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ABSTRACT
This paper describes a novel approach to Network-Application
Integration that leverages ideas from the integration between the
network and in-network programs written in languages such as P4.
That integration relies on models of the resources that a network
makes available on the one hand, and the needs of in-network
programs on the other. This paper extends that integration to also
include applications’ needs on top of in-network programs.

This approach thus integrates the network, in-network programs,
and applications at the edge of the network, including clients and
servers. We explore the properties of this integration, analyse the
information on which such an integration can rely, describe a proto-
type implementation of this idea, and apply it to a network scenario
that involves heterogeneous hardware and different applications.
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1 INTRODUCTION
Applications and networking are usually separated by abstractions
that decouple them. This separation helps simplify implementations
on either side of the abstraction. But this same separation can stymie
finer-grained coordination between applications and the network.

Integrating applications and networking can enable better coor-
dination and resource usage. One approach for integration involves
weakening the abstractions that separate applications and network-
ing. While this can benefit performance [7], it requires significant
engineering effort and this has knock-on effects on the effort re-
quired to maintain and reuse software.

This paper describes an approach that retains the existing decou-
pling between applications and networking but integrates the two
by using models about application needs and network resources. It
does not require customisation of software or hardware.
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Figure 1: We highlight two levels of integration: (i) Flight-
plan (§3) uses network awareness for in-network programs,
splitting an in-network program into five subprograms A-E
and placing them on suitable hardware; (ii) This paper pro-
poses an extension (§4) to integrate applications too.

This approach builds on Flightplan [13], a system designed to
gain visibility across abstraction layers in Software-Defined Net-
working (SDN) to take advantage of the increased availability of
heterogeneous programmable hardware in networking, including
programmable switches and smart NICs.

Flightplan’s approach involves reasoning about in-network pro-
grams and network resources—including topology, devices, and
their resources. This information is reduced to rules that are pro-
cessed by Flightplanner, an open-source reasoning engine that forms
a core component in Flightplan.1

Fig. 1 sketches how to extend Flightplan to integrate three domains—
the network, in-network programs, and applications. The paper
describes a prototype implementation of such an application-aware
Flightplan, sketched in Fig. 2. It adapts Flightplan’s reasoning-based
approach to obtain application awareness. This initial study sug-
gests that this approach can improve network-application coordina-
tion and ease of configuration, and forms the foundation for future
research on both the performance and correctness of configuration
changes.

This work highlights key research challenges for this approach
to integration. These challenges include: (i) gathering comprehen-
sive application needs and modelling their changes (extending §2.1),
(ii) how to symbiotically integrate applications with in-network
programs (discussed further in §4), (iii) how to mirror this inte-
gration inside Flightplanner’s core reasoning engine to gain better

1flightplan.cis.upenn.edu
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performance than the current prototype in which changes are only
being done at the periphery.
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Figure 2: Overview ofApplication-aware Flightplan.➀ Infor-
mation about applications using the network is included in
a model that is made available to Flightplanner, which is ex-
tended as described in this paper. ➁ Flightplanner is run as
part of Flightplan. The extended Flightplanner allocates re-
sources in a way that also accommodates application needs.
➂ Application needs might change as a result of upgrades,
maintenance, failures, external demand. ➃ Flightplanner re-
computes its allocation model to account for these changes.

2 USE-CASE
This section describes an example scenario that features commonly-
occurring applications, equipment, and traffic patterns [2, 10]. It
also involves a higher degree of mutual awareness of application
needs and network resources. We will see how this awareness can
be put to use to benefit the system.

Fig. 3 sketches a small subset of a datacenter network servicing
external requests. The network includes a range of hardware. The
hardware details and network topology are usually unknown to
applications.

In this use-case, API requests are made over a version of HTTP.
➀ Requests reach servers from the Internet. Servers analyse re-
quests and in turn may produce requests to internal systems, such
as Key-Value (KV) stores, in order to service the external request.
We call these sub-requests. ➁ In our scenario, sub-requests benefit
from in-network programs to improve performance and reliabil-
ity. These programs are analysed and placed using Flightplan (§3).
Examples of such programs include: (i) FEC above the physical
layer and (ii) low-latency KV caching to reduce pressure on the
KV servers and reduce overall service latency. ➂ A host-based,
mid-latency KV cache is placed behind the first cache. KV look-ups
are a staple of modern datacenter networks and often cascaded [4].
➃ In our example, east-west traffic is compressed using inline logic
to reduce network utilisation of the core. This logic is placed by
Flightplan based on the available resources. ➄ KV requests can
ultimately reach a server. Assisting logic, such as a last caching
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Figure 3: Example scenario for leveraging in-network appli-
cation awareness. It is explained further in §2.

layer, can be placed on nearby programmable resources such as the
server’s smart NIC. Such NICs have seen increased research and
deployment over the last years [5, 6, 8, 9]. Application-awareness
enables us to better utilise such resources. ➅ KV servers are popu-
lated by batch analysis tasks carried out on structured data stores.
➆ A management suite of software oversees nodes’ health, and
may update or roll-back the software used in each node. ➇ Logs
and telemetry are streamed for analysis to determine service usage
and trends.

2.1 Application needs
The needs of different applications on the network are reflected
by their traffic patterns: their timing, bandwidth, communicating
elements, traffic types, latency constraints, and attenuation by in-
line logic such as ➃ compression, ➁ caching and coding.

We see various patterns in the use-case. The API server software
is engaged by external requests ( ) towhich it replies ( ).
If there is an assured service-level, then these requests need to be
served within specific parameters. An application’s ability to serve
requests at a given rate depends on factors that involve both the
network and the various applications working together over it.

Having mutual awareness of application needs and network
resources can enable the two to act in concert. An API server’s allo-
cation of network resources cannot prioritise requests and replies
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above sub-requests, otherwise this would quench the server’s abil-
ity to function. While the server can have boost periods, it must
eventually give way to high-priority traffic from management ap-
plications ( ) or delay-tolerant traffic for analysis ( ).
Even the same class of flows can have different characters: e.g.,
data movement ( ) can be preemptive—from ➅ to ➄—and
demand-driven—from ➄ to ➂.

2.2 Changing needs
There are several well-understood reasons why application needs
change. For example, a common diurnal pattern involves giving
priority to interactive services by day—such as API servers—and
batch jobs by night.

Evenwithin a single regular cycle there can be variations because
of changing external demand. In turn, this affects the number of
application instances needed to service requests. At other times,
such as during planned or unplanned maintenance, instances might
be wound-down and consolidated.

3 NETWORK-AWARE IN-NETWORK
PROGRAMS

Network-awareness is essential to Flightplan since it needs to rea-
son about network resources when disaggregating and placing
dataplane programs. This section outlines how Flightplan works to
achieve objectives set by the network operator. The next section
describes how it is being extended to include application-related
needs, to indirectly provide network-awareness to applications.

The increased demands on networks, particularly on datacenter
networks, have spurred the development of programmable switches
and the languages to program them. This has enabled faster iter-
ation and deployment of switch functions by network operators.
It also led to a proliferation of different types of hardware that are
programmable using a common language such as P4 [3], including
different types of smart NICs.

A feature of current dataplane programming is that an entire
dataplane program is mapped to a single device. This requires the
device to provide all the resources for that program to execute, and
to operate at a sufficiently high rate.

Flightplan relaxes this requirement by providing an end-to-end
toolchain to decompose and place P4 programs onto devices in the
network, as illustrated by the bottom part of Fig. 2 which will be
explained further in this section. To relax this requirement we use
a suitable mix of devices instead of a single all-capable device.

Network awareness is provided to Flightplan through knowledge
of the network topology and different kinds of rules.2 One set of
rules is provided for the abstract program that is automatically gen-
erated by Flightplan, describing the data- and control-flow between
segments of the original P4 program. Fig. 2 shows the program’s
segments marked A-E, and how these are eventually allocated to
different devices in the network. Abstract program rules are orthog-
onal to this paper’s contribution, and will only be briefly described
for self-containment.

2An example topology used in Flightplan’s evaluation can be obtained from
https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/network_
tofino.json

Xeon2450-1 :
πRequires =

{
Rate ≤ 1010

}
, πProvides = {CPU} ,

Ports = { 1 7→
{
πRequires =

{
Rate ≤ 1010

}
, πProvides = {}

}
}

Figure 4: Flightplan rule for describing device capabilities,
reproduced from the Flightplan repo. This rule names a de-
vice on the network and specifies some key properties: such
as its throughput bound, and a (user-defined) proposition
“CPU” that indicates its type. The rule also provides a break-
down of the capabilities of this element’s network ports.

A second set of rules describes the features and capabilities of
devices found in the network. An example can be seen in Fig. 4,
taken from the Flightplan repo.3 This information is used to avoid
allocating segments to devices that cannot execute them at the
required performance.

A final set of rules describes the cost and requirements of execut-
ing specific functions on different hardware; we call these profiling
rules.

The different kinds of rules are processed by Flightplanner, a
core reasoning component in Flightplan. It explores different allo-
cations of the dataplane program’s logic to different hardware in
the network while ensuring that constraints are not violated, and
while optimising on objectives. P4 program authors need not be
aware of the deployment network’s specifics, such as its topology
and device composition.

4 APPLICATION-AWARE FLIGHTPLAN
This section describes how Flightplan is being extended to reason
about application needs. This involves computing and checking
allocation plans about network resources in a way that is more
cohesive with how different applications use the network.

Fig. 2 shows how this paper builds on Flightplan. Flightplan’s
features are preserved and the extension captures information about
application needs and integrates that information into Flightplan’s
reasoning process. It also seeks to capture how those needs can
change, possibly as a function of changed demand. Application
needs may change frequently, perhaps several times in one day.
By modeling such changes we can better plan for the effects that
they can have on network and device utilisation, and on overall
performance.

Two changes are made to Flightplan in this extension: (i) A new
form of rule is created to formulate application needs. This rule
is based on application characteristics that were outlined above
in §2.1 and §2.2. A stylised form of this rule is shown in Fig. 5. This
is the application counterpart of the device-information rule that
we saw in Fig. 4. (ii) Flightplanner is extended to use this rule. This
extension consists of new inferences and checks relating to the new
type of rule. So far this has not involved changing any core features
in Flightplanner.

In the new type of rule shown in Fig. 5, named programs (Prog1)
are given specific modes (M1 in Fig. 5) that indicate different be-
haviours between changes (§2.2). In this way, a change is reduced to

3More examples can be obtained from https://github.com/eniac/Flightplan/blob/
master/flightplanner/examples/devices.json

https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/network_tofino.json
https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/network_tofino.json
https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/devices.json
https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/devices.json
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Prog1 mode:M1 :
πRequires =

{
Rate ≤ 110

}
, πProvides = {UDP(200)} ,

Ports = {(Xeon2450-1, 1)} , Peers =
{
Prog2

}
,

OnPath = {MCD_Cache}

Figure 5: Rule scheme used to capture application needs.
One rule is added for each mode and application The cur-
rent prototype includes 17 such rules for the use-case in §2.

a change in mode. For example, the model built for our use-case (§2)
involves two modes, ‘day’ and ‘night’, to capture the different ap-
plication activity during each phase.

The new rule reuses some of the notation we saw in Fig. 4 to
specify the πRequires and πProvides sets. These are adapted to specify
information about each application, such as an application’s band-
width expectations and the kind of traffic it will be generating. This
information can then be cross-checked as part of a system-level
analysis by Flightplanner—for instance, to check whether links are
being overloaded.

The rule also adds three types of information: Ports: the physical
ports with which applications interact on the devices on which the
applications are run. This information allows cross-checking traffic
patterns and bandwidth usage. Peers: names of peer applications
with which an application interacts. This allows checking that
flows do end up on network elements in which peer applications are
running.OnPath: logic that applications can expect to find between
peers. This allows checking that flows pass through elements that
provide some specific logic. This is used to interface application
needs with in-network computing. Given that Flightplan can now
reason about both, it can also check that they are combined in
desired ways. In this example we are using a Memcached cache that
is part of the Crosspod [13, §2] example included with Flightplan.

5 PROTOTYPE
Flightplan was extended to use additional rules that were described
above. The changes took place outside the planner’s core: once
plans were generated, the new rules were used to check that ap-
plications’ needs could be met. Whenever an application’s needs
could not be met by any plan, it often turned out to be a bug in the
specification of needs—for example, a wrong peer was specified.
This suggested a useful role Flightplan could play to check rich
cross-layer specifications of system behavior. Incorporating some
of these checks within the planner’s core might result in increased
efficiency, and will be explored in future work. As with Flightplan,
the planning is not carried out at runtime but planning can cater
for different runtime scenarios.

6 DISCUSSION
This section describes initial results from using the application-
aware Flightplan prototype. The prototype was applied to a net-
work that closely followed the scenario described in §2, featuring
5 switches, 15 hosts and other hardware such as smart NICs. Pre-
vious Flightplan examples did not involve smart NICs, and our
use-case involved creating a new device category for Flightplanner

to use. We reused application rules for the Crosspod in-network
program, which is available from the Flightplan repo.

Once the network and in-network program rules were gathered,
additional rules were created to capture application needs—creating
instances of the rule shown in Fig. 5. 17 instances of this rule were
used to model applications in §2. Each instance describes the needs
of a particular application during a specific mode (§4).

The rules were created by looking at pairs of interacting appli-
cations from Fig. 3. For example, the model includes flows between
API Server to external clients, between API Server and the various
KV caches, and between API Server and Storage Server. For each
flow we classify their traffic type—this example includes HTTP,
Memcached, rsync and others—and estimating or budgeting for
applications’ bandwidth needs. In this example, the number of such
rules scales linearly with the number of types of flows between
applications.

In this example we used two modes, ‘day’ and ‘night’, to model
diurnal changes. Out of the 17 rules, 10 were for ‘day’ and 7 for
‘night’. One could refine this to model multi-mode application be-
haviour to capture finer levels of time-intervals, or model planned
maintenance or scaled-back scenarios that model outages.

7 RELATEDWORK
Since writing application rules (§4) is currently done manually and
relies on estimation (§6), this work could complement systems like
Stroboscope [14] that can declaratively gather such measurements
from the network at fine granularity. Different traffic profiles could
then be classified to form different modes (§4).

Cocoon [11] and Merlin [12] use rich languages to specify and
reason about access and resource requirements of networks, middle-
boxes and applications. Cocoon uses refinement-based modelling
which can also benefit this approach. In comparison to both, this
paper draws expressiveness from P4-described behaviour that can
invoke middlebox-like functions.

Eden [1] provides abstractions for applications to better manage
their use of the network, and enforces this at end-hosts. Dawn [15]
avoids application modification by relying on annotations and ef-
fects configuration changes to switches in the network. The work in
this paper does not involve application modifications, and includes
P4-described in-network programs in its reasoning scope as well
as applications’ needs and network resources.

8 CONCLUSIONS AND FUTUREWORK
Due to its position, Flightplan can integrate applications and the
network by matching between the needs of applications and the
resources provided by the network. This paper describes an initial
exploration on this integration. There are several open questions,
forming possible directions for future work. One question concerns
the model accuracy in the presence of sharing and load-balancing
of application instances. Another open question involves modelling
more flexible change—not only between modes, but also between
node and link availability, and application mix—to enable more ac-
curate reasoning about the detailed dynamics during these changes.
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