ILLINOIS TECH

Introduction

CS351: Systems Programming
Day 1: Aug. 23, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron

Quick poll

m Cexperience?
Which compiler/tools?

m Assembly language experience?
Which architecture and assembler/tools?

m Experience with other systems languages?

lllinois Tech CS351 Fall 2022

Overview

Course theme
Five realities

How the course fits into the CS/ECE curriculum
Academic integrity

lllinois Tech CS351 Fall 2022

Course Theme:
Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis
m These abstractions have limits
= Especially in the presence of bugs
" Need to understand details of underlying implementations

m Useful outcomes from taking CS351
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems, Storage Systems, etc.

lllinois Tech CS351 Fall 2022

Abstractions?

It means many things!

For an example, let’s take “Hello, world!”

Three versions of the program: Python vs C vs Assembly
They all give the same output!

How do they differ in their abstractions?

How do they differ in the resources required?
(How do they compare in terms of “efficiency”?)

lllinois Tech CS351 Fall 2022

Do you see the abstractions?

10

1", NEWLINE

Next time: You’ll learn how to
0 understand this.

Do you see the abstractions?

10

1", NEWLINE

Data types,

segments,

instruction set architecture (ISA),
1 assembler-specific builtins (e.g., db, S),
L syscall behavior.

Next time: You’ll learn how to
0 understand this.

Abstractions?

It means many things!
For an example, let’s take “Hello, world!”

Three versions of the program: Python vs C vs Assembly
They all give the same output! ~200 =30 ~5

How do they differ in their abstractions?

How do they differ in the resources required?

More Syscalls = More Overhead
= Less Performance

Next time: I'll show you how #syscalls comes about

lllinois Tech CS351 Fall 2022 8

Great Reality #1.:
Ints are not Integers, Floats are not Reals

m Example 1:Is x2>0?

= Float’s: Yes!

" Int’s:

eoi 2.

Fro

-

. 1,306... 1,307...

BAAA

D
B

-

... 32,767...-32,768...

5

<o

2 0.=32,767...-32,7%6 ...

25

=

= 40000 * 40000 — 1600000000
= 50000 * 50000 — ?7?

m Example2:Is(x+y)+z = x+ (y +2)?
= Unsigned & Signed Int’s: Yes!

" Float’s:

- (1e20 +-1e20) + 3.14 --> 3.14

. 120+ (-1€20 + 3.14) --> ??
lllinois Tech CS351 Fall 2022

Source: xkcd.com/571

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I"

m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
" |nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
"= Need to understand which abstractions apply in which contexts

" |mportant issues for compiler writers and serious application
programmers

lllinois Tech CS351 Fall 2022

10

Great Reality #2:
You’'ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly

= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level
execution model

= Behavior of programs in presence of bugs
= High-level language models break down

® Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency

" |mplementing system software
= Compiler has machine code as target
= Operating systems must manage process state

= Fighting malware
= x86 assembly is the language of choice!

11

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical
Abstraction

m Memory is not unbounded
" |t must be allocated and managed
= Many applications are memory dominated

m Memory referencing bugs especially pernicious
= Effects are distant in both time and space

m Memory performance is not uniform

= Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory system can lead to
major speed improvements

lllinois Tech CS351 Fall 2022

12

Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) = 3.14

fun(l) - 3.14

fun(2) - 3.1399998664856
fun(3) = 2.00000061035156
fun(4) - 3.14

fun(6) = Segmentation fault

= Result is system specific
lllinois Tech CS351 Fall 2022

Memory Referencing Bug Example

typedef struct ({ fun (0)
int a[2]; fun (1)
double d; fun (2)

} struct t; fun (3)

fun (4)
fun (6)

Explanation:

Critical State
?
?
f‘
d7 ... d4
d3 ... do
struct t =
- all]
al0]

1111l

O = N W H~ U1 O

.14

.14
.1399998664856
.00000061035156
.14

Segmentation fault

wWMhNDWwWww

Location accessed by
fun (i)

14

Memory Referencing Errors

m Cand C++ do not provide any memory protection
® Qut of bounds array references
= |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, ...
= Understand what possible interactions may occur

= Use or develop tools to detect referencing errors (e.g. Valgrind)
lllinois Tech CS351 Fall 2022

15

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written

= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

m Must understand system to optimize performance
" How programs compiled and executed
"= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

lllinois Tech CS351 Fall 2022

16

Memory System Performance Example

void copyij(int src[2048] [2048],
int dst[2048] [2048])

{

int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][]J] = src[i][]]:

{

/
S

}

int

int i,3;
for (j = 0; 3
for (i = 0;
dst[i] []]

void copyji(int src[2048] [2048],

dst[2048] [2048])

2048; j++)
< 2048; i++)
src[i] [j];

n e A

4.3ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization

m Performance depends on access patterns
® Including how step through multi-dimensional array

lllinois Tech CS351 Fall 2022

81.8ms

17

Why The Performance Differs

Read throughput (MB/s)

copyij

16000 -
14000 -
12000

10000

32k

128k

o5 512k

2m
. s7 8m
Stride (x8 bytes) 39m Size (bytes)
s11

128m

18

Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks
" Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

lllinois Tech CS351 Fall 2022

19

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® QOperating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

lllinois Tech CS351 Fall 2022

20

Course Perspective (Cont.)

m Our Course is Programmer-Centric

® Purpose is to show that by knowing more about the underlying
system, one can be more effective as a programmer

= Enable you to
= Write programs that are more reliable and efficient
= Incorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Cover material in this course that you won’t see elsewhere
= Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone!

lllinois Tech CS351 Fall 2022

21

Role within CS/ECE Curriculum

ICS 450
Operating
Systems

CS 451

Intro Par. Mobile App

S 442

2 Distr7 evelo/ent

RN

CS 331
Data Structures
& Algorithms

CS 350 / ECE24
Computer Org
& Assembly Lng

lllinois Tech CS351 Fall 2022

22

Why challenge abstractions?

m Real “full stack” understanding
Nuts, bolts, and fundamentals.

m Tricky debugging
(e.g., when using experimental compilers or hardware)

m Resource-constrained computing
m High-performance computing

m Low-level programming

(e.g., drivers, parts of the OS) Next time: I'll show you

actual examples
m Games

m Security & cryptography

m Research
(on all of the above)

Example of Why

https://gitlab.com/DeDos/flowdar/-/blob/master/generation/tracer hooks.c#L99

__GJCCrIoutce__— ((JdcoCraccor 7T
F flowdar trace_end (void)
{
Q) Project information ¥
[Repository inline void
__cyg_profile_func_enter (void * callee, void x caller)
Files {
. struct log_entry entry;
Commits 9- y y
Branches
asm("movqg %%rdi, %0" : "=r" (entry.rdi));
Tags asm('"movg %%rsi, %0" : "=r" (entry.rsi));

) asm("movg %%rdx, %@" : "=r" (entry.rdx));
Contributors asm("movqg %%rcx, %0" : "=r" (entry.rcx));
Graph asm("movg %%r8, %0" : "=r" (entry.r8));

asm("movag %%r9, %0" : "=r" (entry.r9));
Compare
asm('"movg %%rax, %0" : "=r" (entry.callee));
[Issues 0 ,
§3 Merge requests 0 entry.direction = FUNCTION_CALL;

) Deployments

A Packages & Registries
entry.caller = caller;

G2 Monitor entry.callee = callee;
il i '
L Analytics entry.pid = getpid();
entry.tid = (long)syscall(__NR_gettid);

« Collapse sidebar int result =

https://gitlab.com/DeDos/flowdar/-/blob/master/generation/tracer_hooks.c

Why? http://lwww.cs.iit.edu/~nsultanal/student_projects/

Opportunities for Student Research Projects

Info about research projects with me in Fall or Spring semesters

Nik Sultana, Assistant Professor of Computer Science, Illinois Institute of Technology

Why work on research as a student?

Because it benefits both the research and the student. The research gains from students' input and ener;
covered in coursework or an internship. Depending on how much you engage with the research, it's poss
research artefact, or a code release.

This research experience can be pivotal for deciding what to do after finishing your current degree progr.
the technical skills you develop.

If you're thinking of doing a PhD -- or if you want to consider that option -- then doing research as a studd
mindset from coursework. In addition to acquiring this mindset, doing research as a student can help yo(
to work in, understanding some of the state of the art, and learning relevant techniques. Both undergradj

If you're considering enrolling for a PhD in Computer Science related to my resea

What could you work on?
When deciding what to work on, you can be guided by your curiosity, what skills you have, and what skills you'd like to develop further.

C coming semester I'm offering these student projects to both undergrad and grad students. Contact me if you have the necessary skills and wish to find out more:

Low-level system modelling. This requires strong C++ skills. Knowledge of computer architecture is a plus.
If you're an undergrad you can participate on this project by applying to the Vi program run by the Pritzker Institute.

o - g (Taken)

« Network modelling 2. This requires strong Haskell and/or OCaml skills, and knowledge of networking.
« Armour R&D. Engineering students (e.g., ECE) are welcome to contact me to discuss %D proposals related to hardware and network engineering.
« Extending the Caper tool. This requires strong OCaml skills and some knowledge of networking.

You can try Caper online through the 1m site. For more information about how it works, read the

http://www.cs.iit.edu/~nsultana1/student_projects/

(The amazing)
Teaching Assistants

Lab 1: Kirtan Shetty - kshetty11@hawk / b

at SB-112J

Lab 2: Alexander Wolosewicz -- awolosewicz@hawk
at SB-112E

Lab 3: Gauri Kumari -- gkumari@hawk

at SB-112F T 150

Lab 4: Caitlin Davitt -- cdavitt@hawk

at SB-108 T

lllinois Tech CS351 Fall 2022

Cheating: Description

Please pay close attention

What is cheating?

Sharing code: by copying, retyping, looking at, or supplying a file

Describing: verbal description of code from one person to another.

Coaching: helping your friend to write a lab, line by line

Searching the Web for solutions

Copying code from a previous course or online solution
= You are only allowed to use code we supply

What is NOT cheating?

Explaining how to use systems or tools
Helping others with high-level design issues

See the course syllabus for details.

Ignorance is not an excuse

27

Cheating: Consequences

m Penalty for cheating:

= Removal from course with failing grade (no exceptions!)
" Permanent mark on your record

m Detection of cheating:

= We have sophisticated tools for detecting code plagiarism
= Last Fall, 20 students were caught cheating and failed the course.
= Some were expelled from the University

m Don’tdoit!

= Start early
= Ask the TAs for help when you get stuck

lllinois Tech CS351 Fall 2022

28

Consider this

Employers care about skills more than grades.
Cheating can get you the grade, but not the skills.

Your job interview has already begun.
Take your degree seriously.

Getting hired is hard — mis-hires are expensive!
Start working on your interview performance now.

Don’t rely on catching up — it becomes harder over time.

Making up for lost time is an opportunity cost.
Instead, apply continuous effort.

Best way to learn: engage and exercise.
Learning is messy and it takes work.
But it’ll improve your skills. See first point on this slide.

lllinois Tech CS351 Fall 2022

29

Textbooks

m Randal E. Bryant and David R. O’Hallaron,

= Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016

" http://csapp.cs.cmu.edu
" This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Brian Kernighan and Dennis Ritchie,
= The C Programming Language, Second Edition, Prentice Hall, 1988
= Still the best book about C, from the originators

lllinois Tech CS351 Fall 2022

30

Course Components

m Lectures

Higher level concepts

m Labs (5)

The heart of the course

Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

~2 weeks each
Provide in-depth understanding of an aspect of systems
Programming and measurement

m Exams (midterm + final)

= Test your understanding of concepts & mathematical principles

lllinois Tech CS351 Fall 2022

31

Getting Help

m Class Web page:
http://www.cs.iit.edu/~nsultanal/teaching/F22CS351/

= Complete schedule of lectures, exams, and assignments
= Copies of lectures, assignments, exams, solutions

m Blackboard

= Used for announcements, grading.

m Discord
= Used for a/synchronous contact with TAs.

lllinois Tech CS351 Fall 2022

32

Getting Help
m Discord: #cs351

= Use this for all communication with the teaching staff
= Caitlin: @Endeavour#8857

= Kirtan : @kirtan#0856

= Alexander: @Ruling#1073

" Gauri: @GauriKumari#1380

m Office hours:

= See course website

lllinois Tech CS351 Fall 2022

Lab Policies

m Work groups

" You must work alone on all lab assignments

m Handins
= Labs due at 11:59pm on the day of its deadline (see course website
for timetable)
" Handin happens automatically on Fourier — just leave your code
where it is!

lllinois Tech CS351 Fall 2022

34

Facilities

m Labs will use the server called Fourier
" shell> ssh fourier.cs.iit.edu
= OTS have provided you with logon credentials — check that you can

access Fourier!
" To access Fourier from outside campus, you must use IIT’s VPN.

" Fourier is our “single source of truth”
= |f your lab code works on Fourier, then it works!

= |f your lab code works on your laptop but not on Fourier, then it
doesn’t work!

m Getting help with Fourier:
= Please direct questions to your TA

lllinois Tech CS351 Fall 2022

35

Timeliness

m Grace days

= 5 grace days for the semester (across all labs).

= Covers scheduling crunch, out-of-town trips, illnesses, minor
setbacks

= Save them until late in the term!
m Lateness penalties

" Once grace day(s) used up, get penalized 10% per day
"= No handins later than 5 days after due date

m Catastrophic events
= Major illness, death in family, ...
" Formulate a plan (with your academic advisor) to get back on track

m Advice

" Once you start running late, it’s really hard to catch up
36

Policies: Grading

m Exams (50%): midterm (25%), final (25%)
m Labs (50%): weighted according to effort

m Final grades based on a straight scale
(see course website)

lllinois Tech CS351 Fall 2022

37

Programs and Data

m Topics
= Bits operations, arithmetic, assembly language programs
= Representation of C control and data structures
" |Includes aspects of architecture and compilers

m Assignments
= |2 (datalab): Manipulating bits

lllinois Tech CS351 Fall 2022

38

The Memory Hierarchy

m Topics
= Memory technology, memory hierarchy, caches, disks, locality
" |ncludes aspects of architecture and OS

m Assignments
= |3 (cachelab): Building a cache simulator and optimizing for locality.
= Learn how to exploit locality in your programs.

lllinois Tech CS351 Fall 2022

39

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" |ncludes aspects of compilers, OS, and architecture

m Assignments
= |4 (tshlab): Writing your own Unix shell.
= A first introduction to concurrency

lllinois Tech CS351 Fall 2022

40

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" |ncludes aspects of architecture and OS

m Assignments
= |5 (malloclab): Writing your own malloc package
= Get a real feel for systems-level programming

lllinois Tech CS351 Fall 2022

41

Lab Rationale

m Each lab has a well-defined goal, and is similar to solving a
puzzle

m Doing the lab should result in new skills and concepts

m We try to use competition in a fun and healthy way
= Set a reasonable threshold for full credit

lllinois Tech CS351 Fall 2022

42

Per-lecture feedback

Better sooner rather than later!
| can help with issues sooner.
There is a per-lecture feedback form.

The form is anonymous.

(It checks that you’re at lllinois Tech
to filter abuse, but | don’t see who
submitted any of the forms.)

https://forms.gle/qoeEbBUTYXo5FiU1A
I’ll remind about this at each lecture.

lllinois Tech CS351 Fall 2022

43

https://forms.gle/qoeEbBuTYXo5FiU1A

Stay engaged!

m The timetable on the course webpage will guide you.

m Make an effort to learn C and x86_64.
It won’t just help you in this course.

m Carry out the preparation before each lecture.
Your future self with thank you!

Aug 25 Aug 26
LEC 2: C and x86_64 toolchains

Preparation: Read K&R Chapter 1,

and work through Ray Toal's NASM tutorial.

Qan N1 Qan N2

Welcome
and
Enjoy!

Questions?

