Demo: The Hangar environment for Teaching and
Research in Programmable Networking

Nik Sultana
1llinois Institute of Technology

Department of Computer Science
Chicago, USA

Abstract—This demo presents Hangar, a VM-based environ-
ment that grew out of components that evolved over the last
few years to support research and teaching into programmable
networking.

In addition to showing Hangar, the demo will discuss use-
cases and requirements that were encountered when developing
Hangar and its predecessors. Hangar is designed to provide
an environment that is easy to update and use. It includes
fully-scripted VM generation, packages frequently-used tools and
minimizes dependencies, and provides a suite of examples.

Index Terms—Virtualization, Programmable Networking,
Computer Science Education, P4

I. INTRODUCTION

Development, testing, evaluation and demonstration envi-
ronments have several independent components, which can
make them difficult to set up and maintain. These parts consist
of packages and tools whose versions and mutual compatibility
change over time.

Hangar is a VM-based environment that evolved over the
last four years from an enabler for research [1], [2] to
become a platform for teaching [3], [4], and now serves for
both teaching and research in programmable networking. It
provides wrapping and glue intended to reduce the effort
of maintaining, updating, and using the VM. Using Hangar,
students can be up and running in minutes. New versions of
the VM can be generated more easily to keep up with new
versions of components.

The purpose of this demo is to present Hangar to the
wider community, share experience with other researchers and
educators, and gain feedback.

II. BACKGROUND

Hangar started out as a collection of scripts that were used
to run the Wharf [1] prototype for link-layer FEC. These
scripts were significantly extended during the Flightplan [2]
project, the development and testing of which required flexible
composition of virtual network elements through simple and
evolvable configurations. This work also involved customizing
the instantiation of Mininet [5] to run scripted experiments.

These scripts were then evolved further to form the so-
called “back-end” of FDP [3], which repurposed those scripts
to support a teaching platform that provided in-browser visu-
alizations.

978-1-6654-8234-9/22/$31.00 ©2022 IEEE

| |

topology.yml
| <4
| Hangar scripts |
|
[

log file is generated
for each switch

pcap file is generated
for each link

Fig. 1. Workflow of using Hangar showing input and output files.

Hangar took its present form when it was adapted for use
in the CS595 course on “Designing Large-Scale Networked
Systems” [4] taught at Illinois Institute of Technology during
Spring semester 2022. Until that point, the scripts forming
Hangar had dependencies and references that made them
difficult to disentangle from Flightplan.

In addition to being disentangled from Flightplan, Hangar
also provides new usability features that make it more conve-
nient to use. As well as being used to teach CS595, Hangar
was also used by students to carry out individual research
projects [6] at Illinois Tech. To help students get started,
Hangar packages a set of tools and documents how to use
them in the workflow shown in Fig. 1.

III. EXAMPLES

The demo will cover how to define and configure a virtual
programmable network from scratch. This is based on an
example used in IIT’s CS595 course. A screenshot from this
example is shown in Fig. 2, which shows Hangar interact-
ing with Mininet during the initialization, configuration, and
execution stages of an experiment.

A second example involves simulating a fat-tree net-
work [7]. This example is much more complex. It features a
topology generator that was developed to evaluate the artefacts

MODE=selftest 3net.sh

v, this test will likely fail
/3net/3net.ynl

prog_2.1
_output/anet/.

//h1_prog_e.1og 281 on

net/log_files//h1_prog_2.1

//h2_prog_0.1og 2>81 on h2

/10g_files//h2_prog_2.10g 2>

Fig. 2. Worked example being given during CS595 [4].

in the Flightplan [2] project, which have since been released
as open source under a permissive license.

IV. USAGE WORKFLOW

Hangar consists of three workflows. One workflow is fol-
lowed by end-users of the VM. The other two workflows are
carried out by the creators or maintainers of a VM—such as
a researcher, teaching assistant, or course instructor.

This section focuses on the workflow followed by end-
users, which is shown in Fig. 1. It consists of the following
stages: Edit, Compile, Run, Observe, and Debug. Each stage
can involve providing or inspecting files, and using various
tools.

The filesystem in Hangar’s VM contains a directory that is
structured into the following directories:

e networks/ contains example topologies, source code,
and experiment scripts.

e« BMv2/ contains supporting scripts. Users will usually
invoke these indirectly, and need not inspect them.

e doc/ contains documentation that describes the YAML
encoding for topology and configuration.

e 1ib/ contains supporting P4 code that is used by several
examples, and that can be used by end-users to define
their own switch behavior. It’s often useful for users to
inspect these files.

e build/ is auto-generated when users compile P4 code.
A generic Makefile is provided to support the building of
P4 projects in Hangar.

To help users keep track of the data that is gen-
erated during each run of Hangar, a directory called
hangergames_output/ is automatically created in their
current directory when an experiment is run. It contains logs
and packet captures related to that experiment.

V. RELATED WORK

There are other virtualized networking environments for re-
search prototyping and teaching. Instead of being used through
Hangar, Mininet [5] can be used directly but would require
customization to achieve similar features. Hangar provides
those features by using Mininet’s API and through additional

L layers of external wrapping, to streamline configuration of

virtual networks that contain several programmable elements.
Another notable example is the VM that is used for P4 tutori-
als [8], which offers similar usability benefits. In comparison,
Hangar (1) opts for the simpler CLI-based configuration of
the dataplane instead of using P4Runtime, (2) has a slightly
more featureful configuration interface, and (3) Hangar’s VM
generation is fully scripted.

ACKNOWLEDGMENT

I thank the contributors to the Flightplan and FDP projects,
and in particular Isaac Pedisich, John Sonchack, Heena Nagda,
and Rakesh Nagda for their contributions to what became
Hangar. I am also indebted to Luis Casarrubios Elez, Cyprien
Gueyraud, Gonzalo Ignacio Hidalgo Garcia, Pratul Palaniappa
Muthuraja, Shivam Patel, and Xue Zhang for their feedback
on the use of Hangar during the CS595 course at Illinois Tech
during Spring 2022.

REFERENCES

[1] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. A. Kant, A. J. McAuley, A. Poylisher, A. DeHon, and B. T.
Loo, “In-network computing to the rescue of faulty links,” in
Proceedings of the 2018 Morning Workshop on In-Network Computing,
NetCompute @SIGCOMM 2018, Budapest, Hungary, August 20, 2018,
X. Jin and C. Kim, Eds. ACM, 2018, pp. 1-6. [Online]. Available:
https://doi.org/10.1145/3229591.3229595

N. Sultana, J. Sonchack, H. Giesen, 1. Pedisich, Z. Han, N. Shyamkumar,

S. Burad, A. DeHon, and B. T. Loo, “Flightplan: Dataplane

Disaggregation and Placement for P4 Programs,” in [8th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

21). USENIX Association, Apr. 2021, pp. 571-592. [Online]. Available:

https://www.usenix.org/conference/nsdi2 1/presentation/sultana

H. Nagda, R. Nagda, S. Sheth, N. Sultana, and B. T. Loo, “FDP: A

Teaching and Demonstration Platform for Networking,” in SIGCSE ’21:

The 52nd ACM Technical Symposium on Computer Science Education,

Virtual Event, USA, March 13-20, 2021, M. Sherriff, L. D. Merkle,

P. A. Cutter, A. E. Monge, and J. Sheard, Eds. ACM, 2021, p. 1376.

[Online]. Available: https://doi.org/10.1145/3408877.3439543

N. Sultana, “CS595 Designing Large-Scale Networked Systems (Spring

2022),” http://www.cs.iit.edu/~nsultanal/teaching/S22CS595/.

B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid

Prototyping for Software-Defined Networks,” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.

New York, NY, USA: Association for Computing Machinery, 2010.

[Online]. Available: https://doi.org/10.1145/1868447.1868466

N. Sultana, “Opportunities for Student Research Projects,” http://www.cs.

iit.edu/~nsultanal/student_projects/.

[71 M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, p. 63-74, aug 2008. [Online]. Available:
https://doi.org/10.1145/1402946.1402967

[8] P. L. Consortium, “P4 Tutorial,” https://github.com/p4lang/tutorials.

[2

—

3

—_

[4

=

[5

—_

[6

—_

