
Towards Practical Application-level Support for
Privilege Separation

Nik Sultana
Illinois Institute of Technology

USA

Henry Zhu
UIUC
USA

Ke Zhong
University of Pennsylvania

USA

Zhilei Zheng
University of Pennsylvania

USA

Ruijie Mao
University of Pennsylvania

USA

Digvijaysinh Chauhan
University of Pennsylvania

USA

Stephen Carrasquillo
University of Pennsylvania

USA

Junyong Zhao
University of Arizona

USA

Lei Shi
University of Pennsylvania

USA

Nikos Vasilakis
Brown University & MIT

USA

Boon Thau Loo
University of Pennsylvania

USA

ABSTRACT
Privilege separation (privsep) is an effective technique for improv-
ing software’s security, but privsep involves decomposing software
into components and assigning them different privileges. This is
often laborious and error-prone. This paper contributes the follow-
ing for applying privsep to C software: (1) a portable, lightweight,
and distributed runtime library that abstracts externally-enforced
compartment isolation; (2) an abstract compartmentalization model
of software for reasoning about privsep; and (3) a privsep-aware
Clang-based tool for code analysis and semi-automatic software
transformation to use the runtime library. The evaluation spans
19 compartmentalizations of third-party software and examines:
Security: 4 CVEs in widely-used software were rendered unex-
ploitable; Approximate Effort Saving: on average, the synthesis-
to-annotation code ratio was greater than 11.9 (i.e., 10× lines of code
were generated for each annotation); and Overhead: execution-
time overhead was less than 2%, and memory overhead was linear
in the number of compartments.

ACM Reference Format:
Nik Sultana, Henry Zhu, Ke Zhong, Zhilei Zheng, Ruijie Mao, Digvijaysinh
Chauhan, Stephen Carrasquillo, Junyong Zhao, Lei Shi, Nikos Vasilakis,
and Boon Thau Loo. 2022. Towards Practical Application-level Support for
Privilege Separation. In Annual Computer Security Applications Conference
(ACSAC ’22), December 5–9, 2022, Austin, TX, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3564625.3564664

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3564664

1 INTRODUCTION
Privilege separation (privsep) is an effective technique for software
security that stymied viable exploits [17] but it needs to be tailored
for each piece of software. It involves structuring programs to run as
multiple processes and assigning to each process the least amount of
access it needs to function, thus instantiating the principle of least
privilege [56]. Privsep refines the isolation granularity of applica-
tions into a cooperating set of processes, and leverages OS-provided
isolation—including application firewalls and containers [48]—to
protect those processes from each other.

By separating subsets of a program and assigning them different
privileges, privsep enables the containment of vulnerabilities in
buggy or compromised parts of the program and its dependencies.
Thus an exploitable parser library used by a daemon will not readily
give an adversary access on par with that daemon. The risk from
dependencies includes supply-chain attacks [41]. In these attacks,
exploits are deliberately inserted in upstream codebases, sometimes
in deeply-nested dependencies that users are unaware of [61].

Because of the restructuring it requires, applying privsep is la-
borious and error-prone. There is a lack of privsep-supporting
techniques and tools that could enable wider use of this security
approach. Currently programmers apply privsep in an ad hoc way,
without a framework for managing separation over code and data.

Privsep is applied to widely-used software but—because of the
effort required to apply privsep—it is not widely applied to many
types of software, including games, system administration utilities,
and office productivity tools. The best-known examples of privsep’s
use include servers such as OpenSSH [54] and Apache httpd—where
the network-facing part of the system is separated from the core
server—and clients such as most web browsers [22, 32, 46] to isolate
each tab from each other and the rest of the system.

This paper introduces the Pitchfork approach for privsep. This
approach is designed to work with a large class of software with
minimal impact on their portability and maintainability, and to
provide compile-time and run-time support for privsep. Pitchfork

https://doi.org/10.1145/3564625.3564664
https://doi.org/10.1145/3564625.3564664

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

B.c

X.oL.so

A.c A1.c

A2.c

A3.c

L.so

B.c

B.c

X.oL.so

A.c

B.c

X.oL.soX.oL.so

fork()

Trusted Untrusted

T1

T2

T3

T4

T5

Separation GoalClassic Privsep Pitchfork

X.o

A1
A2

1

2

3

4

Distributed
Runtime

A2A1

A3

Figure 1: Privsep involves splitting a program and restrict-
ing the access of its derivative parts. This figure compares
classic Privsep with Pitchfork and is explained in §1. Clas-
sic privsep derives Trusted and Untrusted parts, and in this
illustration A3 has to be combined with A2 or A1 as a result.

is a stepping stone towards the further generalization and automa-
tion of privsep to reduce the burden on developers. One of our
realizations in this work is that privsep is not a single problem
but a complex of problems that need a cohesive solution. A
solution to privsep spans program decomposition, concurrency, syn-
chronization, resource discovery and configurability, distributed
debugging, and the maintainability of the decomposed program.

Pitchfork generalizes classic privsep as shown in Fig 1. ① A
program consists of source files (A.c, B.c) and linked code (X.o and
L.so). A separation goal (shown as a dotted red line) states a specific
structuring of the program into separate processes. ② Classical
privsep targets program sources and involves a separation between
Trusted and Untrusted parts. ③ Classical privsep isolates the two
parts at runtime typically through fork() followed by a privilege
drop. ④ Pitchfork supports several, user-defined trust levels (T1-T5
in this example), separation of third-party dependencies, separation
at compile-time as well as run-time, and provides a runtime to
manage the resulting distributed program.

Pitchfork provides an abstract software model that partitions
code and data into compartments. A compartment is an abstraction
that represents a part of the program that is to be separated. It can
be instantiated as a separate process or even a separate binary.

Fig. 2 shows the realization of a toolchain based on this model,
implemented for the C language. This toolchain consists of (1) lib-
compart, a runtime library that provides the model’s functionality
directly to C programmers, and (2) Pitchfork, a tool that analyzes
privsep code annotations in a C program and source-to-source trans-
forms the program to use the runtime library, saving the program-
mer manual effort. The toolchain’s implementation was structured
to balance flexibility (using the runtime library) with convenience
(using the source-level tool). The runtime library can be used inde-
pendently of the source-level tool for more flexibility, at the cost of
some convenience. The source-level tool carries out an unsound but
pragmatic analysis, inspired by the approach used by widely-used
software analysis [29].

Annot.
Analyzer

Program
Transf.

Runtime

Pitchfork (source-level tool)

libcompart

Program source + Build scripts

Compartmentalized program source

1 2

3

Figure 2: Stages of processing, which have all been imple-
mented in the prototype toolchain: ❶ An annotated C pro-
gram is analyzed by Pitchfork, a Clang-based tool, to deter-
mine cross-compartment synchronization needs. ❷ The an-
notated program is transformed to use libcompart by the
same tool, saving programmer effort.❸ libcompart provides
useful abstractions for privsep. While portable, libcompart
uses a pluggable interface to leverages OS-specific isolation
and communication primitives between separated program
parts. For increasedflexibility, programmers can use libcom-
part directly instead of going through the Pitchfork source-
level tool.

Pitchfork is orthogonal to sandboxing [18, 40, 59] and memory
protection [35, 39, 51] techniques, and differs from other security-
oriented decomposition techniques. In particular, enclave-oriented
program splitting [25, 49] requires specific target hardware and only
splits software into two parts, both of which must be co-resident on
the same machine. Mapping compartments to hardware-enforced
environments such as enclaves is left as future work. Pitchfork’s
model is inspired by approaches for concurrency [28, 34, 38, 43]
but is deliberately restricted to avoid creating opportunities for vul-
nerabilities in the runtime library’s implementation. For example,
channels cannot be dynamically created at runtime, and cannot
carry other channels. Related work is described further in §10.

The repo at https://gitlab.com/pitchfork-project provides the
source code for Pitchfork, libcompart, and their example applica-
tion to third-party software. This paper contributes: (1) An abstract
compartmentalization model (§5) for structuring software into dis-
joint units that are secured separately. This model is used to reason
about privsep and systematize different types of memory sharing
between program parts. (2) A prototype implementation (§8) that
consists of: (2a) libcompart: A lightweight and portable runtime
library for privsep (§6). This library can be used by new or existing
software to apply privsep according to Pitchfork’s abstract model.
(2b) Pitchfork: A Clang-based source-level analysis and transfor-
mation tool that uses source-level annotations to automatically
split C programs (§7). (3) An evaluation of the runtime library
and the source-level tool implemented in the Pitchfork prototype.
This evaluation includes: general applicability of Pitchfork to exist-
ing software, security gains, and execution overhead. It involves
a variety of widely-used open-source software including games,
system administration utilities, and productivity tools across three
operating systems (§9).

https://gitlab.com/pitchfork-project

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

vitetris program
serve

recvpl ncurses library7×so
ur

ce
co

de

dependencies

64 × .c
33 × .h 13.4KLOC}

374 × .c
87 × .h99.2KLOC {

Figure 3: Our separation goal is to split Vitetris into: serve
(creates a listening port), recvpl (receives and parses player
data), and main —a special compartment in Pitchfork that
contains everything else. In addition we could isolate de-
pendencies such as the libncurses library whose source is
over 7× larger than Vitetris. In §2.1 and §C we describe de-
pendency isolation for the Evince viewer and for netbpm’s
tifftopnm tool respectively.

2 MOTIVATION AND BACKGROUND
This section describes typical software security concerns, separation
goals that address those concerns, and typical challenges facedwhen
applying privsep to meet those goals.

Threat Model. We assume that an adversary may control all in-
puts to a program, including inputs from files and the network. An
adversary may also control third-party libraries used by the pro-
gram. We assume that the adversary does not control the compiler
toolchain, host, and OS on which the compartmentalized software
is being run.

2.1 Examples
Privsep helps contain unknown vulnerabilities in software, and is
usually applied as a precautionary measure based on separation
goals. Each goal provides a—typically informal—reason why a par-
ticular software split would improve security. This section provides
separation goals for two example programs.1 These include an ex-
ample of compartmentalizing a dependency that we do not modify,
and that could be available to us only in compiled form.

Example 1: Vitetris. This is a portable implementation of Tetris
that is small but rich in features [24]. Fig. 3 illustrates our separation
goal. Vitetris has zero known vulnerabilities at this time [7], and
the size of its source code is relatively small at 13.4KLOC. But
it relies on several sizeable libraries which may potentially have
vulnerabilities [47]. For example, its libncurses dependency has
had several known vulnerabilities [6]. Further, Vitetris might have
exploitable bugs in its rich set of features that include support for
different input devices, different output encodings, and IP-based or
UNIX domain socket-based two-player games.

Example 2: Evince. Even if a widely-used program does not use
privsep, it is still likely to benefit from it. Evince [8] is a document

1This paper describes 19 compartmentalizations of various kinds of open-source
software. Many people volunteered their time to develop that software. By including
their software in our study we do not wish to single it out for criticism of its potential
or reported lack of security. Rather, we are grateful to be able to study real examples
through open-source projects in our search for software-architecture patterns that can
be targeted by a scalable form of privsep to improve general software security.

viewer for GNOME that supports a wide variety of document for-
mats. On top of its 83.8KLOC, Evince has several dependencies that
supply its UI and format-support features. Among them is libspectre
which provides support for viewing PostScript files. It does not have
any known vulnerabilities, but its main dependency, GhostScript,
has had past vulnerabilities [10] and provides an embedded inter-
preter which is often a security risk [37]. Our separation goal for
Evince is to isolate libspectre. In this example we do not modify
libspectre, and the compartmentalization is done entirely within
Evince. In practice, this compartmentalization enables applications
to use closed-source third-party dependencies more securely.

2.2 Separation heuristics and implementation
Separation goals are typically based on heuristics for separating
parts of an application that differ in their trustworthiness. We re-
duce these heuristics to three patterns of separation. They involve
isolating: 1) Parts of the program that only access specific objects,
e.g., the data that needs processing. 2) Libraries and other depen-
dencies. 3) Cross-domain interfaces, such as network-facing code.
These heuristics capture common-sense patterns of separation that
are applied in practice: for example, when isolating part of the
system that has a history of containing bugs, or if it handles data
from untrusted sources.

Though these heuristics are simple, implementing them is usu-
ally complex: a) parts of the program might need to be cleaved off
to form new programs, and the build scripts might need modifica-
tion; b) language-level reasoning is required to safely separate the
program, to handle aliasing, variadic functions, etc; c) state needs
to be synchronized between programs to preserve the original pro-
gram’s behavior; d) non-serializable state, such as abstract types
and OS resource handles, needs to be shared across programs; e) the
resulting distributed system of programs needs to be coordinated
and monitored for partial failures.

This all needs to be done in a least-invasive, maximally-maintainable
way that preserves the original program’s portability, with the low-
est performance overhead, and without introducing new bugs or
vulnerabilities. While demanding, this pattern of needs is faced
every time privsep is applied to a new application. This observation
provides the basis for the support that Pitchfork, and the prior work
it builds on, seeks to make privsep more widely-applicable.

2.3 Survey of C code-bases
To evaluate the characteristics of C code-bases—their size and
C variant—to provide context for the code-bases used in the evalu-
ation of this research, we surveyed a significant collection of real-
world C software. This section summarizes the survey results, and
Appendix G describes the methodology and further result details.

This survey targeted FreeBSD’s ports [1] collection, a set of third-
party applications that have been ported to run on the base system.
This consists of 29156 projects in total, taking up 164GB.We wrote a
script to analyze this to measure the size of C codebases and which
variants of C they use.2

The results of this survey are that the median size was 24 KLOC
and average size was 121 KLOC. Most projects did not specify
which C version to compile them against. From the projects that did
2The script and data related to this survey are included with the artifact release.

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

{ },…
1 Source code

Annotated source code

Transformed source code

{ },…

Annotation analysis

Runtime API

Compilation

2

3

4

5

6{ },…,
Debugging7

{ },…

Figure 4: Pitchfork workflow across a codebase (set of files).

specify which C version to use, c89 was the most popular version.
The surveyed projects rely on different versions of C including c11,
gnu11, c99, and gnu99. The properties of the chosen use-cases for
this paper are described in §H.

3 PITCHFORK OVERVIEW
This section outlines how Pitchfork works before the rest of the
paper goes into more detail and evaluates the prototype.

Pitchfork provides compile-time and runtime support to pro-
grammers to structure a program into compartments as independently-
executing but cooperating units. Compartments are an abstraction
for a subset of the original program’s code and data. They are given
subsets of the privileges of the original, monolithic application, but
by acting together compartments produce behavior very similar to
that of the original program.

Fig. 4 shows Pitchfork’s workflow.We start by forming separation
goals based on informal security objectives, similar to the examples
in §2. These goals are captured in the ① program source code
either through compartmentalization annotations, leading to ②, or
through directly using libcompart (the Pitchfork runtime API) to
reach ④. Using the API directly would forego automated analysis
and transformation but affords the programmer more flexibility.

Examples of both choices will be given. We return to ④ soon,
but we start with ②: the source code being annotated.

Annotations serve as in-program separation documentation that
can be ignored to compile the original program, or processed by
Pitchfork to produce a compartmentalized program. In addition
to segments of code, as shown above, programmers can annotate
regions of code, including (type, function, and variable) declarations.
The Pitchfork prototype uses C function syntax for annotations.
These functions are interpreted by Pitchfork during analysis and
transformation, and never reach the C compiler.

③ Annotated source code is transformed into an abstract repre-
sentation that is used to check compliance with Pitchfork’s com-
partmentalization model (§5). Compliance checking (§7.1) is done
to avoid incorrect behavior at runtime—this is like type-checking

but at the level of compartments. It involves abstract program rea-
soning to determine the synchronization requirements between
compartments and to ensure that adequate precautions are taken
in cross-compartment communication.

Writing annotations and iterating through invocations of Pitch-
fork is intended to be less burdensome for the programmer when
compared to chasing function definitions to gather information
manually while also heeding compliance criteria for compartments
to avoid complications at run-time.

④ Source code is transformed to implement the intent captured
by the separation goals. This transformation is either done man-
ually or using the Pitchfork to carry out a source-to-source (§7.2)
transformation.

⑤ During both manual and automatic translation, the program
is modified to use libcompart (§6). This library manages the dis-
tributed system derived from the original program, including the
communication between its compartments. As will be described
in §6, libcompart uses common OS features such as processes and
IPC. It can also use OS-specific features through wrappers.

Part of the modification made to Vitetris to use libcompart is
shown in Listing 1. This snippet shows the initialization of the
system. Registering a segment allows it to be invoked from another
compartment. Once compart_start() is called (line 165) then no
more registrations are possible.

156 +#include "vitetris_interface.h"

158

159 int main(int argc, char **argv)

160 {

161 + compart_check();

162 + compart_init(NO_COMPARTS, comparts, default_config);

163 + listen_ext = compart_register_fn(C_NAME_LISTEN_K, &

ext_listen);

164 + recvplayer_ext = compart_register_fn(

C_NAME_RECVPLAYER_K, &ext_recvplayer);

165 + compart_start(C_NAME_MAIN_K);

166 +

168 setcfgfilename(argv[0]);

169 readoptions();

170 timer_init();

Listing 1: libcompart used on Vitetris’ main.c.

Failure handling is provided by libcompart (§6) to improve the
resilience of the distributed program in case of partial failure. This
is done through hooks to which programmers can provide code for
reacting to failure.

⑥ Since the Pitchfork source-level tool fully parses C code, it
requires knowledge of the compiler parameters to be able to locate
header files, use the right conditional compilation branches, etc.
Typically such parameters are generated by a build system. To
automate this parameter discovery at compile-time, the Pitchfork
prototype includes a meta-Makefile that observes the compilation
of the original program to extract the necessary information.

⑦ The distributed nature of the compartmentalized program
makes it more tedious to debug compared to a monolithic program.
We sometimes encounteredmisbehavior in compartmentalized code

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

that could not be reproduced in the original program. Often this
misbehavior stemmed from different permissions that different
parts of the program have when they run as a compartmentalized
system. To mitigate this, two compartment-aware debugger proto-
types were developed. Both use an extensibility hook in libcompart
to run additional code at run-time. The simpler prototype inlines
invocations to a debugger interface at specific lines of a distributed
program, as hard-coded breakpoints. The more advanced prototype
embeds a restricted gdb controller in the program at compile time,
and provides a gdb front-end wrapper that allows switching be-
tween different gdb controllers running in different compartments.
This paper focuses on development support for privilege separa-
tion, and the debugging approaches for isolated compartments is
discussed in a paper about a project dedicated to that topic [62].

4 EXAMPLE: BEEP
Beep is a 372-line C program that allows users to control the PC
speaker from the command line. It is packaged to run on widely-
used Linux distributions such as Debian and Ubuntu. It typically
runs as superuser with the SETUID bit set as it needs to send data
to the sound device.

Despite being small and innocuous, a local privilege escalation
vulnerability was found in beep [5, 12]. It is a “time of check to
time of use” (TOCTTOU) [60] vulnerability and the exploit consists
of racing against beep to change which “file” beep is writing to,3
between TOC and TOU and thus manipulating beep to perform an
unintended action as superuser. Specifically if the user directs beep
to write to a symbolic link to the speaker device, and then quickly
rewrites the link to point to an arbitrary file, beep will write to that
file as the super-user.

105 if(console_type == BEEP_TYPE_CONSOLE) {

106 pitchfork_start("Privileged");

107 if(ioctl(console_fd, KIOCSOUND, period) < 0) {

108 putchar('\a'); /* Output the only beep we can, in an

effort to fall back on usefulness */

109 perror("ioctl");

110 }

111 pitchfork_end("Privileged");

112 } else {

113 /* BEEP_TYPE_EVDEV */

114 struct input_event e;

115 e.type = EV_SND;

116 e.code = SND_TONE;

117 e.value = freq;

118 pitchfork_start("Privileged");

119 if(write(console_fd, &e, sizeof(struct input_event)) <

0) {

120 putchar('\a'); /* See above */

121 perror("write");

122 }

123 pitchfork_end("Privileged");

124 }

Listing 2: Annotated beep.c.

3Following the UNIX philosophy that virtually everything is a file, devices are repre-
sented in Linux’s file namespace.

We privsep beep into two: aPrivileged compartment that makes
calls to write(2), read(2), ioctl(2), and theMain compartment
that executes everything else.

Listing 2 shows the compartmentalized program, with Pitch-
fork annotations highlighted in orange. Code form the application
is enclosed between annotations as on lines 106 and 111. Except
for adding annotations, no other changes were made to the pro-
gram. The Pitchfork source-level tool emitted code for the entire
compartmentalization, including the transfer of context between
compartments. In addition to transforming code, the Pitchfork tool
also checks compartment configuration. The generated C code
could then be compiled to produce the compartmentalized binary.

The Pitchfork compartmentalization model is described in §5.
The model includes named compartments (e.g., Privileged) and or-
ganizes compartments into one or more segments. Listing 2 shows
two segments of the same compartment. Naming allows us to co-
ordinate and configure different compartments, and segmentation
allows us to coordinate disjoint pieces of code that we wish to place
in the same compartment. A compartmentalized program also has
an implicit main compartment which is necessarily unique.

Turning back to our beep compartmentalization, it prevents
the attacker from overwriting a file by i) restricting important
library-function calls to take place within a privileged compartment,
ii) restricting the privileged compartment’s visibility of the file
system. Note that in this instance compartmentalization does not
fix the race condition, but it removes the ability to exploit it to write
to arbitrary files as the super-user. This vulnerability is defanged by
confining the privileged compartment to only access device files.

5 COMPARTMENT MODEL
This section presents the foundational model for software compart-
mentalized using Pitchfork. Compartmentalization choices made by
programmers (using the runtime library or through the source-level
tool) instantiate this model in different ways: how many compart-
ments to use, whether to configure them at compile-time or runtime,
which IPC to use between them, whether to generate separate bi-
naries, etc.

Fig. 5a shows Pitchfork’s model. It is structured into one or
more domains, each containing one or more compartments, where
each compartment contains one or more segments. Compartments
may communicate with other compartments across domains using
IPC. Domains provide execution contexts for compartments, and
can be instantiated as hosts, VMs, or containers. By requiring two
compartments to be placed in separate domains, a user is allowing
stronger separation between the compartments. Consequently, the
separation cannot be fork()-based, and the IPC used between the
two compartments cannot be local—like pipes or UNIX domain
sockets.

There are four compartments arranged across three domains in
Fig. 5a. Recall that a compartment represents part of the original
program’s control and data, and confines access to state, functions,
or other resources such as files, libraries, and devices.

There are three types of compartments in Pitchfork. The main
compartment is special and is always placed in domain0. It contains
the program’s entry point—the main() function in C. Occasionally
the main compartment transfers control to segment compartments

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

Classified
(binary 2/2)

Machine 2
Debian 8

Machine 1

Main
(binary 1/2)

Network
Switch

Ubuntu 16.04 Firewall

Figure 6: Compartments from Fig. 5c were placed on
different machines for increased isolation. Compared to
other software compartmentalization approaches, Pitch-
fork makes it easier to separate compartments in this man-
ner. In this case the machines ran different Linux distribu-
tions.

which eventually hand back control. Segment compartments are
shown as compart1, compart2, and compart3 in Fig. 5a. These com-
partments contain an arbitrary number of terminating snippets
of code, called segments, carved out of the original program. Seg-
ments share the memory and privileges of a compartment. Finally,
the monitor is a special compartment that is always placed in do-
main0 together withmain. It observes the interactions between the
main and segment compartments, and handles exceptional events:
communication time-outs or broken communication channels.

Fig. 5b instantiates the model for the tifftopnm compartmental-
ization that separates a tool from a dependency that has a history
of vulnerabilities. This example is detailed in §C. Fig. 5c shows an
example reproduced from other research [50, Fig. 2] that separates
between classified information and untrusted code. The Pitchfork-
annotated code related to this example is in §C.1 which we com-
partmentalized across two separate machines as shown in Fig. 6.

All communication in Pitchfork is synchronous. The main com-
partment communicates with all other compartments. Other com-
partments do not communicate directly with each other but a com-
partment’s segment may call another segment in the same compart-
ment. We call this short-circuiting and it relies on knowing in which
compartment the currently-executing code is located. Pitchfork’s
libcompart tracks this information during the program’s lifetime.

Limitations. Using a model binds us to a specific pattern of com-
partmentalization but makes it easier to generalize to a class of
privsep applications. The examples in our evaluation (§9) suggest
that this class contains practically useful compartmentalizations.
This model-based approach to compartmentalization contrasts with
the “ad hoc” approach which works for specific cases [54, 57] but

by its nature is difficult to generalize, scale, and build tooling for. In
this prototype, the number of compartments is static and fixed at
compile time—e.g., we cannot have one compartment per user—and
compartments cannot be nested, to simplify communication.

6 LIBCOMPART (RUNTIME LIBRARY)
This library implements the features of the Pitchfork model that
take place at run-time, including: system initialization, segment reg-
istration, inter-compartment communication, and failure detection.
The model can be instantiated in different ways (to use different
IPCs, or use separate binaries instead of process-forking for com-
partment) but it presents a uniform API for all instantiations. §A
shows part of this API.

Pitchfork-compartmentalized programs are linked to this run-
time library—similar to how C programs typically link to an imple-
mentation of the C standard library. The runtime library is in turn
linked to other libraries that implement the pluggable components
described below, such as wrappers for platform-specific IPC.

The core components in libcompart require very little from the
host OS: just that it provides processes and IPC. This pluggable
approach helps mitigate the divergence in availability of different
abstractions across different OSs [27].

The library provides four key features. Pluggable communi-
cation: OS-provided IPC are wrapped and presented across a uni-
form interface shown in §B. libcompart currently has wrappers
for anonymous and named pipes, and TCP. Pluggable de/mar-
shalling: Externally-provided de/marshalling code is invoked to
process the contents of a buffer that libcompart oversees to syn-
chronize compartments. Monitoring: The monitor compartment
handles exceptions such as communication time-outs or crashed
compartments through callback functions that are registered at ini-
tialization. Pluggable sandboxing: OS-provided isolation mech-
anisms are wrapped for use on compartments. The Pitchfork im-
plementation currently has wrappers for Linux’s SECCOMP [19],
FreeBSD’s Capsicum [59], and portable POSIX functions such as
chroot(). In addition to this, compartments can execute in separate
containers or VMs, but that is an orchestration feature that the
current prototype does not automate.

7 PITCHFORK SOURCE-LEVEL TOOL
This tool is built on Clang [4] and it carries out two tasks: 1) Parse C
and analyze privsep annotations. 2) Source-to-source translate
C code to replace annotations with invocations to libcompart’s

serve

move

m
onitor

domain0 domain1

compart1main
domain2
compart2

compart3

(a) Compartment model in Pitchfork.

tifftopnm
monitor

libtiffcmdparse

(b) Model instance for tifftopnm.

m
onitor

domain0 domain1

classified
initkey()

encrypt()

main

(c) Model instance for PSF2.

Figure 5: The model’s structure, and two example instantiations with different domain requirements.

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

API, and to make other alterations such as initialization and config-
uration of the runtime. Once transformed, the code can be compiled
with the user’s preferred compiler.

7.1 Analysis
Each C source file in a project is parsed and scanned for Pitchfork
annotations. When annotations are found they are checked for well-
formedness and the code sandwiched between pitchfork_start

() and pitchfork_end() is extracted to form segments. Segments
that contain statements that affect control flow, such as break or
continue are excluded unless the enclosing loop syntax is also cap-
tured in the segment. This analysis is incomplete and unsound [29]
and it is complemented with empirical checks consisting of run-
ning the software’s regression suite. Segments are mapped to the
compartment named in the enclosing annotations. For example,
the code between lines 106 and 111 in Listing 2 is mapped to the
compartment called “Privileged”.

After this analysis terminates, we generate the context for each
segment: the set of program variables that are live to the code con-
tained in the segment. Each segment’s AST is traversed to gather
the identifiers that are read from or written to. Since in general
this can be incomplete—in case a function called in the segment ac-
cesses a global variable through a pointer for example—the context
gathering can be instructed to include other variables by the user,
by including their identifiers in the pitchfork_start() annotation.
At the end of the gathering process we have a collection of identi-
fiers ®V whose values will be serialized for the compartmentalized
segment code to operate on them, and be returned into the main
compartment for the program to continue.

7.2 Transformation
Algorithm 1 describes the transformation. We abbreviate ‘S :=S ∪a’
to ‘S :∪ a’. Functions(F) is the set of function declarations in source
file F . Before we reach this stage, Pitchfork has checked the program
and emitted metadata that will be used during this stage. This meta-
data includes Segments(F) which lists the segments in a file, and
Context(S) which lists the variables that need to be synchronized
when handing-over to segment S . The key lines in the algorithm
are: 1) obtaining the relevant metadata ®V generated by Pitchfork;
2) generating a function stub Sf that will be executed in the seg-
ment’s compartment; 3) defining this new function’s behavior to be
that of S but sandwiched between demarshalling and marshalling
steps; 4) redefining S to marshall ®V , use the libcompart API to
reach Sf , and demarshall the state to be synchronized; 5) updating
main() to initialize libcompart and register all segments when the
main compartment starts, as we saw in Listing 1. An example of
Pitchfork’s translation is shown in §D.

7.3 De/marshalling
The de/marshalling of C memory objects is decoupled from Pitch-
fork. The user can choose to use third-party tools and libraries [2,
3, 9, 16, 23, 58] or devise a customized approach that better suits
their needs. Pitchfork emits code templates that a de/marshalling
tool then completes, and which is invoked by libcompart during
cross-compartment calls.

Input: ‘Files’ (set of annotated files—seen at step ② in Fig. 4)
foreach F ∈ Files do

foreach S ∈ Segments(F) do
®V := Context(S) ; /* 1 */

Sf := Fresh() ; /* 2 */

Functions(F) :∪ Sf ;
def Sf : marsh ◦ Def (S) ◦ demarsh(®V) ; /* 3 */
def S : demarsh ◦ compart_call_fn(Sf)

◦ marsh(®V) ; /* 4 */

if f = main() ∈ Functions(F) then
foreach S ∈ Segments(S) do

R :∪ compart_register_fn(Sf);
InitRegisterStart(f , R) ; /* 5 */

Algorithm 1: Transforming C translation units (‘Files’)

To create an end-to-end prototype we wrote a semi-automated,
compile-time, de/marshalling helper tool that parses the generated
template using Clang, analyzes the types in ®V and serializes them
using memcpy(). Structs are handled recursively. When the tool en-
counters pointers and arrays it prompts the user for input, for which
answers can be pre-scripted. The input consists of a bounds indica-
tion. The system used in Pitchfork can handle pointers—included
repeated pointers such as int** and struct my_type***—as well as
dynamic data structures such as linked lists, doubly-linked lists,
and trees.

8 IMPLEMENTATION
Altogether, the Pitchfork prototype took around 3.3 person-years
to develop and evaluate. The prototype is written to be performant
and portable, and has minimal dependencies. libcompart consists
of 1.3 KLOC of C99, including the modular IPC interface, and has
no external library dependencies thus making it easier to use on
different platforms. libcompart was carefully checked for memory
leaks and profiled to reduce hotspots and optimize performance.
Pitchfork and the de/marshaller rely on LLVM [45] and its Clang
front-end for the C language. Pitchfork consists of 2.5 KLOC of
C++14 and uses Boost libraries, while the de/marshaller consists of
1.7 KLOC of Python 2.7. In addition to the compartmentalizations
described in this paper, the tools have been applied to a small suite
of unit, system and regression tests.

9 EVALUATION
We evaluate the following: (1) what security goals can be achieved
using Pitchfork (§9.1); (2)when achieving security in this way, what
is the overhead to performance (§9.2) and annotation (§9.3); (3) how
generally applicable is the Pitchfork model for privsep (§9.4).

This paper reports on 19 compartmentalizations: 10 evaluated
for applicability, 5 evaluated for security (4 based on CVEs, and
1 reproduced from another paper), and 4 for performance (including
2 reproduced from another paper, and a microbenchmark). A subset
of programs evaluated for applicability were further analyzed for
security and performance. Software size and version information is
given in §H. Usage examples for the toolchain are provided in §C.

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

Software CVE-∗-∗ Vulnerability
beep 2018-0492 Race condition
PuTTY 2016-2563 Stack buffer overflow
wget 2016-4971 Arbitrary file writing
wget 2017-13089 Stack buffer overflow

Table 1: CVEs mitigated using Pitchfork in our evaluation.

9.1 Security
Our security evaluation process involves (i) reproducing exploits
described in CVEs of widely-used open-source software, (ii) apply-
ing privsep by using Pitchfork, then (iii) verifying that the exploit
was no longer viable. Table 1 lists CVEs that were mitigated using
Pitchfork. For each program, our separation goal is to isolate the
part of the program that is believed to contain the vulnerability.

Setup. We used the software versions described in the CVEs and
developed our own proof-of-concept exploit code when it could not
be found online. For our security evaluation we used VMs running
Ubuntu 16.04 LTS (kernel 4.4.0-137-generic) managed by KVM in
a host running the same distribution. For ‘beep’ we also used a
physical machine running Debian 8.11 (kernel 3.16.57-2) since the
VMs had no way of relaying the beeping sound to be emitted by
the host.

9.1.1 beep. beep is a 372-line, long-used, and widely-distributed
terminal program for controlling the PC speaker. It was found to
have a local privilege-escalation vulnerability (see Table 1). We
reproduced this vulnerability on Debian 8.11 and Ubuntu 16.04.
Running the exploit can take variable time because it relies on
a race condition. The compartmentalized version isolates the ex-
ploitable code, undercutting its effect. We also checked that the
compartmentalization did not break beep’s functionality: it contin-
ued beeping. Our compartmentalization is detailed in §4.

9.1.2 PuTTY. PuTTY is a popular multi-platform client suite for
SCP (secure copy), telnet, and SSH. CVE 2016-2563 reports a stack-
based buffer overflow vulnerability in the SCP client. A malicious
server could exploit this to remotely execute code in the client. We
reproduced this vulnerability to start a shell in the client.

Our compartmentalization involvesmoving the exploitable string-
parsing code to a different compartment and restricting the access
of that compartment.

9.1.3 wget. wget is a popular console-based tool for downloading
content served over HTTP, FTP, and secure encapsulations such as
HTTPS. We used Pitchfork to mitigate two CVEs.

CVE-2016-4971 reports that a malicious server could deceive the
the wget client to overwrite a local file by using a redirection URL.
wget is run using the user’s ambient privileges, thus a malicious
server could use this to get a foothold in the user’s machine.

Our compartmentalization consists of executing the code down-
load in a separate compartment that is given limited visibility of
the file system.

CVE-2017-13089 describes an exploit outcome that is similar
to that of CVE-2016-4971 but using a different approach. When

Software Work. Time
(s)

Memory
(KB)

O/H (Avg% ± Std.Dev)
Time Memory

wget-late HTTP 109.9 4073.5 0.2 ± 0.3 141.5 ± 2.1
FTP 112.1 4095 0.2 ± 0.3 141 ± 2.9

wget-early HTTP 110.8 4103.5 0.4 ± 0.6 106.7 ± 3.5
FTP 112.1 3993 0.4 ± 0.4 111.6 ± 2.8

netpbm small 0.07 6.2 1.3 ± 26.2 123 ± 24.5
large 0.40 79.7 1.58 ± 2.11 133.3 ± 13

Table 2: Overhead (O/H) analysis for compartmentalized
software on different workloads. Both FTP and HTTP work-
loads were 5MB. “early” and “late” refer to two different
wget compartmentalizations described in §9.2.2.

processing chunked responses, the client was not checking the
chunk length. A crafted payload could exploit this to overflow a
stack-based buffer.

Our compartmentalization involves executing the vulnerable
code in a compartment that is given limited privileges and limited
access to the file system.

9.2 Overheads
The overhead of using Pitchfork and its invocation of libcompart is
measured using three metrics: (i) size of the resulting binary (when
producing a single binary), (ii) execution time, and (iii) memory
usage. Table 2 shows our results. Additional graphs are provided
in §E.

Setup. We ran experiments on a machine that has 8GB RAM and
4-core Intel Core i7-3770 3.40GHz CPU running Ubuntu 16.04 LTS
(kernel 4.4.0-137-generic).

Methodology. We compare measurements for the original and
the compartmentalized versions of the software. Execution time
overhead shows wall-clock time overhead as experienced by a user.
Memory utilization was obtained by polling the kernel using ps(1)
for the process’ resident memory, to measure the memory pressure
that compartmentalization is inducing on the system. We added
sleep stages to ensure that we are getting an up-to-date reading of
memory usage.

9.2.1 Software and Separation Goals. We evaluate time and space
overhead using the following compartmentalized programs:

• wget v1.18, using the same version and security goals as in
the evaluation of PtrSplit [50] to make our evaluation more
comparable. These goals are described below.

• netpbm v10.73.28, is a command-line toolkit for converting
and manipulating images, where we focused on the TIFF
conversion tool. It is sometimes used by websites to automat-
ically process images uploaded by users, who might feed it
malicious content.

• “stress”, a custom program we wrote to microbenchmark the
IPC costs under different types of workload.

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

wget. Our compartmentalization of wget 1.18 is similar to that
done using PtrSplit [50]. It has two main differences: (i) using lib-
compart the execution-time overhead is under 0.5% while that in
PtrSplit is 6.5%; we expect this is because libcompart does not use
runtime support for determining the bounds of dynamic data struc-
tures. (ii) we execute the HTTP and FTP functions in a separate
compartment instead of generating separately-compartmentalized
versions of the same software as done in PtrSplit. Methodologically,
we set up dedicated HTTP and FTP servers, rate-limited for consis-
tency and fairness—to eliminate uncertain network conditions—and
widened the servers’ configuration to allow carrying out more si-
multaneous downloads, to avoid throttling by the server. Using
this setup we downloaded 200 copies (via both HTTP and FTP)
of {1, 5, 10, 20, 50}MB-sized files in a single invocation of wget, to
effect 200 inter-compartment calls. Each experiment was run 32
times.
netpbm. netpbm is split into 3 compartments: the main program
runs in “netpbm”, command-line parsing takes place in “cmdparse”
and the TIFF-conversion, including TIFF parsing, takes place in
“libtiff”. Our separation goal is to contain potential bugs in the
command-line and TIFF parsers. We measure 100 invocations of
netpbm on {728, 477K}byte-sized files consisting of 16-bit images
of resolution 100×100 and 5120×2880 respectively taken from the
TESTIMAGES archive [26].4 Our code is provided in §C.2.
stress. This program loops for I times, each time calling a func-
tion that accepts a B-byte null-terminated char*. The function sim-
ply returns the argument string back, doing no processing. In the
compartmentalized version we put the function into a separate
compartment, thus forcing the B-length string to be sent through
libcompart machinery to the other compartment. This experiment
serves to measure the overhead of inter-compartment calls as we
vary I and B. We vary I from 1–500, and B from 32–496 at steps of
32.

9.2.2 Memory. As detailed below, we observe that memory us-
age increases over 100% in a compartmentalized program when
compared to the original. This is because we now have multiple
processes running simultaneously—one for each compartment—
where we previously had a single process. But unlike with binary
size, it tends to be much less thanO(n) for an n-compartment setup
since not all of the process’ memory needs to be resident in all
compartments.

Table 2 shows two compartmentalizations of the same version of
wget (1.18): an “early” one in which compartment initialization is
done at startup, and a “late” one where we delay compartmentaliza-
tion until the compartment is needed. In practice the “late” variant
avoids us having to marshall wget’s struct options, saving effort
both at compile-time and at run-time. This struct contains the re-
sult of parsing wget’s command-line parameters and its subsequent
initialization.

For the “early” wget compartmentalization, Fig. 7 shows the
memory use of each compartment, the total memory use across
compartments, and the memory use of unmodified wget when
running the same workloads. We show a similar breakdown for
netpbm in §E.

4https://testimages.org

Figure 7: Memory utilization of different compartments,
their total, and the original program. This shows the average
and standard deviation measured from 100 runs, for both
the HTTP and FTP workloads.

The “late” compartmentalization is a form of “lazy initializa-
tion” [42] which, as noted by Gudka et al., can complicate compart-
mentalization if the confinement decision is taken too early—since
we might later find that a compartment lacks permission to carry
out a needed action.

One surprising observation is that the “late” compartmentaliza-
tion appears to use more memory (Table 2). We believe this to be
because the resident memory of the compartmentalized system is
double-counting the same accessed memory in the different com-
partments’ processes. If compartmentalization happens earlier then
the compartments’ memory access patterns can appear to be more
distinct, particularly for the monitor compartment which is not
doing much. In contrast, if compartmentalization happens later
then they appear to be more similar and lead to a larger total.

9.3 Synthesis/Annotation ratio (SAR)
We use SAR as a measure of programmer convenience:

SAR = #LOC Synthesized
#Lines of Annotation

If few lines of annotation can replace many more lines of code that
the programmer would have to otherwise write, then Pitchfork can
save the programmer effort through the convenience of automati-
cally converting the annotations into code for the programmer.

Table 4 shows the SAR for different compartmentalizations in our
evaluation. Two kinds of code are synthesized: compartmentaliza-
tion code—such as compartment initialization, hand-over, etc—and
de/marshalling code.

For example, our beep compartmentalization adds 9 lines of anno-
tation: one line for #include "pitchfork.h" and four pitchfork_start
()–pitchfork_end() pairs, each specifying a segment in a compart-
ment. Pitchfork expanded these annotations into 750 lines for com-
partmentalized beep.5

5Since the beep CVE was published, the beep code was forked, improved and expanded
into the spkr-beep project [21]. Compared to beep’s single file containing 372 lines,
spkr-beep has 15 files totaling 1634 lines.

https://testimages.org

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

Software Plat. Separation Goal

cURL L Command invocation, parsing, file transfer.
Evince L libspectre dependency—see §2.
git L Historical vulnerability [11].
ioquake3 m Applying server updates.
tifftopnm L Separating parsers—see §C.
nginx L HTTP request parsing
redis L Isolating low-use commands.
tcpdump }

F Leveraging Capsicum [59].uniq
Vitetris L Network-facing code—see §2.

Table 3: libcompart use-cases, providing examples of its ap-
plicability to different software, platforms, and separation
goals. Platforms: FreeBSD, Linux, macOS. In each example
we used a single domain (§5). For tcpdump and uniqwe show
that libcompart can leverage already-implemented isolation
that uses platform-specificmechanisms to secure processes.

Soft. #LOC #Annot. #LOC Synthesized SAR
Compart. De/marsh.

beep 372 9 133 245 42
PuTTY 123K 6 52 29 13.5
wget6 62.6K 3 65 168 77.7
wget7 62.8K 8 57 38 11.9

Table 4: Measure of convenience: how much code is synthe-
sized by Pitchfork per annotation.

9.4 Applicability
To test the applicability of Pitchfork’s model we compartmentalized
the software listed in Table 3 to use libcompart. Some of these com-
partmentalizations and their separation goals were described earlier
in the paper, so here we focus on the remaining ones. Through their
separation goals we can classify the compartmentalizations into
four sets. The first set consists of ioquake3 [13] which is derived
from the open-sourcing of Quake 3. The separation goal is similar
to that of the privsep for wget’s CVE-2016-4971 (§9.1.3). When
connecting to a server the game might download files from that
server, and we want to confine the download to a specific location.
The second set consists of uniq and tcpdump, which we use to
show that libcompart can coexist with OS-specific sandboxing that
is already in place. The third set consists of git, redis, and cURL,
for which we applied the first heuristic in §2.2 to restrict part of the
program to only the data it needs to process. Finally, the fourth set
consists of nginx for which we applied the first and third heuristics
in §2.2 to confine the processing of untrusted input.

6wget v1.17.1.50-2bdfc used to reproduce CVE-2016-4971
7wget v1.19.1 used to reproduce in CVE-2017-13089

10 RELATEDWORK
Privman [44] provides both a compartmentalization API and a
configuration language. This API was used through manual modifi-
cation of a program’s source code. The API largely shadowed the
POSIX API and required extra care to learn and use the configura-
tion language. Privman only distinguished between two compart-
ments: the unpriviliged compartment and the privileged monitor.
Through libcompart, Pitchfork provides a much simpler API that
does not need to scale with that of POSIX, and allows the use of
arbitrarily-many compartments in which arbitrary segments are
executed. In Pitchfork the monitor is not privileged, it only serves as
a watchdog to ensure that compartments do not block indefinitely.

Wedge [30] presented a new API for compartmentalization but
relied upon new, kernel-provided facilities such as a default-deny
forkingmodel and flexible tagged-memory permission system at the
interface between compartments. In comparison, Pitchfork works
with existing commodity kernels. Pitchfork’s compartmentalization
model is more rigid—compartments cannot be arbitrarily spawned
at runtime and can only communicate with the main compartment.
In practice so far this restriction has not proved to be limiting.

Since modifying software’s source code can both be difficult and
risks introducing bugs, researchers proposed annotation-driven
transformation as in Privtrans [33], Glamdring [49] and PtrSplit [50].
As with Privman the model used by these systems targets a separa-
tion between a privileged and an unprivileged compartment. In com-
parison, Pitchfork supports multiple compartments. This improves
security since it supports an arbitrary number of differently-trusted
compartments—different parts of the program and dependencies
can be granted different privileges. Pitchfork provides better sup-
port for de/marshalling complex types compared to Privtrans [33]
andGlamdring [49]; this adds convenience to the programmer. Com-
pared to PtrSplit [50], Pitchfork does not rely on runtime memory
tracking in software, and this leads to better performance because
of lower overhead, but exploring the use of hardware-provided
support for memory tracking is future work.

ConfLLVM [31] adapts LLVM’s IR to use source-level annota-
tions to identify and protect confidential variables. The annotations
consist of adding a private qualifier to declarations. In comparison,
the Pitchfork approach involves using the source-to-source tool or
libcompart directly; in either case users caninspect the processed
source code. Pitchfork does not replace the compiler, thus avoid-
ing disruption to portability. Pitchfork does not rely directly on
hardware enforcement and does not assume a trusted-vs-untrusted
distinction—instead, it allows an arbitrary number of compartments
which can be differently-trusted.

11 FUTUREWORK
A future research direction involves generalizing Pitchfork’s model
further to overcome the limitations described at the end of §5.
Another direction for future work involves automating the insertion
of source-level Pitchfork annotations. This could build on the model
and tooling contributed by this paper, and gradually replace human
guidance with automation.

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

ACKNOWLEDGMENTS
We thank Federico Bento for help with his CVE-2015-6565 PoC,
and the ACSAC reviewers for their feedback. Code sizes were gen-
erated using David A. Wheeler’s ‘SLOCCount’. This material is
based upon work supported by a Google Research Award and by
the Defense Advanced Research Projects Agency (DARPA) under
contracts HR0011-19-C-0106 and HR0011-20-C-0191. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of funders.

REFERENCES
[1] About FreeBSD Ports. https://www.freebsd.org/ports/. (????).
[2] Apache Thrift. https://thrift.apache.org/. (????).
[3] C serialization library. http://www.happyponyland.net/cserialization/readme.

html. (????).
[4] Clang: a C language family frontend for LLVM. https://clang.llvm.org/. (????).
[5] CVE-2018-0492. https://nvd.nist.gov/vuln/detail/CVE-2018-0492. (????).
[6] CVE Details for ncurses. https://www.cvedetails.com/google-search-results.php?

q=ncurses. (????).
[7] CVE Details for vitetris. https://www.cvedetails.com/google-search-results.php?

q=vitetris. (????).
[8] Evince document viewer. https://wiki.gnome.org/Apps/Evince. (????).
[9] FlatBuffers. https://github.com/google/flatbuffers. (????).
[10] GhostScript CVEs. https://www.cvedetails.com/vulnerability-list.php?vendor_

id=7640&product_id=0. (????).
[11] git CVE-2010-2542. https://www.cvedetails.com/cve/CVE-2010-2542/. (????).
[12] Holey Beep. https://holeybeep.ninja/. (????).
[13] ioquake3. https://ioquake3.org/. (????).
[14] libtiff CVEs. https://www.cvedetails.com/product/3881/Libtiff-Libtiff.html?

vendor_id=2224. (????).
[15] Netpbm home page. http://netpbm.sourceforge.net/. (????).
[16] Protocol Buffers. https://developers.google.com/protocol-buffers/. (????).
[17] Revised OpenSSH Security Advisory. https://www.openssh.com/txt/preauth.adv.

(????).
[18] seccomp API. https://github.com/torvalds/linux/blob/master/Documentation/

userspace-api/seccomp_filter.rst. (????).
[19] Seccomp BPF (SECure COMPuting with filters). https://www.kernel.org/doc/

html/latest/userspace-api/seccomp_filter.html. (????).
[20] SLOCCount. https://dwheeler.com/sloccount/. (????).
[21] spkr-beep project. https://github.com/spkr-beep/beep. (????).
[22] The Chromium Projects: ProcessModels. https://www.chromium.org/developers/

design-documents/process-models. (????).
[23] TPL: easily store and retrieve binary data in C. http://troydhanson.github.io/tpl/.

(????).
[24] VITETRIS - Virtual terminal *tris clone. https://github.com/vicgeralds/vitetris.

(????).
[25] 2020. Civet: An Efficient Java Partitioning Framework for Hardware Enclaves.

In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
Boston, MA. https://www.usenix.org/conference/usenixsecurity20/presentation/
tsai

[26] Nicola Asuni and Andrea Giachetti. 2013. TESTIMAGES: A Large
Data Archive For Display and Algorithm Testing. Journal of Graphics
Tools 17, 4 (2013), 113–125. https://doi.org/10.1080/2165347X.2015.1024298
arXiv:https://doi.org/10.1080/2165347X.2015.1024298

[27] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and
Jason Nieh. 2016. POSIX Abstractions in Modern Operating Systems: The Old,
the New, and the Missing. In Proceedings of the Eleventh European Conference
on Computer Systems (EuroSys ’16). Association for Computing Machinery, New
York, NY, USA, Article 19, 17 pages. https://doi.org/10.1145/2901318.2901350

[28] Nick Benton, Luca Cardelli, and Cédric Fournet. 2004. Modern Concurrency
Abstractions for C#. ACM Trans. Program. Lang. Syst. 26, 5 (sep 2004), 769–804.
https://doi.org/10.1145/1018203.1018205

[29] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (feb 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[30] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In NSDI, Vol. 8.
309–322.

[31] Ajay Brahmakshatriya, Piyus Kedia, Derrick P. McKee, Deepak Garg, Akash Lal,
Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik Bhatu. 2019. Con-
fLLVM: A Compiler for Enforcing Data Confidentiality in Low-Level Code.

In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 4, 15 pages.
https://doi.org/10.1145/3302424.3303952

[32] Peter Bright. 2016. Firefox takes the next step toward rolling out multi-process
to everyone. (Dec 2016).

[33] David Brumley and Dawn Song. 2004. Privtrans: Automatically partitioning
programs for privilege separation. In USENIX Security Symposium. 57–72.

[34] David R Butenhof. 1997. Programming with POSIX threads. Addison-Wesley
Professional.

[35] Scott A. Carr and Mathias Payer. 2017. DataShield: Configurable Data Confi-
dentiality and Integrity. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS ’17). Association for Comput-
ing Machinery, New York, NY, USA, 193–204. https://doi.org/10.1145/3052973.
3052983

[36] Brian Caswell, James C. Foster, Ryan Russell, Jay Beale, and Jeffrey Posluns. 2003.
Snort 2.0 Intrusion Detection. Syngress Publishing.

[37] Haogang Chen, Cody Cutler, Taesoo Kim, Yandong Mao, Xi Wang, Nickolai
Zeldovich, and M. Frans Kaashoek. 2013. Security bugs in embedded interpreters.
In Proceedings of the 4th Asia-Pacific Workshop on Systems - APSys'13. ACM Press.
https://doi.org/10.1145/2500727.2500747

[38] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (jan 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[39] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. 2008.
Hardbound: Architectural Support for Spatial Safety of the C Programming
Language. SIGOPS Oper. Syst. Rev. 42, 2 (March 2008), 103–114. https://doi.org/
10.1145/1353535.1346295

[40] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated SystemCall Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian, 443–458.
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia

[41] Dan Goodin. 2019. The year-long rash of supply chain attacks against open
source is getting worse. (Aug 2019).

[42] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. 2015.
Clean Application Compartmentalization with SOAAP. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 1016–1031. https://doi.org/10.1145/2810103.2813611

[43] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun. ACM 21, 8
(aug 1978), 666–677. https://doi.org/10.1145/359576.359585

[44] Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Applications. In
USENIX Annual Technical Conference, FREENIX Track. 273–284.

[45] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.
http://dl.acm.org/citation.cfm?id=977395.977673

[46] Michael Lee. 2012. Google strengthens Chrome for Android with sandbox. (Sep
2012).

[47] E. Levy. 2003. Poisoning the software supply chain. IEEE Security Privacy 1, 3
(May 2003), 70–73. https://doi.org/10.1109/MSECP.2003.1203227

[48] Xin Lin, Lingguang Lei, YuewuWang, Jiwu Jing, Kun Sun, andQuan Zhou. 2018. A
Measurement Study on Linux Container Security: Attacks and Countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC ’18). Association for ComputingMachinery, New York, NY, USA, 418–429.
https://doi.org/10.1145/3274694.3274720

[49] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-
Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers,
Rüdiger Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Au-
tomatic Application Partitioning for Intel SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 285–298.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind

[50] Shen Liu, Gang Tan, and Trent Jaeger. 2017. PtrSplit: Supporting General Pointers
in Automatic Program Partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). ACM, New York,
NY, USA, 2359–2371. https://doi.org/10.1145/3133956.3134066

[51] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.
SIGPLAN Not. 44, 6 (June 2009), 245–258. https://doi.org/10.1145/1543135.1542504

[52] N. Nguyen, P. Reiher, and G. H. Kuenning. 2003. Detecting insider threats by
monitoring system call activity. In IEEE Systems, Man and Cybernetics Society-
Information Assurance Workshop, 2003. 45–52. https://doi.org/10.1109/SMCSIA.
2003.1232400

[53] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-time.
Comput. Netw. 31, 23-24 (Dec. 1999), 2435–2463. https://doi.org/10.1016/S1389-
1286(99)00112-7

https://www.freebsd.org/ports/
https://thrift.apache.org/
http://www.happyponyland.net/cserialization/readme.html
http://www.happyponyland.net/cserialization/readme.html
https://clang.llvm.org/
https://nvd.nist.gov/vuln/detail/CVE-2018-0492
https://www.cvedetails.com/google-search-results.php?q=ncurses
https://www.cvedetails.com/google-search-results.php?q=ncurses
https://www.cvedetails.com/google-search-results.php?q=vitetris
https://www.cvedetails.com/google-search-results.php?q=vitetris
https://wiki.gnome.org/Apps/Evince
https://github.com/google/flatbuffers
https://www.cvedetails.com/vulnerability-list.php?vendor_id=7640&product_id=0
https://www.cvedetails.com/vulnerability-list.php?vendor_id=7640&product_id=0
https://www.cvedetails.com/cve/CVE-2010-2542/
https://holeybeep.ninja/
https://ioquake3.org/
https://www.cvedetails.com/product/3881/Libtiff-Libtiff.html?vendor_id=2224
https://www.cvedetails.com/product/3881/Libtiff-Libtiff.html?vendor_id=2224
http://netpbm.sourceforge.net/
https://developers.google.com/protocol-buffers/
https://www.openssh.com/txt/preauth.adv
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/seccomp_filter.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/seccomp_filter.rst
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://dwheeler.com/sloccount/
https://github.com/spkr-beep/beep
https://www.chromium.org/developers/design-documents/process-models
https://www.chromium.org/developers/design-documents/process-models
http://troydhanson.github.io/tpl/
https://github.com/vicgeralds/vitetris
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://doi.org/10.1080/2165347X.2015.1024298
https://arxiv.org/abs/https://doi.org/10.1080/2165347X.2015.1024298
https://doi.org/10.1145/2901318.2901350
https://doi.org/10.1145/1018203.1018205
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3302424.3303952
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.1145/2500727.2500747
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1353535.1346295
https://doi.org/10.1145/1353535.1346295
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1145/359576.359585
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/MSECP.2003.1203227
https://doi.org/10.1145/3274694.3274720
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://doi.org/10.1145/3133956.3134066
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1109/SMCSIA.2003.1232400
https://doi.org/10.1109/SMCSIA.2003.1232400
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/S1389-1286(99)00112-7

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

[54] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege
Escalation. In Proceedings of the 12th Conference on USENIX Security Symposium
- Volume 12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 16–16. http:
//dl.acm.org/citation.cfm?id=1251353.1251369

[55] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn. 2004.
Attestation-based Policy Enforcement for Remote Access. In Proceedings of the
11th ACM Conference on Computer and Communications Security (CCS ’04). ACM,
New York, NY, USA, 308–317. https://doi.org/10.1145/1030083.1030125

[56] Jerome H Saltzer and Michael D Schroeder. 1975. The Protection of Information
in Computer Systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[57] Nik Sultana, Achala Rao, Zihao Jin, Pardis Pashakhanloo, Henry Zhu, Ke Zhong,
and Boon Thau Loo. 2018. Making Break-Ups Less Painful: Source-Level Support
for Transforming Legacy Software into a Network of Tasks. In Proceedings of
the 2018 Workshop on Forming an Ecosystem Around Software Transformation
(FEAST ’18). Association for Computing Machinery, New York, NY, USA, 14–19.
https://doi.org/10.1145/3273045.3273046

[58] Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni,
and Ryan R. Newton. 2019. LoCal: A Language for Programs Operating on Seri-
alized Data. In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2019). Association for Computing
Machinery, New York, NY, USA, 48–62. https://doi.org/10.1145/3314221.3314631

[59] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2010.
Capsicum: Practical Capabilities for UNIX. In Proceedings of the 19th USENIX
Conference on Security (USENIX Security’10). USENIX Association, Berkeley, CA,
USA, 3–3. http://dl.acm.org/citation.cfm?id=1929820.1929824

[60] Jinpeng Wei and Calton Pu. 2010. Modeling and Preventing TOCTTOU Vulner-
abilities in Unix-style File Systems. Comput. Secur. 29, 8 (Nov. 2010), 815–830.
https://doi.org/10.1016/j.cose.2010.09.004

[61] Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli.
2022. Wolf at the Door: Preventing Install-Time Attacks in Npm with Latch. In
Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security (ASIA CCS ’22). Association for Computing Machinery, New York, NY,
USA, 1139–1153. https://doi.org/10.1145/3488932.3523262

[62] Henry Zhu, Nik Sultana, and Boon Thau Loo. 2020. Debugging strongly-
compartmentalized distributed systems. In 2020 IEEE International Parallel and
Distributed Processing SymposiumWorkshops, IPDPSW 2020, New Orleans, LA, USA,
May 18-22, 2020. IEEE, 538–547. https://doi.org/10.1109/IPDPSW50202.2020.00096

http://dl.acm.org/citation.cfm?id=1251353.1251369
http://dl.acm.org/citation.cfm?id=1251353.1251369
https://doi.org/10.1145/1030083.1030125
https://doi.org/10.1145/3273045.3273046
https://doi.org/10.1145/3314221.3314631
http://dl.acm.org/citation.cfm?id=1929820.1929824
https://doi.org/10.1016/j.cose.2010.09.004
https://doi.org/10.1145/3488932.3523262
https://doi.org/10.1109/IPDPSW50202.2020.00096

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Appendix A LIBCOMPART API
// Configuration for a single compartment.

struct compart {

const char * const name;

uid_t uid;

gid_t gid;

const char * const path;

void *comms;

};

// Configuration for the monitor.

struct compart_config {

int call_timeout;

int activity_timeout;

void (*on_call_timeout)(int compart_idx);

void (*on_activity_timeout)();

void (*on_termination)(int compart_idx);

void (*on_comm_break)(int compart_idx);

unsigned start_subs : 1;

};

// Flat buffer for de/marshalled data in cross-compartment

calls.

struct extension_data {

size_t bufc;

char buf[EXT_ARG_BUF_SIZE];

};

// Handle for registered segments.

struct extension_id;

// Initialize by detailing a fixed number of compartments

and the monitor config.

void compart_init(int no_comparts, struct compart comparts

[], struct compart_config config);

// Start compartmentalization.

void compart_start(const char * const new_compartment_name);

// Start a specific compartment.

void compart_as(const char * const compartment_name);

// Register a segment in a compartment.

struct extension_id *compart_register_fn(const char * const

new_compartment_name, struct extension_data (*fn)(

struct extension_data));

// Call a segment in a compartment.

struct extension_data compart_call_fn(struct extension_id *,

struct extension_data);

void compart_log(const char *buf, const size_t count);

// Name of the containing compartment.

const char * compart_name(void);

Listing 3: Part of libcompart’s API

Appendix B PLUGGABLE COMMUNICATION
API

This API was designed to serve the inter-compartment communica-
tion needs in Pitchfork’s compartmentalization model (§5). Differ-
ent instantiations of this API wrap different, possibly OS-specific,
IPCs.

// Opaque communication channel, wraps IPC.

struct compost;

// Initialize with compartment information.

void compost_init(int local_no_comparts, struct compart *

comparts);

// Start communication system.

void compost_start(const char * const compartment_name);

// Start for a specific compartment.

void compost_as(const char * const compartment_name);

// main -> monitor channel.

const struct compost *compost_m2mon(void);

// monitor -> main channel.

const struct compost *compost_mon2m(void);

// main -> segment channels.

const struct compost *compost_m2(int compart_idx);

// segment -> main channels.

const struct compost *compost_2m(int compart_idx);

// Send data to compartment's channel.

ssize_t compost_send(const struct compost *cp, const void *

buf, size_t count);

// Receive data from compartment's channel.

ssize_t compost_recv(const struct compost *cp, void *buf,

size_t count);

// Close communication channel.

void compost_close(struct compost *cp);

Listing 4: libcompart’s communication API

Appendix C USAGE EXAMPLES
This section provides a tutorial-style description of achieving spe-
cific security goals using the Pitchfork tool and libcompart. In §C.1
we protect secret data from being exfiltrated through vulnerable
code. We place the secret data in a compartment. For additional
safety we place the compartment on a secured machine. In §C.2
we protect against potentially vulnerable parts of a program by
confining parsing code, trading overhead for security.

C.1 Example from PtrSplit
Our next example is adapted from the PtrSplit paper [50, Fig.2]
to show how Pitchfork can be applied to that example. Listing 5
shows the annotated program code. Note that the program has a
format-string vulnerability on line 11, using which a user could
extract the value of the key, for example.

We create a single compartment to contain the sensitive informa-
tion. Note that this compartment consists of two segments. Line 1
brings Pitchfork annotations into the namespace.
1 #include "pitchfork.h"

2 #include <stdio.h>

3 ...

4 char key[64];

5

6 void initkey() {

7 ...

8 }

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

Figure 8: stress: Increasing the size of libcompart’s serializa-
tion buffer used by the external de/marshalling tool.

9

10 void greeter (char *str) {

11 printf(str); printf(", welcome!\n");

12 }

13

14 char * encrypt (char * plaintext, int sz) {

15 ...

16 }

17

18 int main (int argc, char **argv) {

19 char username[64];

20 char *text = malloc(sizeof(*text) * 1024);

21 char *key_ptr = key;

22

23 pitchfork_start("Classified");

24 initkey();

25 pitchfork_end("Classified");

26

27 printf("Enter username: ");

28 fgets(username, sizeof(username), stdin);

29 greeter(username);

30

31 printf("Enter plaintext: ");

32 fgets(text, sizeof(text), stdin);

33

34 char *ciphertext = NULL;

35 pitchfork_start("Classified");

36 ciphertext = encrypt(text, strlen(text));

37 pitchfork_end("Classified");

38

39 printf("Cipher text: ");

40 for (unsigned i=0; i<strlen(text); i++) {

41 printf("%x ",ciphertext[i]);

42 }

43 printf("\n");

44 return 0;

45 }

Listing 5: Pitchfork-annotating an example from
PtrSplit.

In Listing 5 note the fine-grained scoping of compartmentaliza-
tion. Pitchfork allows compartments to be as small as a single line
of code. Compartments may also span entire libraries, as in the next
example.

Pitchfork helps programmers generate a binary for each com-
partment. To do this the program is compiled multiple times, once
for every compartment. Fig. 6 shows how we ran this example over
the network. The compartments communicated over TCP. Running
compartments on different machines can be done to quarantine the
machine running untrusted code [52] or to protect against clients
that are untrusted or unvouched [55].

Running compartments on separatemachines exposesmore secu-
rity dimensions for compartmentalized software. One is to improve
security by leveraging use of host-based policy or network-based
intrusion-detection [36, 53] for individual compartments. Another
is through balancing security against performance overhead—in
this case the application will be subject to the network round-trip
time (RTT) with its compartments.

C.2 netpbm
netpbm is a command-line toolkit for converting and manipulating
images. It is extremely portable and is sometimes used by websites
to automatically process images uploaded by users [15], who might
feed it malicious content.

Like other image processing tools, netpbm relies on specialized
libraries for different graphic formats. Over the years several vul-
nerabilities have been discovered in these kinds of libraries where
a malicious user-supplied image can lead to code execution. For
example, the widely-deployed library for TIFF8 has had several
such occurrences over the years [14].

We compartmentalize netpbm’s TIFF conversion tool to confine
the use of libtiff. Out of caution, we also create a separate compart-
ment for the parsing of command-line options. Sections 4 and C.1
showed multiple segments in a single compartment; this section
shows multiple compartments in a single program.

Instead of showing annotations in this example, we lift the hood
and show what these annotations are translated to. We show the
“diff” between the original netpbm program and our compartmen-
talized version in Listing 6.

The compartmentalized code uses libcompart (§6). Line 4 ini-
tializes libcompart and configures it. Then segments are registered
with each compartment. In this case we have two non-main com-
partments containing one segment each, registered on lines 5 and 6.
Finally, the main compartment is started on line 7; it automatically
starts other compartments.

The rest of the “diff” involves transferring code to compartments
and invoking those compartments. Line 4 calls the command-line
parsing function; this is moved to a compartment and called on
line 19—using a handle obtained by registering the segment on line 6.
The call is sandwiched between context preparation and transfer
to and from the compartment on lines 18 and 20 respectively.

The invocation of the “libtiff” compartment follows the same
pattern. Note the comment on line 30. libcompart has flexible failure-
handling designed in its API, and its default action propagates the
failure unless the default configuration (line 4) is changed by the
programmer.
8https://gitlab.com/libtiff/libtiff

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

1 +#include "netpbm_interface.h"

2 int

3 main(int argc, const char * argv[]) {

4 +compart_init(NO_COMPARTS, comparts, default_config);

5 +convertTIFF_ext = compart_register_fn("libtiff", &

ext_convertTIFF);

6 +parseCommandLine_ext = compart_register_fn("cmdparse"

, &ext_parseCommandLine);

7 +compart_start("netpbm");

8

9 struct CmdlineInfo cmdline;

10 TIFF * tiffP;

11 FILE * alphaFile;

12 FILE * imageoutFile;

13

14 pm_proginit(&argc, argv);

4 -parseCommandLine(argc, argv, &cmdline);

17 +struct extension_data arg;

18 +args_to_data_CommandLine(&arg, argc, argv);

19 +arg = compart_call_fn(parseCommandLine_ext, arg);

20 +args_from_data(&arg, &cmdline);

22 -tiffP = newTiffImageObject(cmdline.inputFilename);

23 -if (cmdline.alphaStdout)

24 ...

25 -TIFFClose(tiffP);

26 +args_to_data(&arg, &cmdline);

27 +arg = compart_call_fn(convertTIFF_ext, arg);

28 pm_strfree(cmdline.inputFilename);

29

30 /* If the program failed, it previously aborted with

nonzero completion

31 code, via various function calls.

32 */

33 return 0;

Listing 6: libcompart used on tifftopnm.c.

Appendix D SEGMENT-CALLING EXAMPLE
Listing 7 shows example output from our CVE-based compart-
ment evaluation for ‘beep’ (§9.1.1). The de/marshalling template is
included on line 1, and the marshalled value is passed to the libcom-
part API function compart_call_fn(), together with an opaque ref-
erence generated by libcompart when we registered the function to
be called from another compartment. This reference is declared on
line 14 in Listing 7, and defined as follows: Privileged_1_call_ext =

compart_register_fn("Privileged", &Privileged_1_call_remote)

; This registration takes place after libcompart initialization and
before start-up, as we saw in Listing 1.

1 #include "Privileged1_demarsh.c"

2

3 struct extension_data Privileged_1_call_remote(struct

extension_data __arg) {

4 int console_fd;

5 struct input_event e;

6 Privileged_1_call_demarshall(__arg, &console_fd, &e);
7 if(write(console_fd, &e, sizeof(struct input_event)) <

0) {

8 putchar('\a'); /* See above */

9 perror("write");

10 };

11 return Privileged_1_call_marshall(console_fd, e);

12 }

13

14 struct extension_id *Privileged_1_call_ext = NULL;

15

16 void Privileged_1_call(int *console_fd, struct input_event *

e) {

17 struct extension_data __arg = Privileged_1_call_marshall(*

console_fd, *e);

18 struct extension_data __result = compart_call_fn(

Privileged_1_call_ext, __arg);

19 Privileged_1_call_demarshall(__result, console_fd, e);

20 }

Listing 7: Synthesized cross-compartment segment calling.

Appendix E FURTHER DETAILS ON
OVERHEAD

Further to the evaluation presented in §9.2, Fig. 9 presents the
compartment-memory breakdown for netpbm; this is similar to
how Fig. 7 showed this evaluation for wget. Fig. 10 shows how the
performance of compartmentalized wget varies with protocol and
download size. Fig. 11 graphs the results described in §E.3 and Fig. 8
shows a version of Fig. 11b where we used larger de/marshalling
buffers.

For Fig. 9 we calculated the standard deviation for each column
but it was too small to observe in the graph, so we provide its values
here. For the large workload the std.dev is 676.2 for original netpbm
and the largest std.dev is 992.0, for the libtiff. For the small workload
the std.dev is 167.9 for original netpbm and the largest std.dev is
218.1, for the libtiff.

Fig. 8 shows the different memory usage when we increase the
size of libcompart’s fixed-size buffer. The graph shows that the
memory costs are fixed. The memory size can be tuned by the
programmer or the external de/marshalling tool.

E.1 Binary Size
The size overhead on single-compartment binaries was measured
to be less than 6% across our experiments. The contributors to this
overhead consist of libcompart, the de/marshalling code, and the
transformations made by Pitchfork. For separate binaries we see
per-compartment duplication since we do not eliminate code that is
unused in a compartment—that is an orthogonal problem. So in the
worst case the total size of separate binaries of an n-compartment
program is in O(n).

E.2 Execution time
For the software, compartmentalizations and workloads we used,
there was hardly any difference in execution time between the
original and compartmentalized version. This is likely because
the separation goals did not result in a compartmentalization that
caused the execution-time overhead of the compartmentalization
to accumulate sufficiently to become significant.

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Sultana et al.

(a) Time overhead observed when varying the number of calls across
compartments and varying the amount of data sent in each call.

(b) Memory overhead observed when varying the number of calls
across compartments and varying the amount of data sent in each call.

Figure 11: stress: Cross-compartment communication over-
heads.

Figure 9: netpbm: Memory utilization of different compart-
ments, their total, and the original program. This shows the
average and standard deviation measured from 100 runs.

1MB 5MB 10MB
Download File Size

100

101

102

Ru
nn

in
g

Ti
m

e
(in

 se
co

nd
s)

http-original
http-libcompart
ftp-original
ftp-libcompart

Figure 10: wget: Effect of increasing the downloaded-file size
on execution-time overhead, for both FTP and HTTP down-
loads. This experiment is described in §9.2.

In order to measure pessimistic conditions in which compartmen-
talization’s overheads repeatedly featured in a program’s critical
path, we designed the experiment described in the next section.

E.3 Communication overhead
Kilpatrick [44] had found inter-compartment communication to
be the main source of overhead in his system. This section reports
our measurements of communication overheads between compart-
ments by using the “stress” program that repeatedly initiates trans-
fers between compartments.

We find that execution-time overhead increases linearly with
the number of cross-compartment calls. The full graph is provided
in Fig. 11 in §E. In the parameter range that we consider, memory
overhead does not vary with the number of inter-compartment
function calls or size of data crossing the compartment. It is sta-
ble from run to run, and is only associated with the number of
compartments initialized.

Appendix F MAINTAINABILITY AND
EVOLVABILITY (M&E)

Software is changed when bugs are fixed and features are added.
Once privsep is applied to software, the presence of privsep-related
logic should not obstruct or slow down that software’s evolution.
This section describes two interactions we encountered between
Pitchfork -based privsep and the maintainability or evolvability of
software after it has been compartmentalized. Neither of the two re-
sulted in additional complications, which suggests a positive result,
but a larger-scale study is needed to get a better understanding.

We use the 3 versions ofwget compartmentalized earlier: (i) 1.17.1.50-
2bdfc for CVE-2016-4971, (ii) 1.18 used for the overhead measure-
ments in §9.2, and (iii) 1.19.1 for CVE-2017-13089.

The first example involves (ii), and only involved a small change
to the annotation.

For the second example we combined (i) and (iii), as the furthest-
apart versions of wget we had used, bymodifying (iii) to additionally
include the compartmentalization we carried out for (i). This pro-
duced a copy of v1.19.1 that compartmentalized as the union of (i)
and (iii). This too only involved a small change to the annotation.
Updates to wget could continue to take place in the annotated ver-
sion of the software—② in Fig. 4—and Pitchfork would be rerun to
generate the transformed source code.

Towards Practical Application-level Support for Privilege Separation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

(a) Projects of at least 5000 lines of C. (b) Versions of C used.

Figure 12: Histograms generated from surveying C usage among all FreeBSD 12.2-STABLE ports.

Appendix G SURVEY OF FREEBSD PORTS
We sought to use representative software use-cases in our evalua-
tion. Since representativeness is a vague property, we narrowed this
down to project size in source-lines-of-code (SLOC) and to variants
of the C language. We were targeting open-source software in our
evaluation but could not find a recent analysis of such code-bases,
so we made our own. This section describes our methodology and
results, expanding on the description in §2.3.

The survey was done over FreeBSD ports that use C, summarized
in Fig. 12. This analysis took 12.4 hours to execute. To measure size
we used sloccount [20] v2.26.

We heuristically excluded projects based on programming lan-
guage (i.e., non-C code-bases) and non-source archives—such as
.jar, .rpm, .gem, .cabal, and .nupkg. This left 11100 projects. Many
of these projects contained very small pieces of C, many of which
consisted of header files and wrappers—for example, to make a C
library usable in a Rust project. Small codebases (i.e., fewer than
5KLOC) are cropped to avoid biasing towards smaller codebases,
and to make the histogram more legible. This left 5336 projects.

Fig. 12b shows the versions of C used by different projects, and
Fig. 12a graphs the project sizes. A few projects are huge—millions
or tens ofmillions of lines. The largest projects consisted of kernels—
such as Linux and NetBSD—QEMU, GCC and browsers—both Fire-
fox and Chromium.

Appendix H SIZES OF EVALUATED PROJECTS
Table 5 shows version and size information for some of the use-case
software used in this paper. Size was measured using sloccount [20]
v2.26. The projects rely on different versions of C including c11,
gnu11, c99, and gnu99.

Software Version LOC
vitetris 0.57.2 13.4K
evince 2.24.0 83.8K
wget 1.19.1 84K
nginx 1.19.4 144K
git 2.28.0.394.ge197136.dirty 234K
redis 58e5feb3f49c50b9c18f38fd8f6cad2317c02265 140K
curl 7.71.1 152K
netpbm 10.73.28 192K
ioq3 1.36 392K

Table 5: Version and size information for use-case software
used in this paper.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Examples
	2.2 Separation heuristics and implementation
	2.3 Survey of C code-bases

	3 Pitchfork Overview
	4 Example: beep
	5 Compartment model
	6 libcompart (Runtime library)
	7 Pitchfork source-level tool
	7.1 Analysis
	7.2 Transformation
	7.3 De/marshalling

	8 Implementation
	9 Evaluation
	9.1 Security
	9.2 Overheads
	9.3 Synthesis/Annotation ratio (SAR)
	9.4 Applicability

	10 Related Work
	11 Future Work
	Acknowledgments
	References
	A libcompart API
	B Pluggable communication API
	C Usage examples
	C.1 Example from PtrSplit
	C.2 netpbm

	D Segment-calling example
	E Further details on overhead
	E.1 Binary Size
	E.2 Execution time
	E.3 Communication overhead

	F Maintainability and Evolvability (M&E)
	G Survey of FreeBSD ports
	H Sizes of evaluated projects

