
CS351, Fall 2022
Data Lab: Manipulating Bits*

Assigned: Sep. 13. Due: by Sep. 26 at 11:59PM

Acknowledgement: TA Caitlin Davitt (cdavitt@hawk) is the lead person for this

lab. If you have questions about this lab, contact your TA. They’ll filter them on to the

lead as needed—don’t contact the lead person directly unless they’re your TA.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level rep-
resentations of integers and floating point numbers. You’ll do this by solving a
series of programming “puzzles.” Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in working your way through
them.

2 Logistics

This is an individual project. All handins are electronic. Clarifications and cor-
rections will be posted on the course Web page.

3 Handout Instructions

Like the previous lab assignment, this lab assignment will be deployed to the
labs/ directory that’s in your home directory on fourier. Recall that each lab
assignment will have its own directory inside labs/. The directory for this lab
assignment will be called “datalab-handout”—so it’s full path will be ~/labs/datalab-handout.

*Acknowledgement: This lab is based on earlier material by Bryant and O’Hallaron.

1

i The only file you will be modifying in this lab assignment is bits.c in
~/labs/datalab-handout.

bMake sure to read the “README” file in your ~/labs/datalab-handout
directory for additional helpful instructions on how to carry out this lab.

The bits.c file contains a skeleton for each of the 13 programming puzzles.
Your assignment is to complete each function skeleton using only straightline
code for the integer puzzles (i.e., no loops or conditionals) and a limited number
of C arithmetic and logical operators. Specifically, you are only allowed to use
the following eight operators:

! ~ & ^ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use
any constants longer than 8 bits. See the comments in bits.c for detailed rules
and a discussion of the desired coding style.

4 The Puzzles

This section describes the puzzles that you will be solving in bits.c.
Table 1 lists the puzzles in rough order of difficulty from easiest to hardest.

The “Rating” field gives the difficulty rating (the number of points) for the puz-
zle, and the “Max ops” field gives the maximum number of operators you are
allowed to use to implement each function. See the comments in bits.c for
more details on the desired behavior of the functions. You may also refer to the
test functions in tests.c. These are used as reference functions to express the
correct behavior of your functions, although they don’t satisfy the coding rules
for your functions.

For the floating-point puzzles, you will implement some common single-
precision floating-point operations. For these puzzles, you are allowed to use
standard control structures (conditionals, loops), and you may use both int and
unsigned data types, including arbitrary unsigned and integer constants. You
may not use any unions, structs, or arrays. Most significantly, you may not use
any floating point data types, operations, or constants. Instead, any floating-
point operand will be passed to the function as having type unsigned, and any
returned floating-point value will be of type unsigned. Your code should per-
form the bit manipulations that implement the specified floating point opera-
tions.

2

Name Description Rating Max ops
bitXor(x,y) x || y using only & and ~. 1 14
tmin() Smallest two’s complement integer 1 4
isTmax(x) True only if x x is largest two’s comp. integer. 1 10
allOddBits(x) True only if all odd-numbered bits in x set to 1. 2 12
negate(x) Return -x with using - operator. 2 5
isAsciiDigit(x) True if 0x30 ≤ x ≤ 0x39. 3 15
conditional Same as x ? y : z 3 16
isLessOrEqual(x, y) True if x ≤ y, false otherwise 3 24
logicalNeg(x)) Compute !x without using ! operator. 4 12
howManyBits(x) Min. no. of bits to represent x in two’s comp. 4 90
floatScale2(uf) Return bit-level equiv. of 2*f for f.p. arg. f. 4 30
floatFloat2Int(uf) Return bit-level equiv. of (int)f for f.p. arg. f. 4 30
floatPower2(x) Return bit-level equiv. of 2.0^x for integer x. 4 30

Table 1: Datalab puzzles. For the floating point puzzles, value f is the floating-
point number having the same bit representation as the unsigned integer uf.

The included program fshow helps you understand the structure of floating
point numbers. To compile fshow, switch to the handout directory and type:

unix > make

You can use fshow to see what an arbitrary pattern represents as a floating-point
number:

unix > ./ fshow 2080374784

Floating point value 2.658455992 e+36
Bit Representation 0x7c000000 , sign = 0, exponent = f8 ,

fraction = 000000
Normalized . 1.0000000000 X 2^(121)

You can also give fshow hexadecimal and floating point values, and it will deci-
pher their bit structure.

3

5 Evaluation

Your score will be computed out of a maximum of 67 points based on the follow-
ing distribution:

36 Correctness points.

26 Performance points.

5 Style points.

Correctness points. The puzzles you must solve have been given a difficulty
rating between 1 and 4, such that their weighted sum totals to 36. We will eval-
uate your functions using the btest program, which is described in the next
section. You will get full credit for a puzzle if it passes all of the tests performed
by btest, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you
can get the right answer. However, we want to instill in you a sense of keeping
things as short and simple as you can. Furthermore, some of the puzzles can be
solved by brute force, but we want you to be more clever. Thus, for each func-
tion we’ve established a maximum number of operators that you are allowed to
use for each function. This limit is very generous and is designed only to catch
egregiously inefficient solutions. You will receive two points for each correct
function that satisfies the operator limit.

Style points. Finally, we’ve reserved 5 points for a subjective evaluation of
the style of your solutions and your commenting. Your solutions should be as
clean and straightforward as possible. Your comments should be informative,
but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest,
dlc, and driver.pl — to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions
in bits.c. To build and use it, type the following two commands:

unix > make
unix > ./ btest

Notice that you must rebuild btest each time you modify your bits.c
file.

4

You’ll find it helpful to work through the functions one at a time, testing
each one as you go. You can use the -f flag to instruct btest to test only a
single function:

unix > ./ btest -f bitXor

You can feed it specific function arguments using the option flags -1, -2,
and -3:

unix > ./ btest -f bitXor -1 4 -2 5

Check the file README for documentation on running the btest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK
group that you can use to check for compliance with the coding rules for
each puzzle. The typical usage is:

unix > ./ dlc bits.c

The program runs silently unless it detects a problem, such as an illegal
operator, too many operators, or non-straightline code in the integer puz-
zles. Running with the -e switch:

unix > ./ dlc -e bits.c

causes dlc to print counts of the number of operators used by each func-
tion. Type ./dlc -help for a list of command line options.

• driver.pl: This is a driver program that uses btest and dlc to compute
the correctness and performance points for your solution. It takes no ar-
guments:

unix > ./ driver .pl

Your instructors will use driver.pl to evaluate your solution.

6 Handin Instructions

Like with the previous assignment, in order to submit this assignment you do
not need to do anything after saving your changes. At the deadline, the lab as-
signment will be collected from your directory and graded.

b If you’re submitting your assignment late (and make use of any grace
days you have any left, or take the daily deductions thereafter) then make

5

sure to contact your TA before the deadline, otherwise the version of your
assignment at the deadline will be graded.

7 Advice

• Don’t include the <stdio.h> header file in your bits.c file, as it confuses
dlc and results in some non-intuitive error messages. You will still be able
to use printf in your bits.c file for debugging without including the
<stdio.h> header, although gcc will print a warning that you can ignore.

• The dlc program enforces a stricter form of C declarations than is the case
for C++ or that is enforced by gcc. In particular, any declaration must
appear in a block (what you enclose in curly braces) before any statement
that is not a declaration. For example, it will complain about the following
code:

int foo(int x)
{

int a = x;
a *= 3; /* Statement that is not a declaration */
int b = a; /* ERROR: Declaration not allowed here */

}

6

	Introduction
	Logistics
	Handout Instructions
	The Puzzles
	Evaluation
	Handin Instructions
	Advice

