
CS351, Fall 2022
Malloc Lab: Writing a Dynamic Storage Allocator*

Assigned: Nov. 8. Due: by Nov. 28 at 11:59PM

Acknowledgement: TA Alexander Wolosewicz (awolosewicz@hawk) is the lead per-

son for this lab. If you have questions about this lab, contact your TA. They’ll filter them

on to the lead as needed—don’t contact the lead person directly unless they’re your TA.

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e.,
your own version of the malloc, free and realloc routines. You are encour-
aged to explore the design space creatively and implement an allocator that is
correct, efficient and fast.

2 Starting the assignment

As usual, this lab assignment will be deployed to the labs/ directory that’s in
your home directory on fourier. Recall that each lab assignment will have its
own directory inside labs/. The directory for this lab assignment will be called
“malloclab-handout”—so it’s full path on fourier will be ~/labs/malloclab-handout.

i The only file you will be modifying in this lab assignment is mm.c in
~/labs/malloclab-handout.

bMake sure to read the “README” file in your ~/labs/malloclab-handout
directory for additional helpful instructions on how to carry out this lab.

*Acknowledgement: This lab is based on earlier material by Bryant and O’Hallaron.

1

The mdriver.c program is a driver program that allows you to evaluate the
performance of your solution. Use the command make to generate the driver
code and run it with the command ./mdriver -V. (The -V flag displays helpful
summary information.)

Looking at the file mm.c you’ll notice a C structure team into which you should
insert the requested identifying information about your one-person team (i.e.,
you). Do this right away so you don’t forget.

When you have completed the lab, you will hand in only one file (mm.c),
which contains your solution.

3 How to Work on the Lab

Your dynamic storage allocator will consist of the following four functions, which
are declared in mm.h and defined in mm.c.

int mm_init (void);
void * mm_malloc (size_t size);
void mm_free (void *ptr);
void * mm_realloc (void *ptr , size_t size);

The mm.c file we have given you implements the simplest but still functionally
correct malloc package that we could think of. Using this as a starting place,
modify these functions (and possibly define other private static functions), so
that they obey the following semantics:

• mm_init: Before calling mm_malloc mm_realloc or mm_free, the appli-
cation program (i.e., the trace-driven driver program that you will use to
evaluate your implementation) calls mm_init to perform any necessary
initializations, such as allocating the initial heap area. The return value
should be -1 if there was a problem in performing the initialization, 0 oth-
erwise.

• mm_malloc: The mm_malloc routine returns a pointer to an allocated
block payload of at least size bytes. The entire allocated block should
lie within the heap region and should not overlap with any other allocated
chunk.

We will comparing your implementation to the version of malloc sup-
plied in the standard C library (libc). Since the libc malloc always re-
turns payload pointers that are aligned to 8 bytes, your malloc implemen-
tation should do likewise and always return 8-byte aligned pointers.

2

• mm_free: The mm_free routine frees the block pointed to by ptr. It re-
turns nothing. This routine is only guaranteed to work when the passed
pointer (ptr) was returned by an earlier call to mm_malloc or mm_realloc
and has not yet been freed.

• mm_realloc: The mm_realloc routine returns a pointer to an allocated
region of at least size bytes with the following constraints.

– if ptr is NULL, the call is equivalent to mm_malloc(size);

– if size is equal to zero, the call is equivalent to mm_free(ptr);

– if ptr is not NULL, it must have been returned by an earlier call to
mm_malloc or mm_realloc. The call to mm_realloc changes the size
of the memory block pointed to by ptr (the old block) to size bytes
and returns the address of the new block. Notice that the address of
the new block might be the same as the old block, or it might be dif-
ferent, depending on your implementation, the amount of internal
fragmentation in the old block, and the size of the realloc request.

The contents of the new block are the same as those of the old ptr
block, up to the minimum of the old and new sizes. Everything else
is uninitialized. For example, if the old block is 8 bytes and the new
block is 12 bytes, then the first 8 bytes of the new block are identical
to the first 8 bytes of the old block and the last 4 bytes are uninitial-
ized. Similarly, if the old block is 8 bytes and the new block is 4 bytes,
then the contents of the new block are identical to the first 4 bytes of
the old block.

These semantics match the the semantics of the corresponding libc malloc,
realloc, and free routines. Type man malloc to the shell for complete docu-
mentation.

4 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly
and efficiently. They are difficult to program correctly because they involve a lot
of untyped pointer manipulation. You will find it very helpful to write a heap
checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

3

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the function int mm_check(void) in mm.c.
It will check any invariants or consistency conditions you consider prudent. It
returns a nonzero value if and only if your heap is consistent. You are not lim-
ited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages when mm_check fails.

This consistency checker is for your own debugging during development.
When you submit mm.c, make sure to remove any calls to mm_check as they will
slow down your throughput. Style points will be given for your mm_check func-
tion. Make sure to put in comments and document what you are checking.

5 Support Routines

The memlib.c package simulates the memory system for your dynamic memory
allocator. You can invoke the following functions in memlib.c:

• void *mem_sbrk(int incr): Expands the heap by incr bytes, where
incr is a positive non-zero integer and returns a generic pointer to the
first byte of the newly allocated heap area. The semantics are identical
to the Unix sbrk function, except that mem_sbrk accepts only a positive
non-zero integer argument.

• void *mem_heap_lo(void): Returns a generic pointer to the first byte in
the heap.

• void *mem_heap_hi(void): Returns a generic pointer to the last byte in
the heap.

• size_t mem_heapsize(void): Returns the current size of the heap in
bytes.

• size_t mem_pagesize(void): Returns the system’s page size in bytes
(4K on Linux systems).

4

6 The Trace-driven Driver Program

The driver program mdriver.c in your ~/labs/malloclab-handout directory
on fourier tests your mm.c package for correctness, space utilization, and through-
put. The driver program is controlled by a set of trace files that are included
in your ~/labs/malloclab-handout directory. Each trace file contains a se-
quence of allocate, reallocate, and free directions that instruct the driver to call
your mm_malloc, mm_realloc, and mm_free routines in some sequence. The
driver and the trace files are the same ones we will use when we grade your
handin mm.c file.

The driver mdriver.c accepts the following command line arguments:

• -t <tracedir>: Look for the default trace files in directory tracedir in-
stead of the default directory defined in config.h.

• -f <tracefile>: Use one particular tracefile for testing instead of the
default set of tracefiles.

• -h: Print a summary of the command line arguments.

• -l: Run and measure libc malloc in addition to the student’s malloc
package.

• -v: Verbose output. Print a performance breakdown for each tracefile in a
compact table.

• -V: More verbose output. Prints additional diagnostic information as each
trace file is processed. Useful during debugging for determining which
trace file is causing your malloc package to fail.

7 Programming Rules

• You should not change any of the interfaces in mm.c.

• You should not invoke any memory-management related library calls or
system calls. This excludes the use of malloc, calloc, free, realloc,
sbrk, brk or any variants of these calls in your code.

• You are not allowed to define any global or static compound data struc-
tures such as arrays, structs, trees, or lists in your mm.c program. However,
you are allowed to declare global scalar variables such as integers, floats,
and pointers in mm.c.

5

• For consistency with the libc malloc package, which returns blocks aligned
on 8-byte boundaries, your allocator must always return pointers that are
aligned to 8-byte boundaries. The driver will enforce this requirement for
you.

8 Evaluation

You will receive zero points if you break any of the rules or your code is buggy
and crashes the driver. Otherwise, your grade will be calculated as follows:

• Correctness (20 points). You will receive full points if your solution passes
the correctness tests performed by the driver program. You will receive
partial credit for each correct trace.

• Performance (35 points). Two performance metrics will be used to evalu-
ate your solution:

– Space utilization: The peak ratio between the aggregate amount of
memory used by the driver (i.e., allocated via mm_malloc or mm_realloc
but not yet freed via mm_free) and the size of the heap used by your
allocator. The optimal ratio equals to 1. You should find good poli-
cies to minimize fragmentation in order to make this ratio as close as
possible to the optimal.

– Throughput: The average number of operations completed per sec-
ond.

The driver program summarizes the performance of your allocator by com-
puting a performance index, P , which is a weighted sum of the space uti-
lization and throughput

P = wU + (1−w)min

(
1,

T

Tl i bc

)
where U is your space utilization, T is your throughput, and Tl i bc is the es-
timated throughput of libc malloc on your system on the default traces.1

The performance index favors space utilization over throughput, with a
default of w = 0.6.

Observing that both memory and CPU cycles are expensive system re-
sources, we adopt this formula to encourage balanced optimization of

1The value for Tl i bc is a constant in the driver (4 Mops/s) that your lead TA established when
they configured the program.

6

both memory utilization and throughput. Ideally, the performance in-
dex will reach P = w + (1− w) = 1 or 100%. A score of 90%+ will receive
the full 35 points, while scores below 90% will receive credit according to
(P + 0.1)× 35. Since each metric will contribute at most w and 1− w to
the performance index, respectively, you should not go to extremes to op-
timize either the memory utilization or the throughput only. To receive a
good score, you must achieve a balance between utilization and through-
put.

• Style (10 points).

– Your code should be decomposed into functions and use as few global
variables as possible.

– Your code should begin with a header comment that describes the
structure of your free and allocated blocks, the organization of the
free list, and how your allocator manipulates the free list. each func-
tion should be preceeded by a header comment that describes what
the function does.

– Each subroutine should have a header comment that describes what
it does and how it does it.

– Your heap consistency checker mm_check should be thorough and
well-documented.

You will be awarded 5 points for a good heap consistency checker and 5
points for good program structure and comments.

9 Handin Instructions

As usual, in order to submit this assignment you do not need to do anything after
saving your changes. At the deadline, the lab assignment will be collected from
your directory and graded.

b If you’re submitting your assignment late (and make use of any grace
days you have any left, or take the daily deductions thereafter) then make
sure to contact your TA before the deadline, otherwise the version of your
assignment at the deadline will be graded.

7

10 Hints

• Use the mdriver -f option. During initial development, using tiny trace
files will simplify debugging and testing. We have included two such trace
files (short1,2-bal.rep) that you can use for initial debugging.

• Use the mdriver -v and -V options. The -v option will give you a detailed
summary for each trace file. The -V will also indicate when each trace file
is read, which will help you isolate errors.

• Compile with gcc -g and use a debugger. A debugger will help you isolate
and identify out of bounds memory references.

• Understand every line of the malloc implementation in the textbook. The
textbook has a detailed example of a simple allocator based on an implicit
free list. Use this is a point of departure. Don’t start working on your allo-
cator until you understand everything about the simple implicit list allo-
cator.

• Encapsulate your pointer arithmetic in C preprocessor macros. Pointer
arithmetic in memory managers is confusing and error-prone because of
all the casting that is necessary. You can reduce the complexity signifi-
cantly by writing macros for your pointer operations. See the text for ex-
amples.

• Do your implementation in stages. The first 9 traces contain requests to
malloc and free. The last 2 traces contain requests for realloc, malloc,
and free. We recommend that you start by getting your malloc and free
routines working correctly and efficiently on the first 9 traces. Only then
should you turn your attention to the realloc implementation. For starters,
build realloc on top of your existing malloc and free implementations.
But to get really good performance, you will need to build a stand-alone
realloc.

• Use a profiler. You may find the gprof tool helpful for optimizing perfor-
mance.

• Start early! It is possible to write an efficient malloc package with a few
pages of code. However, we can guarantee that it will be some of the most
difficult and sophisticated code you have written so far in your career. So
start early, and good luck!

8

	Introduction
	Starting the assignment
	How to Work on the Lab
	Heap Consistency Checker
	Support Routines
	The Trace-driven Driver Program
	Programming Rules
	Evaluation
	Handin Instructions
	Hints

