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Problem Our solution: Flowdar

® Network servers -- for HTTP, FTP, etc -- are | | |
complex, multi-user systems. ® Configurable tracing using

® This complicates analysing their runtime,

custom + existing tools.

performance- and security-critical systems. application-agnostic and

® How can we better analyse and understand application-specific ways.
their behaviour, to better detect and ® Trace visualisation.
fix problems?

in-deployment behaviour, yet they are @ Trace simplification, in both l 0

Flowdar Design @ Light preprocessing is App ApD
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traces at configurable detail. @ Trace is stored and | |
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details and analysed in
to generate traces. C . . . ,
an application-specific way to demultiplex different users
@ Traces are put through an sessions, trace activities across threads, etc. Traces are
In-memory pipeline to reduce vastly compressed. We developed a rich visualisation to make
blocking before storage. traces more understandable.

Example 1: Denial-of-Service analysis Example 2: Thread coordination

-lowdar can automatically compare + simplify To mitigate DoS we pipelined Apache's Worker
DOS and non-DoS workloads to find out which threads to have different pools of worker threads.

narts of the application are being affected. Visualisation shows hand-over of the connection

We applied this to the Apache Web Server. record between threads in this pipeline.
Further, this is visualised as a sequence
diagram by our tools:
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Function call's duration

Each red dot represents—= | | 5 queued by first thread.
500us. Excess of 4 dots is :
shown numerically.

400x average difference” o We can observe the
in duration between DoS |k processing of the same
and non-DoS workloads. connection record by a
downstream thread.
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