined Apache's Worker threads to have different pools of worker threads. Visualisation shows hand-over of the connection record between threads in this pipeline. Full source-code + documentation + examples https://gitlab.com/DeDos/flowdar We thank Bob DiMaiolo and John Frommeyer for prototyping and systems help. This work is supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-16-C-0056 and HR0011-17-C-0047.