
C and x86_64 toolchains

CS351: Systems Programming
Day 2: Aug. 25, 2022

Instructor:
Nik Sultana

Quick poll
¢ Who has accessed the course webpage so far?
¢ Who has accessed Fourier so far?

§ Who has tried but failed to access Fourier from on-campus?
§ Who has tried but failed to access Fourier from off-campus?

¢ Who has compiled a C program since the last lecture?
¢ Who has dabbled in assembly since the last lecture?

(If you’re not sure how to do any of the above, ask your TA)

2Illinois Tech CS351 Fall 2022

Overview
¢ Overview of the C language
¢ Tools for C programming
¢ Overview of x86_64
¢ Examples of x86_64 programs

3Illinois Tech CS351 Fall 2022

Overview of the C language
¢ Extremely influential language!
¢ Used for both systems and applications.

Originally used to develop UNIX: the kernel, shell, and
various utilities – including the C compiler toolchain.

¢ What else is written in C?
OS kernels: Linux (and Android), Windows, parts of macOS.
Games, applications, device drivers …

¢ Original goal: portability and convenience.
More convenient that writing assembly by hand.

¢ Powerful (expressive), allowing you to bend abstractions.
But beware:
§ Static types but permissive casting.
§ Manual memory management.

4Illinois Tech CS351 Fall 2022

Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)

5Illinois Tech CS351 Fall 2022

Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)

6Illinois Tech CS351 Fall 2022

Hello.c Hello.o
?

Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)

7Illinois Tech CS351 Fall 2022

Hello.c Hello.o
Compiler

a.out

libc.a
?

Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)

8Illinois Tech CS351 Fall 2022

Hello.c Hello.o
Compiler

a.out

libc.a
Linker

Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)

9Illinois Tech CS351 Fall 2022

Hello.c Hello.o
Compiler

a.out

libc.a
Linker

File extension conventions in UNIX
.o “object file”

(nothing to do with OOP)
.a static library
.so dynamic library

Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)

10Illinois Tech CS351 Fall 2022

Hello.c Hello.o
Compiler

a.out

libc.a
Linker

File extension conventions in UNIX
.o “object file”

(nothing to do with OOP)
.a static library
.so dynamic library

This involves resolving cross-object references.
Static vs Dynamic. We’ll have a whole lecture on linking.

Tools for C programming
¢ Compiler: e.g., gcc, clang
¢ Linter: these days C compilers emit lint-like warnings.
¢ Linker: e.g., ld
¢ Debugger: e.g., gdb
¢ Memory tracer: e.g., valgrind
¢ Profiler: e.g., gprof
¢ Source control: e.g., git
¢ Build automation: e.g., make
¢ Other tools: editor, terminal multiplexer, test manager.

11Illinois Tech CS351 Fall 2022

Tools for C programming
¢ Compiler: e.g., gcc, clang
¢ Linter: these days C compilers emit lint-like warnings.
¢ Linker: e.g., ld
¢ Debugger: e.g., gdb
¢ Memory tracer: e.g., valgrind
¢ Profiler: e.g., gprof
¢ Source control: e.g., git
¢ Build automation: e.g., make
¢ Other tools: editor, terminal multiplexer, test manager.

12Illinois Tech CS351 Fall 2022

Let’s look at an example workflow!

The classic starter program in C
¢ Print “Hello world!” to the terminal.
¢ The first lab assignment is a variation on this theme.
¢ We’ll see the use of language features:

§ Types and variables
§ Functions
§ Control flow
§ IO

¢ We’ll see the use of tools:
§ Compiler (gcc)
§ Memory tracer (valgrind)
§ Build tool (make)

13Illinois Tech CS351 Fall 2022

Compiler driver hides intermediate steps

14Illinois Tech CS351 Fall 2022

l2_helloworld.c l2_hellofunctions.h l2_hellofunctions.c

Compile + Link

l2_helloworld

A different compilation flow

15Illinois Tech CS351 Fall 2022

l2_helloworld.c l2_hellofunctions.h l2_hellofunctions.c

Compile Compile

Link

l2_helloworld

l2_helloworld.o l2_hellofunctions.o

Bonus tools
¢ man: Display “manual page” for a function/program/command.

¢ Examples:
§ man man
§ man ldd
§ man printf
§ man syscalls

¢ Other bonus tools: nm, ldd, objdump

16Illinois Tech CS351 Fall 2022

The classic starter program in C
¢ Print “Hello world!” to the terminal.
¢ The first lab assignment is a variation on this theme.
¢ We’ll see the use of language features:

§ Types and variables
§ Functions
§ Control flow
§ IO

¢ We’ll see the use of tools:
§ Compiler (gcc)
§ Linker (ld)
§ Debugger (gdb)
§ Memory tracer (valgrind)
§ Build tool (make)

17Illinois Tech CS351 Fall 2022

¢ And bonus tools:
§ Documentation (man)
§ Symbols (nm)
§ Dynamic dependencies (ldd)
§ Disassembler (objdump)
§ We saw strace last time.

That went by quickly but don’t worry!
Retry this in your first lab assignment.

Ask your TA if you’re stuck.

How to learn C?
¢ There’s only one way: by writing programs.

If you know Java, some of the syntax will be familiar.
¢ Work through the K&R book.

(Copies in the library)
¢ Attend labs and engage your TA.
¢ Do the exercises in the CS:APP3e book.

(Copies in the library)
¢ We’ll see and understand C source code in this course.

This’ll show you the language “in action”,
but won’t replace the need for you to practice writing C.

18Illinois Tech CS351 Fall 2022

x86_64

Assembly Usage
¢ Linux

20Illinois Tech CS351 Fall 2022

https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

Assembly Usage
¢ Quake

21Illinois Tech CS351 Fall 2022

https://github.com/id-Software/Quake/blob/master/QW/server/math.s

https://github.com/id-Software/Quake/blob/master/QW/server/math.s

Overview of x86_64
¢ “x86” refers to a CPU architecture designed by Intel.

It’s also used to refer to the architecture’s instruction set.
It supports word sizes of 32/16/8 bits.

¢ “x86_64” is a backwards-compatible extension by AMD.
It supports 64-bit words.
“x86_64” is also referred to as “amd64”.

¢ Many Internet servers are currently based on x86_64 CPUs.
(And these days fewer laptops.)

¢ Ok, so what is the x86_64 instruction set?

22Illinois Tech CS351 Fall 2022

! WARNING
Programming in assembly can be too much fun!

From Day 1

How did that difference come about?

~500 ~30 ~5

What else is your C program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_c >\dev\null
execve("./l1_helloworld_c", ["./l1_helloworld_c"], 0x7ffe4c6f2350 /* 25 vars */) = 0
brk(NULL) = 0x2302000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=47878, ...}) = 0
mmap(NULL, 47878, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd518cbd000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`&\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2156664, ...}) = 0
mmap(NULL, 3985920, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fd5186db000
mprotect(0x7fd51889f000, 2093056, PROT_NONE) = 0
mmap(0x7fd518a9e000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c3000) …
mmap(0x7fd518aa4000, 16896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) …
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cbc000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cba000
arch_prctl(ARCH_SET_FS, 0x7fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
mprotect(0x7fd518a9e000, 16384, PROT_READ) = 0
mprotect(0x600000, 4096, PROT_READ) = 0
mprotect(0x7fd518cca000, 4096, PROT_READ) = 0
munmap(0x7fd518cbd000, 47878) = 0
fstat(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc8000
write(1, "Hello, world!\n", 14) = 14
exit_group(14) = ?
+++ exited with 14 +++

What else is your ASM program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_asm >\dev\null
execve("./l1_helloworld_asm", ["./l1_helloworld_asm"], 0x7fffb3b4ec50 /* 25 vars */) = 0
write(1, "Hello, world!\n", 14) = 14
exit(0) = ?
+++ exited with 0 +++

From Day 1

Let’s do that now!

From Day 1

We’ll use strace output to decipher what’s happening

System calls
¢ Invocation of OS-provided services.
¢ “man man”

we see: “2 System calls (functions provided by the kernel)”

¢ “man 2 write”
¢ “man 2 exit”

29Illinois Tech CS351 Fall 2022

System calls

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

30Illinois Tech CS351 Fall 2022

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

What else is your ASM program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_asm >\dev\null
execve("./l1_helloworld_asm", ["./l1_helloworld_asm"], 0x7fffb3b4ec50 /* 25 vars */) = 0
write(1, "Hello, world!\n", 14) = 14
exit(0) = ?
+++ exited with 0 +++

From Day 1

From Day 1

What does the rest of it mean?
- How do we know to store 1 in “rax”
- What’s “rdi”, and what’s 1?

System calls
¢ “System V Application Binary Interface: AMD64

Architecture Processor Supplement” pg 123
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
Edited by Matz et al., 2012.

34Illinois Tech CS351 Fall 2022

https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

Kernel Syscall Interface

C Standard Library

l1_helloworld.asm l2_helloworld.asm l1_helloworld.c

e.g., printf()

e.g., write()

Above and beyond:
write & compile “Hello world” in C without using libc.

36Illinois Tech CS351 Fall 2022

System calls vs Standard library
¢ Functions made available by a programming language.
¢ Usually they wrap one/more syscalls.
¢ “man man”

we see: “3 Library calls (functions within program libraries)”

¢ “man 3 printf”

37Illinois Tech CS351 Fall 2022

l2_helloworld.asm

38Illinois Tech CS351 Fall 2022

l2_helloworld.asm

39Illinois Tech CS351 Fall 2022

Ideas for “above and beyond”
(If you’re up for a challenge)

¢ Port the lab assignments from C to another systems
language, such as Go or Rust,
or even to x86_64 or Aarch64.
Adapt the instructions for testing and debugging.

¢ Port the Makefiles to another build system,
such as Ninja or CMake.
Adapt the instructions for testing and debugging.

¢ There is no quantifiable academic credit for any of the
above, but there’s non-zero good karma and learning.

40Illinois Tech CS351 Fall 2022

Your first CS351 Lab!
¢ Make an effort to learn C and x86_64.

It will help you beyond this course.

Next steps
¢ Make sure that you can access Fourier.
¢ Once on Fourier, try out the C and assembly examples from

the lectures.

(If you’re not sure how to do any of the above, ask your TA)

42Illinois Tech CS351 Fall 2022

Per-lecture feedback

¢ Better sooner rather than later!
¢ I can help with issues sooner.
¢ There is a per-lecture feedback form.
¢ The form is anonymous.

(It checks that you’re at Illinois Tech
to filter abuse, but I don’t see who
submitted any of the forms.)

¢ https://forms.gle/qoeEbBuTYXo5FiU1A
¢ I’ll remind about this at each lecture.

https://forms.gle/qoeEbBuTYXo5FiU1A

Questions?

