
C and x86_64 toolchains

CS351: Systems Programming
Day 2:  Aug. 25, 2022

Instructor:
Nik Sultana



Quick poll
¢ Who has accessed the course webpage so far? 
¢ Who has accessed Fourier so far?

§ Who has tried but failed to access Fourier from on-campus?
§ Who has tried but failed to access Fourier from off-campus?

¢ Who has compiled a C program since the last lecture?
¢ Who has dabbled in assembly since the last lecture?

(If you’re not sure how to do any of the above, ask your TA)
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Overview
¢ Overview of the C language
¢ Tools for C programming
¢ Overview of x86_64
¢ Examples of x86_64 programs
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Overview of the C language
¢ Extremely influential language!
¢ Used for both systems and applications.

Originally used to develop UNIX: the kernel, shell, and 
various utilities – including the C compiler toolchain.

¢ What else is written in C?
OS kernels: Linux (and Android), Windows, parts of macOS.
Games, applications, device drivers …

¢ Original goal: portability and convenience.
More convenient that writing assembly by hand.

¢ Powerful (expressive), allowing you to bend abstractions.
But beware:
§ Static types but permissive casting.
§ Manual memory management.
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Tools for C programming
¢ Compiler: translates C source code to machine code.
¢ Linter: warns about possible language misuse – bugs!
¢ Linker: separately-compiled files are “linked” together.
¢ Debugger: inspects compiled and running programs.
¢ Memory tracer: detects potential memory bugs.
¢ Profiler: detects potential performance bugs.
¢ Source control: tracks changes/revisions to code.
¢ Build automation: compiles large code-bases (thousands

of files)
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File extension conventions in UNIX
.o    “object file”

(nothing to do with OOP)
.a    static library
.so dynamic library

This involves resolving cross-object references.
Static vs Dynamic. We’ll have a whole lecture on linking.



Tools for C programming
¢ Compiler: e.g., gcc, clang
¢ Linter: these days C compilers emit lint-like warnings.
¢ Linker: e.g., ld
¢ Debugger: e.g., gdb
¢ Memory tracer: e.g., valgrind
¢ Profiler: e.g., gprof
¢ Source control: e.g., git
¢ Build automation: e.g., make
¢ Other tools: editor, terminal multiplexer, test manager.
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Let’s look at an example workflow!



The classic starter program in C
¢ Print “Hello world!” to the terminal.
¢ The first lab assignment is a variation on this theme.
¢ We’ll see the use of language features:

§ Types and variables
§ Functions
§ Control flow
§ IO

¢ We’ll see the use of tools:
§ Compiler (gcc)
§ Memory tracer (valgrind)
§ Build tool (make)
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Compiler driver hides intermediate steps
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A different compilation flow
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Bonus tools
¢ man: Display “manual page” for a function/program/command.

¢ Examples:
§ man man
§ man ldd
§ man printf
§ man syscalls

¢ Other bonus tools: nm, ldd, objdump
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¢ And bonus tools:
§ Documentation (man)
§ Symbols (nm)
§ Dynamic dependencies (ldd)
§ Disassembler (objdump)
§ We saw strace last time.

That went by quickly but don’t worry!
Retry this in your first lab assignment.

Ask your TA if you’re stuck.



How to learn C?
¢ There’s only one way: by writing programs.

If you know Java, some of the syntax will be familiar.
¢ Work through the K&R book.

(Copies in the library)
¢ Attend labs and engage your TA.
¢ Do the exercises in the CS:APP3e book.

(Copies in the library)
¢ We’ll see and understand C source code in this course.

This’ll show you the language “in action”,
but won’t replace the need for you to practice writing C.
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x86_64



Assembly Usage
¢ Linux
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https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S


Assembly Usage
¢ Quake
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https://github.com/id-Software/Quake/blob/master/QW/server/math.s

https://github.com/id-Software/Quake/blob/master/QW/server/math.s


Overview of x86_64
¢ “x86” refers to a CPU architecture designed by Intel.

It’s also used to refer to the architecture’s instruction set.
It supports word sizes of 32/16/8 bits.

¢ “x86_64” is a backwards-compatible extension by AMD.
It supports 64-bit words.
“x86_64” is also referred to as “amd64”.

¢ Many Internet servers are currently based on x86_64 CPUs.
(And these days fewer laptops.)

¢ Ok, so what is the x86_64 instruction set?
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! WARNING
Programming in assembly can be too much fun!



From Day 1

How did that difference come about?

~500 ~30 ~5



What else is your C program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_c >\dev\null
execve("./l1_helloworld_c", ["./l1_helloworld_c"], 0x7ffe4c6f2350 /* 25 vars */) = 0
brk(NULL)                               = 0x2302000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc9000
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=47878, ...}) = 0
mmap(NULL, 47878, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd518cbd000
close(3)                                = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`&\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2156664, ...}) = 0
mmap(NULL, 3985920, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fd5186db000
mprotect(0x7fd51889f000, 2093056, PROT_NONE) = 0
mmap(0x7fd518a9e000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c3000) …
mmap(0x7fd518aa4000, 16896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) …
close(3)                                = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cbc000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cba000
arch_prctl(ARCH_SET_FS, 0x7fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
mprotect(0x7fd518a9e000, 16384, PROT_READ) = 0
mprotect(0x600000, 4096, PROT_READ)     = 0
mprotect(0x7fd518cca000, 4096, PROT_READ) = 0
munmap(0x7fd518cbd000, 47878)           = 0
fstat(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc8000
write(1, "Hello, world!\n", 14)         = 14
exit_group(14)                          = ?
+++ exited with 14 +++



What else is your ASM program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_asm >\dev\null
execve("./l1_helloworld_asm", ["./l1_helloworld_asm"], 0x7fffb3b4ec50 /* 25 vars */) = 0
write(1, "Hello, world!\n", 14)         = 14
exit(0)                                 = ?
+++ exited with 0 +++



From Day 1

Let’s do that now!



From Day 1

We’ll use strace output to decipher what’s happening



System calls
¢ Invocation of OS-provided services.
¢ “man man”

we see: “2   System calls (functions provided by the kernel)”

¢ “man 2 write”
¢ “man 2 exit”
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System calls

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
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What else is your ASM program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_asm >\dev\null
execve("./l1_helloworld_asm", ["./l1_helloworld_asm"], 0x7fffb3b4ec50 /* 25 vars */) = 0
write(1, "Hello, world!\n", 14)         = 14
exit(0)                                 = ?
+++ exited with 0 +++



From Day 1



From Day 1

What does the rest of it mean?
- How do we know to store 1 in “rax”
- What’s “rdi”, and what’s 1?



System calls
¢ “System V Application Binary Interface: AMD64 

Architecture Processor Supplement” pg 123
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
Edited by Matz et al., 2012.
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Kernel Syscall Interface

C Standard Library

l1_helloworld.asm l2_helloworld.asm l1_helloworld.c

e.g., printf()

e.g., write()

Above and beyond:
write & compile “Hello world” in C without using libc.
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System calls vs Standard library
¢ Functions made available by a programming language.
¢ Usually they wrap one/more syscalls.
¢ “man man”

we see: “3   Library calls (functions within program libraries)”

¢ “man 3 printf”
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l2_helloworld.asm
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l2_helloworld.asm
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Ideas for “above and beyond”
(If you’re up for a challenge)

¢ Port the lab assignments from C to another systems 
language, such as Go or Rust,
or even to x86_64 or Aarch64.
Adapt the instructions for testing and debugging.

¢ Port the Makefiles to another build system,
such as Ninja or CMake.
Adapt the instructions for testing and debugging.

¢ There is no quantifiable academic credit for any of the 
above, but there’s non-zero good karma and learning.
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Your first CS351 Lab!
¢ Make an effort to learn C and x86_64.

It will help you beyond this course.



Next steps
¢ Make sure that you can access Fourier.
¢ Once on Fourier, try out the C and assembly examples from 

the lectures.

(If you’re not sure how to do any of the above, ask your TA)
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Per-lecture feedback

¢ Better sooner rather than later!
¢ I can help with issues sooner.
¢ There is a per-lecture feedback form.
¢ The form is anonymous.

(It checks that you’re at Illinois Tech
to filter abuse, but I don’t see who 
submitted any of the forms.)

¢ https://forms.gle/qoeEbBuTYXo5FiU1A
¢ I’ll remind about this at each lecture.

https://forms.gle/qoeEbBuTYXo5FiU1A


Questions?


