ILLINOIS TECH

C and x86_64 toolchains

CS351: Systems Programming
Day 2: Aug. 25, 2022

Instructor:
Nik Sultana

Quick poll

m Who has accessed the course webpage so far?

m Who has accessed Fourier so far?
" Who has tried but failed to access Fourier from on-campus?
" Who has tried but failed to access Fourier from off-campus?

m Who has compiled a C program since the last lecture?
m Who has dabbled in assembly since the last lecture?

(If you’re not sure how to do any of the above, ask your TA)

lllinois Tech CS351 Fall 2022

Overview

m Overview of the C language
m Tools for C programming

m Overview of x86_64

m Examples of x86_64 programs

lllinois Tech CS351 Fall 2022

Overview of the C language

m Extremely influential language!

m Used for both systems and applications.
Originally used to develop UNIX: the kernel, shell, and
various utilities — including the C compiler toolchain.

m What else is written in C?
OS kernels: Linux (and Android), Windows, parts of macOS.
Games, applications, device drivers ...

m Original goal: portability and convenience.
More convenient that writing assembly by hand.

m Powerful (expressive), allowing you to bend abstractions.
But beware:
= Static types but permissive casting.

= Manual memory management.
lllinois Tech CS351 Fall 2022

Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

lllinois Tech CS351 Fall 2022

Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o

O

lllinois Tech CS351 Fall 2022

Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o > a.out
1ibcj§:;21

lllinois Tech CS351 Fall 2022

Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o a.out

libc.a -

lllinois Tech CS351 Fall 2022

Tools for C programming

Compiler: translates C source code to machine code.

Linter: warns about possible language misuse — bugs!

Linker: separately-compiled files are “linked” together.

Debugger: inspects comp
Memory tracer: detects p
Profiler: detects potential
Source control: tracks chz

File extension conventions in UNIX

.0 “object file”

(nothing to do with OOP)
.a static library
.s0 dynamic library

Build automation: compiles large code-bases (thousands

of files)

Hello.c 'Hello.o a.out

libc.a -

lllinois Tech CS351 Fall 2022

This involves resolving cross-object references.
Static vs Dynamic. We'll have a whole lecture on linking.

Com es C source code to machine code.
Lint ns about possible language misuse — bugs!

Linker: separately-compiled files are “linked” together.
Debugger: inspects comp File extension conventions in UNIX

.0 “object file”
(nothing to do with OOP)

.a static library
Source control: tracks chg .so dynamic library

Memory tracer: detects p
Profiler: detects potential

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o a.out

libc.a -

lllinois Tech CS351 Fall 2022 10

Tools for C programming

Compiler: e.g., gcc, clang

Linter: these days C compilers emit lint-like warnings.
Linker: e.g., Id

Debugger: e.g., gdb

Memory tracer: e.g., valgrind

Profiler: e.g., gprof

Source control: e.g., git

Build automation: e.g., make

Other tools: editor, terminal multiplexer, test manager.

lllinois Tech CS351 Fall 2022

11

Tools for C programming

m Compiler: e.g., gcc, clang

m Memory tracer: e.g., valgrind

m Build automation: e.g., make
m Other tools: editor, terminal multiplexer

Let’s look at an example workflow!

lllinois Tech CS351 Fall 2022

12

The classic starter program in C

m Print “Hello world!” to the terminal.

m The first lab assignment is a variation on this theme.

m We'll see the use of language features:
= Types and variables
" Functions
= Control flow
= 10
m We'll see the use of tools:
= Compiler (gcc)
= Memory tracer (valgrind)
= Build tool (make)

lllinois Tech CS351 Fall 2022

13

Compiler driver hides intermediate steps

12_helloworld.c

12_hellofunctions.h

I2_hellofunctions.c

Compile + Link

12 _helloworld

lllinois Tech CS351 Fall 2022

14

A different compilation flow

12_helloworld.c

12_hellofunctions.h

I2_hellofunctions.c

Compile

Compile

12 _helloworld.o

I2_hellofunctions.o

Link

12 _helloworld

lllinois Tech CS351 Fall 2022

15

Bonus tools

B Mman: Display “manual page” for a function/program/command.
m Examples:

" man man

" man ldd

" man printf

" man syscalls

m Other bonus tools: nm, ldd, objdump

lllinois Tech CS351 Fall 2022

16

That went by quickly but don’t worry!
Retry this in your first lab assighnment.

Ask your TA if you're stuck.

m And bonus tools:
= Documentation (man)
= Symbols (nm)
= Dynamic dependencies (ldd)
= Disassembler (objdump)

= \We saw strace last time.

How to learn C?

m There’s only one way: by writing programs.
If you know Java, some of the syntax will be familiar.

m Work through the K&R book.
(Copies in the library)

m Attend labs and engage your TA.

m Do the exercises in the CS:APP3e book.
(Copies in the library)

m We'll see and understand C source code in this course.
This’ll show you the language “in action”,

but won’t replace the need for you to practice writing C.

lllinois Tech CS351 Fall 2022

18

X86 64

Assembly Usage

m Linux https://qithub.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

& torvalds / linux Public £\ Notifications % Fork 44.2k Yr Star 137k~

<> Code 9 Pullrequests 313 ® Actions [Projects @ Security |~ Insights

¥ master ~ linux /arch /x86 / boot / copy.S Go to file

Jiri Slaby x86/asm: Do not annotate functions with GLOBAL ... Latest commit 37818af on Oct 11, 2019 'O History
A 3 contributors . '?
65 lines (58 sloc) = 1.02 KB Raw Blame 2 ~ @ §

/%* SPDX-License-Identifier: GPL-2.0-only x/

¥ Copyright (C) 1991, 1992 Linus Torvalds
Copyright 2007 rPath, Inc. - All Rights Reserved

ey

W NV A WN
%

#include <linux/linkage.h>

10

11 /%

12 * Memory copy routines

13 */

14

15 .codel6

16 Jtext

17

18 SYM_FUNC_START_NOALIGN(memcpy)
19 pushw %si 20
20 pushw %di

21 movw %ax, %di

https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

Assembly Usage

| Quake https://github.com/id-Software/Quake/blob/master/QW/server/math.s

i id-Software / Quake Public £\ Notifications % Fork 771 Yy Star 37k -~
<> Code {9 Pullrequests 3 ® Actions @ Security |~ Insights
¥ master ~ Quake / QW / server / math.s Go to file

t% Travis Bradshaw The Quake sources as originally release und... - Latest commit 023db3 on Jan 31, 2012 'O History

A1 0 contributors

331 lines (295 sloc) 8.14 KB Raw Blame Z |~ B G
1 //
2 // math.s
3 // x86 assembly-language math routines.
4
5 #include "asm_1i386.h"
6 #include "quakeasm.h"
7
8
9 #if 1d386
10
11 .data
12
13 .align 4
14 Ljmptab: .long Lcase®, Lcasel, Lcase2, Lcase3
15 . long Lcased4, Lcase5, Lcaseb, Lcase7
16
17 Jtext
18
19
20 #define EMINS 4+4

N
[

#define EMAXS 4+8

)
)

https://github.com/id-Software/Quake/blob/master/QW/server/math.s

Overview of x86_64

“x86” refers to a CPU architecture designed by Intel.
It’s also used to refer to the architecture’s instruction set.
It supports word sizes of 32/16/8 bits.

“x86_64" is a backwards-compatible extension by AMD.
It supports 64-bit words.
“x86_64" is also referred to as “amd64”.

Many Internet servers are currently based on x86 64 CPUs.

(And these days fewer laptops.)

Ok, so what is the x86_64 instruction set?

lllinois Tech CS351 Fall 2022

22

1\ WARNING

Programming in assembly can be too much fun!

Abstractions?

It means many things!

For an example, let’s take “Hello, world!”

Three versions of the program: Python vs C vs Assembly
They all give the same output! ~500 ~30 S
How do they differ in their abstractions?

How do they differ in the resources required?

How did that difference come about?

lllinois Tech CS351 Fall 2022

What else is your C program doing?

[nsultana@fourier 11]$ strace ./1l1_helloworld_c >\dev\null

execve("./1l1 helloworld c", ["./1l1] helloworld c"], 0x7ffe4c6£2350 /* 25 vars */) = 0

brk (NULL) = 0x2302000

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP_ PRIVATE|MAP ANONYMOUS, -1, 0) = 0x7£fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat(3, {st_mode=S IFREG|0644, st size=47878, ...}) = 0

mmap (NULL, 47878, PROT READ, MAP PRIVATE, 3, 0) = 0x7£d4518cbd000

close(3) =0

open("/1ib64/1libc.so.6", O RDONLY|O CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"&\2\0\0\O\O\O"..., 832) = 832
fstat(3, {st_mode=S IFREG|0755, st size=2156664, ...}) =0

mmap (NULL, 3985920, PROT READ|PROT EXEC, MAP PRIVATE|MAP DENYWRITE, 3, 0) = 0x7£d5186db000
mprotect (0x7£d51889£000, 2093056, PROT NONE) = 0

mmap (0x7£d518a9e000, 24576, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x1c3000)
mmap (0x7£d518aa4000, 16896, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP ANONYMOUS, -1, 0)
close(3) =0

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE |MAP_ ANONYMOUS, -1, 0)
mmap (NULL, 8192, PROT READ|PROT WRITE, MAP PRIVATE |MAP_ ANONYMOUS, -1, 0)
arch prctl(ARCH_SET FS, 0x7£fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii”, F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii”, F_OK) = -1 ENOENT (No such file or directory)
mprotect (0x7£d518a9e000, 16384, PROT READ) = 0

mprotect (0x600000, 4096, PROT_READ) =0

mprotect (0x7£d518cca000, 4096, PROT READ) = 0

munmap(0x7£d518cbd000, 47878) =0

fstat(l, {st_mode=S IFREG|0664, st size=0, ...}) = 0

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE |MAP ANONYMOUS, -1, 0) = 0x7£d518cc8000
write(l, "Hello, world!\n", 14) = 14

exit group(14) = 7?

+++ exited with 14 +++

0x7£d518cbc000
0x7£d518cbal00

What else is your ASM program doing?

[nsultana@fourier 11]$ strace ./1l1_helloworld_asm >\dev\null
execve("./11_helloworld asm", ["./11l helloworld asm"], 0x7fffb3bd4ec50 /* 25 vars */) = 0

write(l, "Hello, world!\n", 14) = 14

exit(0) = ?
+++ exited with 0 +++

Do you see the abstractions?

10

1", NEWLINE

Next time: You’ll learn how to
0 \ understand this.

Let’s do that now!

Do you see the abstractions?

1", NEWLINE

O

@ Next time: You’ll learn how to
3 understand this.

We'll use strace output to decipher what’s happening

System calls

m Invocation of OS-provided services.

® “man man”
we see: “2 System calls (functions provided by the kernel)”

m “man 2 write”
m “man 2 exit”

lllinois Tech CS351 Fall 2022

29

System calls

https://qithub.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall 64.tbl

¥ master ~ linux /arch / x86 / entry / syscalls / syscall_64.tbl Go to file

g kvaneesh mm/mempolicy: wire up syscall set_mempolicy_home_node - Latest commit 21b@84f on Jan 14 (D History

Ax 22 contributors Q ﬁ‘ ’ i aL ub e et

419 lines (418 sloc) 14.5 KB

Raw Blame 7 20|12
1 #
2 # 64-bit system call numbers and entry vectors
3 %
4 # The format is:
5 # <number> <abi> <name> <entry point>
6 #
7 # The __x64_sys_x() stubs are created on-the-fly for sys_x() system calls
8 #
9 # The abi is "common", "64" or "x32" for this file.
#
0 common read sys_read
1 common write sys_write
13 2 common open sys_open
14 3 common close sys_close
6 57 common fork sys_fork
58 common vfork sys_vfork
59 64 execve sys_execve
60 common exit sys_exit
72 61 common wait4 sys_wait4
73 62 common kill sys_kill

lllinois Tech CS351 Fall 2022

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

What else is your ASM program doing?

urier 11]$ strace ./11_helloworld_asm >\dev\null

[nsultman
execv " helloworld asm", ["./11l] helloworld asm"], 0x7fffb3bd4ec50 /* 25 vars */) = 0
writ "Hello, world!\n", 14) = 14

+++ ith 0 +++

Do you see the abstractions?

10

1", NEWLINE

= & Next time: You’ll learn how to
0 understand this.

Do you see the abstractions?

1", NEWLINE
‘Q What does the rest of it mean?
A - How do we know to store 1 in “rax”
;@ - What’s “rdi”, and what’s 1?

Next time: You’ll learn how to
understand this.

System calls

m “System V Application Binary Interface: AMD64
Architecture Processor Supplement” pg 123
https://refspecs.linuxbase.org/elf/x86 64-abi-0.99.pdf
Edited by Matz et al., 2012.

A.2.1 Calling Conventions

The Linux AMDG64 kernel uses internally the same calling conventions as user-
level applications (see section [3.2.3] for details). User-level applications that like
to call system calls should use the functions from the C library. The interface
between the C library and the Linux kernel is the same as for the user-level appli-
cations with the following differences:

1. User-level applications use as integer registers for passing the sequence
$rdi, $rsi, $rdx, $rcx, $r8 and $r9. The kernel interface uses $rdi,
$rsi, $rdx, $r10, $r8 and %$r9.

2. A system-call is done via the syscall instruction. The kernel destroys
registers $rcx and $rll.

3. The number of the syscall has to be passed in register $rax.

lllinois Tech CS351 Fall 2022

34

https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

¥%define NEWLINE 10

section .data
message: db "Hello, world!", NEWLINE
message_len: equ $-message

section .text
global _start

_Start:
mov rax, 1
mov rdi, 1
mov rsi, message
mov rdx, message_len
syscall

mov rax, 60
mov rdi, O
syscall

11 _helloworld.asm

12 _helloworld.asm

I1_helloworld.c

/

C Standard Library

e.g., printf ()

Kernel Syscall Interface

e.g., write()

Above and beyond:

write & compile “Hello world” in C without using libc.

]

lllinois Tech CS351 Fall 2022

36

System calls vs Standard library

m Functions made available by a programming language.

m Usually they wrap one/more syscalls.

= “man man”
we see: “3 Library calls (functions within program libraries)”

m “man 3 printf”

lllinois Tech CS351 Fall 2022

37

12_helloworld.asm

A.2.1 Calling Conventions

The Linux AMD64 kernel uses internally the same calling conventions as user-
level applications (see section [3.2.3] for details). User-level applications that like
to call system calls should use the functions from the C library. The interface
between the C library and the Linux kernel is the same as for the user-level appli-
cations with the following differences:

1. User-level applications use as integer registers for passing the sequence
$rdi, $rsi, $rdx, $rcx, $r8 and $r 9. The kernel interface uses $rdi,
$rsi, $rdx, $r10, $r8 and $r9.

2. A system-call is done via the syscall instruction. The kernel destroys
registers $rcx and $rl11l.

3. The number of the syscall has to be passed in register $rax.

lllinois Tech CS351 Fall 2022

38

12_helloworld.asm
10 ; "\n’

lllinois Tech CS351 Fall 2022

. NEWLINE, @

39

W

Ideas for “above and beyond”

(If you’re up for a challenge)

m Port the lab assignments from C to another systems
language, such as Go or Rust,
or even to x86_64 or Aarch64.
Adapt the instructions for testing and debugging.

m Port the Makefiles to another build system,
such as Ninja or CMake.
Adapt the instructions for testing and debugging.

m There is no quantifiable academic credit for any of the
above, but there’s non-zero good karma and learning.

lllinois Tech CS351 Fall 2022

40

Your first CS351 Lab!

m Make an effort to learn C and x86_64.
It will help you beyond this course.

Calendar
Aug 22 Aug 23

LEC 1: Introduction
Preparation: Read CS:APP Chapter 1

Qﬁ Aug 29 Aug 30

LAB LEC 3: Bits, Bytes, and Ints: Part 1
Preparation: Read CS:APP 2.1
Assigned: Lab 1: Preliminaries

Sep 05 Sep 06
Labor Day LEC 5: Floating Point
Preparation: Read CS:APP 2.4

Sep 12 Sep 13
LAB LEC 7: Machine Prog: Control
DUE: Lab 1 (Preliminaries) Preparation: Read CS:APP 3.6

Assigned: Lab 2: Datalab and Data Representations

Next steps

m Make sure that you can access Fourier.

m Once on Fourier, try out the C and assembly examples from
the lectures.

(If you’re not sure how to do any of the above, ask your TA)

lllinois Tech CS351 Fall 2022

42

Per-lecture feedback

Better sooner rather than later!
| can help with issues sooner.
There is a per-lecture feedback form.

The form is anonymous.

(It checks that you’re at lllinois Tech
to filter abuse, but | don’t see who
submitted any of the forms.)

https://forms.gle/qoeEbBUTYXo5FiU1A
I’ll remind about this at each lecture.

https://forms.gle/qoeEbBuTYXo5FiU1A

Questions?

