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Abstract—Private and publicly-funded cloud infrastructure
and testbeds increasingly feature programmable network hard-
ware. Programmable network cards and switches support the
execution of increasingly-complex in-network programs that can
operate independently of end-hosts to improve the network’s
performance, resilience and utilisation. Reasoning about in-
network programs, their placement, and workloads is needed to
plan jobs on programmable networks. On programmable testbed
networks, this reasoning feeds into resource allocation, fairness
and reproducible research. But this reasoning is made challenging
by the performance and resource diversity of hardware and by
the failure modes that can arise in a distributed system.

Flightplanner is currently the most comprehensive reasoning
system for distributed and heterogeneous in-network programs
but it uses a custom formalism and tool implementation, making
it difficult to understand, extend, and scale.

This paper describes Lightplanner, a generalisation of Flight-
planner’s reasoning system that has been implemented on Prolog.
It provides an executable formalisation in a well-understood logic.
By relying on Prolog’s proof search, Lightplanner is 10× smaller
than Flightplanner’s implementation in C++, making it better
suited for others to understand, extend, and scale. A benchmark
of publicly-available in-network programs is used to evaluate
Lightplanner against Flightplanner. Though the time overhead
is slightly larger, Lightplanner can find better allocations than
the original, more complex C++ implementation.

Lightplanner is being incubated to plan experiments in a local
programmable network testbed at Illinois Tech, and as a future
step it will be extended to work across federated networks such
as FABRIC.

Index Terms—Programmable Networking, Resource Alloca-
tion, Program Analysis

I. INTRODUCTION

The development of the in-network computing [1] paradigm
is being propelled by the increased programmability of com-
modity network cards [2]–[5] and switches [6]–[8], and the
increased traction of domain-specific languages like P4 [9].
In this paradigm, computations may occur at high throughput
and low latency inside the network—on network switches
and network cards (NICs), independently of end-hosts. This
paradigm supports operational services like caching [10] and
monitoring [11], and is the basis for research into custom
acceleration [12].

Private and public clouds and research testbeds are in-
creasingly being fitted with such hardware. Such testbeds
include FABRIC [13] and DETER [14]. Testbeds that have

not yet been fitted with this hardware are being used for
programmable networking research using soft-switches [15].

Unlike non-programmable networks, programmable net-
works can involve in-network state and dynamic changes
brought about by in-network programs. Thus a key challenge
when operating programmable networks involves reasoning
about the combination of in-network programs that are simul-
taneously executing across heterogeneous hardware targets.

A reasoning approach that is being explored for pro-
grammable networking builds on the dataplane disaggregation
idea [16] which starts with a monolithic in-network program
representing the computation being done across the network,
splitting it into smaller parts, and distributing its logic and
state among different devices in a programmable network.

This approach is implemented in the Flightplan system,1

and it is a stepping stone towards a more general resource-
based reasoning approach for programmable networking. In
the current approach, the Flightplanner tool automates rea-
soning about heterogeneous resources, in-network programs,
and user objectives (such as trading-off latency for power
saving). Flightplanner allocates program splits to devices in
a programmable network.

But in its current form, Flightplanner is difficult to gener-
alise and extend: (1) It introduces a new, custom formalism
that lacks mathematically-founded semantics. An example of
this formalism is shown in Rule 1. This formalism encodes
different types of information, including an abstraction of
the in-network program and the capabilities of heterogeneous
network hardware. (2) It relies on a custom and complex
reasoning engine for this formalism.

This paper contributes Lightplanner (§IV): a reasoning tool
for a well-founded resource- and programming-model for
distributed and heterogeneous systems, and that is compatible
with Flightplanner. Lightplanner (1) Embeds Flightplan’s rules
in Prolog, giving them semantics in a well-understood formal-
ism. Listing 1 shows a snippet of the adaptation of Rule 1 into
Prolog. (2) Implements the planner in Prolog itself, relying on
Prolog’s inference and search to find and check plans. Fig. 1
shows how the workflows of the two planners differ.

1Flightplan is open-sourced at https://flightplan.cis.upenn.edu

https://flightplan.cis.upenn.edu


CPU Rate < 2× 108

PacketSize > 1000
header compress

 Latency 7→ Latency + 7.4× 10−3

Rate 7→ Rate× 189.9
194.75

once Power 7→ Power + 150W
once Cost 7→ Cost + 5


Rule 1. Using Flightplan’s formalism, this rule captures the performance
profile when the header compress() function is executed on a CPU3 at
a specific range of workload characteristics (packet sizes and throughputs).
The [· · · ]-notation captures the effect that header compress() has on the
abstract state that is maintained by Flightplanner. The [· · · ]-notation describes
how variables may be updated every time the rule is used in a proof, or, using
the ‘once’ qualifier, updated once throughout the whole plan.

% CPU header_compress 0.02
profile(_, header_compress, prop_CPU, St0, St1) :-
...
stateVal(bound_InputRate, St0, InputRate),

stateVal(bound_InputRate, St1, InputRate2),
stateVal(bound_PacketSize, St0, PacketSize),

stateVal(bound_Latency, St0, Latency),
stateVal(bound_Latency, St1, Latency2), InputRate2

is InputRate * 0.975096277278562,
InputRate =< 200000000, PacketSize >= 1000,

Latency2 is Latency + 0.00740.

Listing 1. Prolog embedding of the performance profile for
header_compress() running on a CPU. Lightplanner uses this rule to
explore allocations of this function. Compared to the custom formalism used
in Flightplanner (cf Rule 1), the Prolog version of this rule uses a more
widely-recognised notation and widely-implemented inference system.

Lightplanner is 10× smaller than Flightplanner’s C++ imple-
mentation but can be used as a drop-in replacement for it.
Both systems accept exactly the same inputs and implement
the same behaviour. Lightplanner’s implementation is smaller
and simpler because of the reliance on Prolog to provide the
formalism and search. In comparison, Flightplanner imple-
mented those facilities from scratch. Lightplanner’s smaller
and simpler implementation makes it more amenable for
formal analysis in future work.

Lightplanner was evaluated (§V) on the Flightplan bench-
mark. Lightplanner is being developed as part of research on
managing programmable networks, and is initially being used
on a local programmable testbed network at Illinois Tech.

II. BACKGROUND

The P4 [9] language is used for in-network computing on
various hardware targets. Setting up a running example in this
paper, Listing 2 shows P4 snippet taken from the Flightplan
paper [16, §2].4 The code snippet is executed before the
packet is forwarded by the network element and behaves as
follows: The look-up to table egress_compression on
line 3 determines whether a packet should be compressed
by inspecting which network port it is being egressed to.
That port information is stored in the meta.egress_spec
variable. As a side-effect, the look-up changes the value of the
compressed_link variable. Based on this variable’s value,
the code might branch on line 4.

3Specifically an 8-core Intel Xeon 2450.
4The full program can be found at: https://github.com/eniac/Flightplan/blob/

åmaster/Wharf/splits/ALV Complete/ALV Complete.p4#L243

1 flyto(Compress);
2 // If heading out on a multiplexed link, then

compress header.
3 egress_compression.apply(meta.egress_spec,

compressed_link);
4 if (compressed_link == 1) {
5 header_compress(forward);
6 if (forward == 0) {
7 drop();
8 return;
9 }

10 }

Listing 2.
Snippet of P4 code. Green highlight indicates resource-related syntax
that is analysed for dataplane disaggregation to ensure that it
is allocated to hardware targets that are able to execute it.
Orange highlight indicates annotation used in Flightplan to segment
the code—setting up potential points where to split the program.

The header_compress() function, featured in Rule 1,
is called on line 5. It sets the forward variable to indicate
whether drop() should be called. This is called to drop the
packet to prevent duplication since header_compress()
returns the original packet as well as a compressed equivalent.

III. EXPERIMENT PLANNING FOR HETEROGENEOUS
PROGRAMMABLE NETWORKS

Building on the approach developed in Flightplan, we model
the programmable network as a single P4 program, then use
a toolchain like the one shown on Fig. 1 to analyse different
ways of splitting up the program and mapping it to the avail-
able hardware based on knowledge of the network’s topology,
the hardware’s capabilities, and program-level requirements
expressed by the network operator. Program segments A-E in
Fig. 1 can end up being separate, but cooperating programs,
and executing on different hardware.

Subprograms—called segments—are defined declaratively
and named. Listing 2 shows a segment called Compress.
The Flightplan analyser generates a rule in its formalism
for each code-path through a segment. In Listing 2 there
are three code paths. They are formed by the evaluation of
“compressed_link == 1” and “forward == 1”. The
maximal sequence of resources used in this segment are:
egress compression; header compress; drop.

Resources are described formally using performance pro-
files which capture effects of using a specific resource on a
specific piece of hardware. Rule 1 is an example performance
profile rule for the header_compress() function we saw
on line 5 of Listing 2.

Flightplanner uses a variety of rule-encoded information
to produce plans. Forming a plan involves navigating the
network topology—starting at a user-indicated device—and
finding an allocation of segments to devices on the network.
The planner uses rules to compose a proof that the chosen
target is sufficiently resourced to execute a given segment.

IV. LIGHTPLANNER

Lightplanner emulates the behaviour of Flightplanner—it
accepts the same inputs and provides the same outputs—
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Figure 1. Plan-producing workflow used in Flightplan (grey arrows) and those added by Lightplanner (blue and purple arrows). The two planners are shown
highlighted. Blue arrows indicate automatic conversion of input data into Prolog programs, and the purple arrows show the path to producing plans using
Lightplanner by relying on a third-party Prolog engine rather than an ad hoc reasoning tool like Flightplanner. Step-by-step workflow: À An in-network
program is segmented using Flightplan’s annotations. Segments are named, and this illustration shows segments that are named A-E. Segments represent the
finest granularity at which the program can be split. Á The segmented program is analysed to determine the resources used by each segment. Resources
include tables, types of memories, and external functions. In this drawing, resources are illustrated using green circles; different segments can use different
quantities and types of resources. In this drawing we see that segments B and C use the same type of resource (R2) while A uses an additional type of
resource (R1). Therefore A must be allocated to hardware that provides both resources, but B and C can be allocated to different, possibly weaker, hardware.
This stage produces an abstract program that only references the kinds of resources used by each segment. Â In Flightplan, all the inputs converge into
Flightplanner which automates reasoning using rules in an ad hoc formalism. Ã This paper describes a deviation of Flightplan’s workflow to (i) convert (blue
arrows) the inputs into Prolog and (ii) converge them into a Prolog engine where they are joined by the Ä Prolog-implemented Lightplanner tool. Å This
new approach produces plans by relying on Prolog proof-search instead of Flightplanner’s approach of using a custom proof engine and rule definition.

tgt(DeviceName, compress_Seg5, Target, St0, St3B) :-
tgt(DeviceName, [compress_Seg5,1], Target, St0,

St1A), maxStateList(St1A, St2A, St2B),
tgt(DeviceName, [compress_Seg5,2], Target, St0,

St2A), maxStateList(St2B, St3A, St3B),
tgt(DeviceName, [compress_Seg5,3], Target, St0,

St3A).

Listing 3. Abstract program rule for the segment from Listing 2. This rule
picks the maximum-cost code-path (using the chained maxStateList/3)
to ensure that the planning will allocate it conservatively—that the target
hardware can satisfy the most demanding of code-paths. compress_Seg5
is a Prolog-mapped name for Compress.

but relies on Prolog’s proof search instead of Flightplanner’s
custom reasoning engine (cf Fig. 1). Lightplanner embeds a
generalisation of Flightplan’s formalism in Prolog. This gen-
eralisation is versatile enough to describe device capabilities,
segments, and code paths. Continuing with our running exam-
ple, Listing 3 shows the embedding of the entire Compress
segment, decomposing it into its code-paths. The conversion
of these rules is automated using simple and reusable scripts.
Other information is encoded directly in Prolog: the network
topology is encoded as a graph, device information as a
relation, and objective function as a list.

V. EVALUATION

Lightplanner was evaluated in two ways: (1) The size and
complexity of Lightplanner’s implementation was compared
to that of Flightplanner. (2) The comparative effectiveness of
both systems was evaluated using the Flightplan benchmark
in terms of (a) solution quality and (b) time taken to find a
solution.

a) Implementation size and complexity: Lightplanner’s
implementation (354 lines of Prolog in a single file) is 10×

smaller than Flightplanner’s (3584 lines of C++ spread across 11
files). Lightplanner is also simpler than Flightplanner. The C++

implementation used the language’s type system to form so-
phisticated representations of different types of information—
including proofs, plans, programs, and hardware—and used
nested coroutines to implement lazy search in a strictly-
evaluated language. In the Prolog implementation, tuples and
relations are used to represent the required information, and
Prolog natively supports search.

b) Effectiveness: This evaluation uses the benchmark
suite that was publicly released as part of Flightplan.5 It
consists of 20 variants of P4 programs that were processed
by Flightplan’s analyser, together with the other inputs to the
Flightplanner, including the network and device description.
Both planners were configured to use the same objective
function: minimize latency, cost, and power, in that priority.

Table I shows the results for both planners. The symbol ⊥
indicates resource-exhaustion, meaning that: either a memory
limit was reached, and an out-of-memory handler was used
to kill the process (for Flightplanner) or the local or global
stack sizes were exceeded (for Lightplanner), or a 100-second
timeout expired. Lightplanner’s default mode—column LP in
Table I—produces the best results: the quality of the results
are either as good as those of Flightplanner, or exceed them.
Numbers highlighted in yellow indicate that the quality of the
solution found by that column’s tool was better than those of
the other tool’s corresponding mode. Lightplanner’s greedy
mode—column LP(G)—produces less good solutions than
Flightplanner’s greedy mode, FP(G). In most cases there is
little time saving between LP(G) and LP, making the heuristic
less useful on this benchmark. Although FP(G) was able to

5https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/

https://github.com/eniac/Flightplan/blob/master/flightplanner/examples/


Table I
PERFORMANCE COMPARISON BETWEEN FLIGHTPLANNER (FP) AND LIGHTPLANNER (LP).

‘PROLOG #LINES’ SHOWS THE SIZE OF THE PROLOG PROGRAM GENERATED FOR EACH BENCHMARK.

Bench. Time (milliseconds) Prolog Bench. Time (milliseconds) Prolog
#Prog. FP FP(G) LP LP(G) #Lines #Prog. FP FP(G) LP LP(G) #Lines

1 60 230 140 140 41 11 660 80 140 130 39
2 130 110 190 170 43 12 60 60 130 130 33
3 110 100 150 160 43 13 60 60 140 130 33
4 80 60 140 140 41 14 80 70 140 130 36
5 70 70 270 270 557 15 830 910 30K 30K 47664
6 120 90 240 240 136 16 ⊥ 670 230 760 604
7 60 70 270 270 557 17 500 390 5K 5K 12369
8 110 100 230 240 136 18 400 400 5K 5K 12369
9 50 60 140 140 33 19 ⊥ 130 4.5K 300 162
10 50 60 130 140 33 20 ⊥ 1.6K 15K 280 166

find a solution to program 20, the solution found by LP was
superior—it used less equipment, requiring less power and
less cost. In program 15 there appears to be a high time-cost
to load the problem, resulting in little difference between LP
and LP(G). Future work will investigate better heuristics, and
better tuning for the greedy heuristic.

VI. FUTURE WORK

Lightplanner has feature parity with Flightplanner yet is
smaller and simpler, making it better suited for additional
research, and for others to understand and extend. One item
for future work involves pre-processing the output from Flight-
plan’s analyser to reduce the size of the abstract program.
Even simple P4 programs—such as programs 15, 17, and 18
in Table I—can yield large abstract programs. A trade-off in
abstraction accuracy could be used to simplify the resulting
abstract program. By simplifying abstract programs we could
improve the planner’s scalability to handle more complex
distributed P4 programs.

Another item for future work involves adapting Lightplanner
to schedule workloads in our local testbed—and later in a
large scale distributed testbed—for a variety of applications
and programmable network hardware.
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