
Towards In-Network Semantic Analysis:
A Case Study involving Spam Classification

Cyprien Gueyraud
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

Nik Sultana
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

Abstract—Analyzing free-form natural language expressions
“in the network”—that is, on programmable switches and smart
NICs—would enable packet-handling decisions that are based on
the textual content of flows. This analysis would support richer,
latency-critical data services that depend on language analysis—
such as emergency response, misinformation classification, cus-
tomer support, and query-answering applications.

But packet forwarding and processing decisions usually rely
on simple analyses based on table look-ups that are keyed on
well-defined (and usually fixed size) header fields. P4 is the state
of the art domain-specific language for programming network
equipment, but, to the best of our knowledge, analyzing free-
form text using P4 has not yet been investigated. Although there
is an increasing variety of P4-programmable commodity network
hardware available, using P4 presents considerable technical
challenges for text analysis since the language lacks loops and
fractional datatypes.

This paper presents the first Bayesian spam classifier written
in P4 and evaluates it using a standard dataset. The paper
contributes techniques for the tokenization, analysis, and clas-
sification of free-form text using P4, and investigates trade-offs
between classification accuracy and resource usage. It shows how
classification accuracy can be tuned between 69.1% and 90.4%,
and how resource usage can be reduced to 6% by trading-off
accuracy. It uses the spam filtering use-case to motivate the need
for more research into in-network text analysis to enable future
“semantic analysis” applications in programmable networks.

Index Terms—Programmable Networking; Spam Filtering; P4;
Software-Defined Networking

I. INTRODUCTION

Packet-handling decisions are based on simple analyses that
can be carried out quickly to deliver good performance and
simpler end-to-end engineering [1]. These analyses typically
rely on table look-ups that are keyed on well-defined (and
usually fixed size) header fields, such as address, protocol, and
counter fields such as TTL (Time To Live) in the IP protocol.
The simplicity of this processing ensures that packet handling
can scale, and any expensive, “deep inspection” of packet is
usually done selectively to avoid creating bottlenecks [2].

The availability of programmable switches [3], [4] and
smart NICs [5], and the development of the P4 language [6]
have spurred much interest into in-network computing applica-
tions. These applications go beyond forwarding [7] and target
a variety of network functions [8].

In this paper, we use in-network programmability to ana-
lyze natural language messages that are contained in packet

payloads. This is an interesting but technically challenging
problem, and this paper contributes techniques and open-
source code for building such analyzers in P4.

This problem is interesting since the in-network analysis of
free-form natural language expressions would enable making
packet-handling decisions that are based on the textual content
of flows. In turn, this would support richer, latency-critical data
services that depend on language analysis—such as emergency
response, misinformation classification, customer support, and
query answering applications.

The problem is challenging however for a variety of reasons.
In-network payload analysis is impossible on traffic that is en-
crypted end-to-end, such as SSL flows, but there are important
situations that provide deployment opportunities for this idea.
We envisage P4-based text analyzers being deployed on clear-
text traffic in networks that lie behind SSL endpoints, or where
the operator can selectively decrypt traffic, such as in corporate
and datacenter networks [9]–[12].

This paper focuses on technical challenges that are intrinsic
to processing packet payloads and analyzing natural language
text using P4. It describes solutions to these problems:

• Analyzing the payloads of arbitrary packets in P4, a
language that is primarily intended for header processing.

• Tokenizing payloads into words using P4’s primitive
datatypes, and mitigating its lack of loop syntax.

• Approximating a division operator that is needed for
arithmetic.

• Implementing probabilistic reasoning (needed for
Bayesian filtering) using P4’s language primitives.

To our knowledge, there are no published descriptions that
tackle these challenges together. As a demonstration of the
applicability of the proposed techniques, the paper presents
the first Bayesian spam classifier written in P4.

This Bayesian classifier draws upon all the techniques
described in the paper and it is evaluated on a real-world
dataset: the Enron Email Dataset [13]. The full evaluation is
given in §V but the main take-aways are summarized next.
This evaluation yielded the following findings on trade-offs
between resource usage and classification accuracy:

• Spam classification accuracy was 69.1% when using
word matching and 90.4% using Bayesian filtering. Both
techniques were implemented in P4.

• Resource usage: word matching uses no registers and
only 6% of the P4 lines of code used by Bayesian
filtering. This indicates the trade-off between accuracy
and resource cost.

• Analyzing only the first 200 bytes of a message leads to a
drop of 20% in accuracy when using Bayesian filtering,
but reduces resource usage by 22,800%. This indicates
an effective compromise between loss of accuracy and
preserving resources.

The system described in this paper is made available online
as open source [14]. An accompanying Technical Report [15]
goes into more detail on the algorithms used and their analysis.
This paper makes the following contributions:

• §III adapts the generative programming approach [16]
to develop a lightweight language tokenization approach
that can be expressed in P4 for payload processing. Using
this we develop two text classification techniques in P4:
blocklist matching and Bayesian classification.

• §IV presents the first implementation of a spam filter in
P4. It provides an example of a non-trivial P4 program
in terms of both features and size. The core part of
the implementation consists of around 1000 lines of P4,
and the remaining part of the system (that depends on
parameter choices that trade-off accuracy and resource-
usage) are between 300 and 18630 lines of P4.

• §V presents an evaluation that uses a standard spam
dataset [13], and discusses quantitative trade-offs for
tuning resource usage against classification accuracy.

Related work is described in §VI and future work is described
in §VII.

II. P4 FEATURES AND LIMITATIONS

P4 [6] is the most successful language for programmable
network hardware. It is used to target both switches [4] and
NICs [5], and used to implement various in-network pro-
grams [7], [8]. Read-write dataplane memory is made available
as configurable-width registers in P4, and they are used for
stateful P4 programs. There are two features that strongly limit
P4’s expressiveness in this paper’s subject area: the lack of
loops and fractional datatypes. In this paper, loops are needed
to iterate over characters and words during tokenization, and to
perform iterative calculations. Fractional datatypes are needed
to represent probabilities in Bayesian reasoning.

In this paper, we overcome the first limitation by unrolling
loops using macros, using a well-known technique from other
programmable targets. For fractional dataypes we adapt a
technique for fixed-point precision [17]. P4 hardware typically
does not provide floating point instructions, so fractional cal-
culations are done natively in P4 using our custom encoding.

III. LANGUAGE ANALYSIS TECHNIQUES AND THEIR
MAPPING INTO P4

This section presents three techniques for natural language
analysis in P4: language tokenization (§III-A) to split mes-
sages into words, word matching (§III-B) to use a blocklist,

and Bayesian filtering (§III-C) to build a probabilistic, up-
dateable model of spam classification. All these techniques
are combined in the P4 prototype that is described in §IV.

A. Tokenizing

The tokenization approach presented in this paper is
parametrized as described below. Parameters are instantiated
at compile time to generate P4 code—this is an example of
the generative programming approach [16]. The parameter
values can be changed to trade-off between resource usage
and accuracy in the resulting P4 code.

• MaxN is the maximum of number bytes of the message
that the tokenization algorithm will analyze. The system
will not tokenize words past this limit. MaxN is the
length of analyzed prefix in the message. We set it to
200 and explain the rationale for this choice in §V-A and
Figure 2).

• MaxWordSupported is the maximum number of words
the system will analyze. The program maps the mes-
sage’s string of bytes into a string of words, up to
MaxWordSupported in length. We observe that the
choice of MaxWordSupported affects the program’s
compilation time. We set it to 10, and the choice for
this is explained in Figure 1.

• MaxWordLen is the maximum size of a word for the
creation of the word’s Identification Number (wID). We
set it to 10, and the rationale for this is explained in the
Technical Report [15].

Each word is mapped to a unique Identification Num-
ber (wID). This codes the word up to a maximum num-
ber of letters; this maximum is the value of the constant
MaxWordLen . Shorter words are padded with trailing zeroes,
to reach the length of MaxWordLen characters. Words longer
than MaxWordLen letters will be truncated to MaxWordLen
characters. The Identification Number has to have enough bits
to code every word we need. Each letter needs two decimal
digits, so if we want to use MaxWordLen = 10, then the
Identification Number needs to be set to 20 decimal digits
(2× 10).

We set MaxWordLen = 10 to maximize the number of
words analyzed: on a sample of 3000 words (of the most used
words in the English language [18]) about 95% of words have
a length of 10 or less. Adding more letters will not give more
precision to the program and will increase the ID number very
quickly: an additional letter means adding two digits to wID
(multiplying wID by 100), and therefore adding seven bits for
every Words/ID number.

B. Word matching

Word matching is a simple technique that recognizes spe-
cific words such as those in a blocklist. In this technique, the
filter has in memory a list of words that are chosen based on
a particular property. In our case, each of these words have
a high likelihood of appearing in spam messages, and their
presence increases the probability that a message is spam.
When using this technique, a filter will tokenize the message

(a) Time of compilation as MaxWordSupported increases. (b) Classification correctness as MaxWordSupported increases.

Fig. 1: Effects of varying MaxWordSupported .

as described in the previous section. It then counts the words
in the message that also appear in the blocklist. If a threshold
is reached in the number of matches, then the filter classifies
the message as spam. Otherwise, the message is classified as
“ham”—i.e., not spam.

To implement a blocklist in P4, after tokenizing a message
as described in §III-A we match the tokenized words to a list
that is stored in P4 registers. The words in the blocklist are
represented by their respective Identification Numbers. The
generative approach described earlier is used to unroll a loop
to match each message word with the blocklist, and increment
a count of matches. The length of the P4 program grows in
proportion to the blocklist size and the message prefix that
is analyzed. The P4 state (registers) required is linear in the
length of the blocklist.

C. Bayesian filtering

A Bayesian filter [19] estimates the probability that a
message is spam. It improves on word matching by casting
the classification into a conditional probability function that is
updated when new messages are encountered. The technique
examines each word wi of the message and calculates the
probability as follows:

Pr(S |wi) =
Pr(wi |S)× Pr(S)

Pr(wi |S)× Pr(S) + Pr(wi |H)× Pr(H)
(1)

where:
• Pr(S |wi) is the probability that a message is a spam,

with the word wi in it;
• Pr(S) is the overall probability that any given message

is spam;
• Pr(wi |S) is the probability that the word wi appears in

spam messages;
• Pr(H) is the overall probability that any given message

is not spam (it is referred to as ham);
• Pr(wi |H) is the probability that the word wi appears in

ham messages.

In this formula, Pr(H) + Pr(S) = 1. Furthermore, before
any test, there is no reason to assume that the next message is
likely to be a spam or a ham. Thus we can assume Pr(H) =
Pr(S), which leads to the simplified formula:

Pr(S |wi) =
Pr(wi |S)

Pr(wi |S) + Pr(wi |H)
(2)

To calculate the probability that a message is spam:

P =

∑n
i=1(Pr(S |wi))

n
(3)

where:
• P is the probability that a message is a spam based on

its content;
• n is the number of words in the message.
If we frequently encounter a word in messages that are

classified as spam, then when we encounter this word in future
messages we are more likely to classify those messages are
spam. After analyzing a message, we update the probability
of every word in that message: the filter updates its values to
improve its accuracy.

In addition to the parameters described in §III-A, Bayesian
filtering involves additional parameters:

• limitSpam is the probability above which we consider the
message to be spam: if P > limitSpam , then the email
is considered as spam. We set it to limitSpam = 0.5. We
arrived at this value by carrying out experiments on how
this choice affected false positives and false negatives.
The Technical Report [15] explains the rationale for this
choice.

• MaxWordGroups is the maximum number of word
groups that will be supported by the generated P4 code.
A word group includes words with similar wID : in our
system, two words are similar if they have the same prefix
up to a given length—4 letters in our prototype. Word
groups factor the differences between words, and this
reduces the number of registers that are allocated to store

the state related to the probability of each word. That state
is needed to calculate the overall probability that a mes-
sage is spam. The smaller the value of MaxWordGroups
is, the fewer groups are supported, and thus the less
memory is used by the generated P4 program. We set
this parameter to 1840, as described in §V-A.

After tokenizing a message as described in §III-A, Bayesian
filtering involves two additional steps. The first step finds the
wID of the word and determines the corresponding register for
that word. The second step involves storing each wID . Every
word is assigned two counters saved in a register: the counters
track the number of times the word was found on spam, and
the number of times it was found in non-spam emails. These
counters are used to discretize the Bayesian formula into P4
as explained in the Technical Report [15].

After finding the probability number of every word, we
compute the final probability that the message is spam. If
the probability P > limitSpam , the program classifies the
message as spam.

The second step in our Bayesian approach updates registers
and probability numbers of words in the message. Using the
wID from the first step, we can reason about the words that
were found in the message. If the message was classified as
spam, we increment the number of times that we found this
word in spam.

IV. PROTOTYPE

The prototype implements all the techniques described
in §III and it is structured into two parts. The core part consists
of around 1000 lines of P4 and contains functionality that
is independent of the choices that are made for the param-
eters described in earlier. It contains the code that receives
the packet, handles each character, creates an Identification
Number (wID) for each word, and the skeleton code that
performs calculations for Bayesian filtering. At various points
the core program hands-over to parameter-generated code—for
example, to determine how much of the message to tokenize.

The rest of the code is generated based on the choices for
parameters described earlier sections. It includes the declara-
tion and use of registers needed by the matching and Bayesian
algorithms, and the unrolled loops that use and updates those
registers. In the different instantiations we carried out of the
parameters, this part of the prototype ranges in size from
300 lines for a basic word matching technique, to about
18630 lines for an advanced Bayesian filter.

V. EVALUATION

We evaluate three important properties of this ap-
proach through our prototype: first, we analyze the effect
of “compressing” words with common prefixes (through
MaxWordGroups) and how this effects resource usage in
P4 (§V-A); second, we analyze the effect of analying a
message prefix (MaxN) on classification accuracy and re-
source usage (§V-B); and third, we compare the accuracy
and resource usage of word matching compared with Bayesian
filtering (§V-C).

For the evaluation we used the Enron Email Dataset [13],
which is a standard dataset for spam research. The full dataset
contains more than 500,000 emails but since it contains raw
messages with the names of senders and receivers, among
other details, we used a subset of 32,625 emails from this
dataset that was cleaned and adapted by others for research
use. For the dataset we used, the average length of emails is
1482 characters, the median is 701 characters, the maximum
length is 228,377 characters and the minimum length is 10
characters.

The experiments described in this section were carried
out using P4’s BMv2 soft-switch on a Xeon E5-2678 v3
server clocked at 2.50GHz, having 128GB RAM, and running
Ubuntu 22.04 LTS using kernel version 5.15.0-41-generic.

A. Effect of MaxWordGroups on program size

One challenge we faced during our work was the size of
the generated P4 program; we therefore sought to optimize
this. As explained earlier, for the Bayesian technique we use a
fixed set of words, and every word was assigned two registers:
one for counting the times that the word appears in spam, the
second for the counting a word’s occurrences in non-spam
messages. The size of these registers is set to accommodate
the number of occurrences of the words that appear most
frequently in the dataset that we use. For example, if we
exclude words that do not need to be analyzed (i.e., stop
words such as “a”, “is”, “the”... [20, Chapter 1]), the word
“enron” appears 60849 times in non-spam messages. So we
set registers to 16 bits to host this maximum.

If we uniquely represent the probability of each word, this
would require a lot of state if the set of words is large. In the
dataset we used, there are more than 75,000 different words,
which means the creation of more than 150,000 registers. And
this then entails an increase in the number of lines of the
program—because P4 has no loops, we unwind the loops in
our algorithm when mapping it to P4 code. Since we have to
add at least 6 lines of P4 for each word, then to handle the
75,000 words in our dataset, the program would grow over
450,000 lines of P4 code.

To mitigate this growth, we create groups of similar words.
We call these word groups. Words with the same prefix are put
in the same group, and we allow them to share registers. This
reduces accuracy but it also reduces the number of registers, P4
code, and therefore memory needed. We created groups with
wID that share the first 8 digits. With MaxWordLen = 10, in-
tervals can host up to about 300 million different wID values.
This optimization leaves us with MaxWordGroups = 1840,
and takes us from about 75,000 groups (i.e., one for each
word) to only 1840 groups. This is 40× lower. This linear
improvement results in an quadratic reduction in resources
needed. This is explained further in the Technical Report [15].

B. Effect of MaxN on program size

Most text analysis require loops to iterate through a mes-
sage, and the lack of loops in P4 makes analysis challenging
to implement. To mitigate this, we only analyze the beginning

of the message, up to MaxN letters. We found that the filter
is more effective when it only scrutinizes the message prefix,
as illustrated in Figure 2. That graph shows the number of
misclassifications (number of false positives + number of
false negatives) when the program analyzes only a part of
the message, compared to the number of misclassifications
if the program takes the entire email every time, defined
as max(MaxN). max(MaxN) is the length of the longest
message in the entire dataset. The graph shows 4 experiments,
each relying a disjoint, random sample of 1000 emails from
the dataset.

The y-axis represents the number of misclassifications with
a value of MaxN divided by the number of misclassifications
with the maximum of MaxN possible. In the dataset we use,
max(MaxN) = 228, 377—i.e., the largest email of the dataset
has 228,377 characters. If the curve goes below y = 1 (the yel-
low line), it means that there are fewer misclassifications when
using that value of MaxN compared to if we use maximum
value of MaxN . With MaxN = 200 letters, the program starts
to be more effective than if it analyzes the entire message.
That is, the algorithm has about 20% less wrong classifications
than if it analyzes whole messages. So the program does
not need to go through to entire message to have results we
need. MaxN goes hand in hand with MaxWordSupported :
the more we increase MaxN in order to analyse a bigger part
of the message (like we can increase MaxWordSupported)
the longer the P4 program that is generated. One line is added
for each letter, thus if we want to analyze the entire message
and set MaxN to its maximum, the program will have 228,377
lines added instead of the 200 lines we would get if we set
MaxN = 200. Knowing the core part of the program has
about 1000 lines of code (§IV), analyzing whole messages
would increase the size of the code by more than 22,800%
(instead of adding only 20% of the size of the program with
MaxN = 200). As a result of its increased size, the time
needed to compile the P4 code will increase too. In Figure 1a
we measured the increase in compilation time with the increase
in message prefix analyzed.

C. Comparing filtering techniques

Figure 3 presents the results of experiments that were done
using the prototype. We compare results from two versions
of the program. The first version implements only word
matching, and the second implements a Bayesian filter. The
experiments used a random sample of 1000 emails from the
Enron dataset that were separated in ten partitions of 100
random emails.

To evaluate the word matching technique we define a block-
list by first analyzing the words occurring in spam messages in
the Enron dataset and ordered them into a list based on how
frequently they appear in spam messages. We do the same
for ham messages and form a second list. We remove words
from the spam list if they appear in the top 100 words of the
ham list—to avoid confusing frequently-occurring ham words
with spam words. We then picked the 40 top words in the
spam list, and that formed the blocklist. Using this list, we

Fig. 2: Effectiveness of the Bayesian filter as MaxN increases.
MaxN is the length of analyzed prefix of a message (described
in §III-A). This graph is explained further in §V-B.

Word Matching Bayesian Filter
Lines of code 1223 19629
Size of P4 file (KB) 55 952
Number of Registers 0 3682
Total Register Bits 0 58912

TABLE I: Comparison of resources needed by each technique
for MaxWordGroups = 1840. The composition of these
groups is explained in §V-C.

obtained an average of 69.1% of correct classification. Correct
classification means that a spam is classified as a spam, and a
ham is classified as a ham. In other words, it discounts false
positives and false negatives.

To evaluate the Bayesian filter we used
MaxWordGroups = 1840 as explained in §V-A and
generated code that performs the calculation described
in §III-C. The experiments resulted in an average of 90.4%
of correct classification. Tests are realized in exactly same
samples than tests realized for the word matching—i.e.,
a sample of 1000 random emails of the Enron dataset,
partitioned into ten sets of 100 emails.

Table I quantifies the difference in resource usage. As
reported above, the Bayesian Filter gives better results than
Word Matching. However, it requires a lot more resources:
for the Bayesian filter, the program needs to store the state
from previous analyses to calculate probabilities. This requires
the use of registers and it also increases the size of P4 code,
the size of files and the memory allocated to the program.
In contrast, the matching technique does not need to store
any state: it analyzes emails one by one, without needing to
remember past classification.

VI. RELATED WORK

This paper focused on the challenges faced when using
P4, but it shares similarities with other work on Deep Packet
Inspection (DPI) and Intrusion Detection Systems (IDS). The

Fig. 3: Effectiveness of the two filters on 10 disjoint sets of
100 emails (i.e., 1000 messages total) from the Enron Dataset.

approach in this paper developed online probabilistic reasoning
on a P4-programmable target, and it complements earlier work
by Hypolite et al. [21] who used extensions beyond P4 to
explore a NIC-based approach for IDS that is based on rule-
matching against packet payloads. Phothilimthana et al. [22]
explore offloading logic to a NIC for application acceleration.
In comparison, this paper offloads a spam classifier to the
network to benefit both clients and servers. In future work
this can be improved further through client-side classifier
integration to improve accuracy and resource-usage.

VII. CONCLUSIONS AND FUTURE WORK

This paper described the first implementation of in-network
text classification using P4. It presented new techniques to
implement a working prototype. A standard dataset was used
to quantify the effectiveness of this approach, and measure
trade-offs between accuracy and resource usage.

The prototype described in this paper was not designed to be
performant. A next step involves creating a high-performance
prototype on CPUs or FPGAs to measure the effects of
parameter choices on latency or packet rate.

In addition to the techniques described in this paper, further
optimization techniques can be developed to minimize the
use of resources while maximizing accuracy. One idea for
this involves using n-grams to compare against sequences of
words, rather than individual words as done in this paper.

ACKNOWLEDGMENT

We thank Shivam Patel for help with implementing the
division operation and setting up the evaluation infrastructure.
We thank the anonymous reviewers for their helpful feedback.
This work was supported by a Google Research Award and the
Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-19-C-0106. Any opinions, findings, and
conclusions or recommendations are those of the authors and
do not necessarily reflect the views of funders.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-End Arguments in
System Design,” ACM Trans. Comput. Syst., vol. 2, no. 4, p. 277–288,
nov 1984. [Online]. Available: https://doi.org/10.1145/357401.357402

[2] N. Hua, H. Song, and T. V. Lakshman, “Variable-Stride Multi-Pattern
Matching For Scalable Deep Packet Inspection,” in IEEE INFOCOM
2009, 2009, pp. 415–423.

[3] Broadcom, “Trident4 / BCM56880 Series,” https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56880-series, ac-
cessed: 2022-06-10.

[4] Intel, “Intel Tofino 3 Intelligent Fabric Processor Brief,”
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-3-brief.html, accessed: 2022-
06-10.

[5] Netronome Inc, “Agilio CX SmartNICs,” https://www.netronome.com/
products/agilio-cx/, 2016.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

[7] J. McCauley, A. Panda, A. Krishnamurthy, and S. Shenker, “Thoughts
on Load Distribution and the Role of Programmable Switches,”
SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, p. 18–23, feb 2019.
[Online]. Available: https://doi.org/10.1145/3314212.3314216

[8] NetCompute ’18: Proceedings of the 2018 Morning Workshop on In-
Network Computing. New York, NY, USA: Association for Computing
Machinery, 2018.

[9] C. Bethea, G. Sheerin, J. Mace, , R. King, G. Luo, and G. O’Connor,
“SRE Workbook Chapter 11: Managing Load,” https://sre.google/
workbook/managing-load/, 2018, accessed: 2022-07-25.

[10] G. Inc, “Encryption in Transit in Google Cloud,” https:
//cloud.google.com/docs/security/encryption-in-transit#user to google
front end encryption, 2022, accessed: 2022-07-25.

[11] C. Ghali, A. Stubblefield, E. Knapp, J. Li, B. Schmidt, and J. Boeuf,
“Application Layer Transport Security,” https://cloud.google.com/docs/
security/encryption-in-transit/application-layer-transport-security, 2022,
accessed: 2022-07-25.

[12] A. Menezes and D. Stebila, “End-to-End Security: When Do We Have
It?” IEEE Security & Privacy, vol. 19, no. 4, pp. 60–64, 2021.

[13] W. W. Cohen, “Enron Email Dataset,” https://www.cs.cmu.edu/∼enron/,
May 2015.

[14] https://github.com/CyprienGueyraud/Towards-In-Network-\
Semantic-Analysis-A-Case-Study-involving-Spam-Classification.

[15] C. Gueyraud and N. Sultana, “Towards In-Network Semantic Analysis,”
Technical Report: repository.iit.edu, Mar. 2023.

[16] N. Stucki, A. Biboudis, and M. Odersky, “A Practical Unification
of Multi-Stage Programming and Macros,” SIGPLAN Not., vol. 53,
no. 9, p. 14–27, nov 2018. [Online]. Available: https://doi.org/10.1145/
3393934.3278139

[17] S. Patel, R. Atsatsang, K. M. Tichauer, M. H. L. S. Wang, J. B.
Kowalkowski, and N. Sultana, “In-network fractional calculations using
P4 for scientific computing workloads,” in Proceedings of the 5th
International Workshop on P4 in Europe, EuroP4 2022, Rome, Italy, 9
December 2022, M. Chiesa and S. L. Feibish, Eds. ACM, 2022, pp.
33–38. [Online]. Available: https://doi.org/10.1145/3565475.3569083

[18] E. First, “3000 most common words in English,” https://www.ef.com/
wwen/english-resources/english-vocabulary/top-3000-words/, 2022.

[19] P. Graham, “A Plan for Spam,” http://www.paulgraham.com/spam.html,
Aug. 2002, accessed: 2022-06-06.

[20] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. Cam-
bridge University Press, 2011.

[21] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon,
and J. M. Smith, DeepMatch: Practical Deep Packet Inspection in
the Data Plane Using Network Processors. New York, NY, USA:
Association for Computing Machinery, 2020, p. 336–350. [Online].
Available: https://doi.org/10.1145/3386367.3431290

[22] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson, “Floem: A Programming System for NIC-Accelerated
Network Applications,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 663–679. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/phothilimthana

https://doi.org/10.1145/357401.357402
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3314212.3314216
https://sre.google/workbook/managing-load/
https://sre.google/workbook/managing-load/
https://cloud.google.com/docs/security/encryption-in-transit#user_to_google_front_end_encryption
https://cloud.google.com/docs/security/encryption-in-transit#user_to_google_front_end_encryption
https://cloud.google.com/docs/security/encryption-in-transit#user_to_google_front_end_encryption
https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
https://www.cs.cmu.edu/~enron/
https://github.com/CyprienGueyraud/Towards-In-Network-\Semantic-Analysis-A-Case-Study-involving-Spam-Classification
https://github.com/CyprienGueyraud/Towards-In-Network-\Semantic-Analysis-A-Case-Study-involving-Spam-Classification
repository.iit.edu
https://doi.org/10.1145/3393934.3278139
https://doi.org/10.1145/3393934.3278139
https://doi.org/10.1145/3565475.3569083
https://www.ef.com/wwen/english-resources/english-vocabulary/top-3000-words/
https://www.ef.com/wwen/english-resources/english-vocabulary/top-3000-words/
http://www.paulgraham.com/spam.html
https://doi.org/10.1145/3386367.3431290
https://www.usenix.org/conference/osdi18/presentation/phothilimthana

	Introduction
	P4 Features and Limitations
	Language Analysis Techniques and their mapping into P4
	Tokenizing
	Word matching
	Bayesian filtering

	Prototype
	Evaluation
	Effect of MaxWordGroups on program size
	Effect of MaxN on program size
	Comparing filtering techniques

	Related Work
	Conclusions and Future Work
	References

