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C and x86_64 toolchains

CS351: Systems Programming
Day 2: Aug. 25, 2022

Instructor:
Nik Sultana



Quick poll

m Who has accessed the course webpage so far?

m Who has accessed Fourier so far?
" Who has tried but failed to access Fourier from on-campus?
" Who has tried but failed to access Fourier from off-campus?

m Who has compiled a C program since the last lecture?
m Who has dabbled in assembly since the last lecture?

(If you’re not sure how to do any of the above, ask your TA)
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Overview

m Overview of the C language
m Tools for C programming

m Overview of x86_64

m Examples of x86_64 programs
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Overview of the C language

m Extremely influential language!

m Used for both systems and applications.
Originally used to develop UNIX: the kernel, shell, and
various utilities — including the C compiler toolchain.

m What else is written in C?
OS kernels: Linux (and Android), Windows, parts of macOS.
Games, applications, device drivers ...

m Original goal: portability and convenience.
More convenient that writing assembly by hand.

m Powerful (expressive), allowing you to bend abstractions.
But beware:
= Static types but permissive casting.

= Manual memory management.
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Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)
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Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o

O
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Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o > a.out
1ibcj§:;21
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Tools for C programming

Compiler: translates C source code to machine code.
Linter: warns about possible language misuse — bugs!
Linker: separately-compiled files are “linked” together.
Debugger: inspects compiled and running programs.
Memory tracer: detects potential memory bugs.
Profiler: detects potential performance bugs.

Source control: tracks changes/revisions to code.

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o a.out

libc.a -
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Tools for C programming

Compiler: translates C source code to machine code.

Linter: warns about possible language misuse — bugs!

Linker: separately-compiled files are “linked” together.

Debugger: inspects comp
Memory tracer: detects p
Profiler: detects potential
Source control: tracks chz

File extension conventions in UNIX

.0 “object file”

(nothing to do with OOP)
.a static library
.s0 dynamic library

Build automation: compiles large code-bases (thousands

of files)

Hello.c 'Hello.o a.out

libc.a -

lllinois Tech CS351 Fall 2022




This involves resolving cross-object references.
Static vs Dynamic. We'll have a whole lecture on linking.

Com es C source code to machine code.
Lint ns about possible language misuse — bugs!

Linker: separately-compiled files are “linked” together.
Debugger: inspects comp File extension conventions in UNIX

.0 “object file”
(nothing to do with OOP)

.a static library
Source control: tracks chg .so dynamic library

Memory tracer: detects p
Profiler: detects potential

Build automation: compiles large code-bases (thousands
of files)

Hello.c 'Hello.o a.out

libc.a -
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Tools for C programming

Compiler: e.g., gcc, clang

Linter: these days C compilers emit lint-like warnings.
Linker: e.g., Id

Debugger: e.g., gdb

Memory tracer: e.g., valgrind

Profiler: e.g., gprof

Source control: e.g., git

Build automation: e.g., make

Other tools: editor, terminal multiplexer, test manager.
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Tools for C programming

m Compiler: e.g., gcc, clang

m Memory tracer: e.g., valgrind

m Build automation: e.g., make
m Other tools: editor, terminal multiplexer

Let’s look at an example workflow!
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The classic starter program in C

m Print “Hello world!” to the terminal.

m The first lab assignment is a variation on this theme.

m We'll see the use of language features:
= Types and variables
" Functions
= Control flow
= 10
m We'll see the use of tools:
= Compiler (gcc)
= Memory tracer (valgrind)
= Build tool (make)
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Compiler driver hides intermediate steps

12_helloworld.c

12_hellofunctions.h

I2_hellofunctions.c

Compile + Link

12 _helloworld
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A different compilation flow

12_helloworld.c

12_hellofunctions.h

I2_hellofunctions.c

Compile

Compile

12 _helloworld.o

I2_hellofunctions.o

Link

12 _helloworld
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Bonus tools

B Mman: Display “manual page” for a function/program/command.
m Examples:

" man man

" man ldd

" man printf

" man syscalls

m Other bonus tools: nm, ldd, objdump
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That went by quickly but don’t worry!
Retry this in your first lab assighnment.

Ask your TA if you're stuck.

m And bonus tools:
= Documentation (man)
= Symbols (nm)
= Dynamic dependencies (ldd)
= Disassembler (objdump)

= \We saw strace last time.




How to learn C?

m There’s only one way: by writing programs.
If you know Java, some of the syntax will be familiar.

m Work through the K&R book.
(Copies in the library)

m Attend labs and engage your TA.

m Do the exercises in the CS:APP3e book.
(Copies in the library)

m We'll see and understand C source code in this course.
This’ll show you the language “in action”,

but won’t replace the need for you to practice writing C.
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X86 64



Assembly Usage

m Linux https://qithub.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

& torvalds / linux  Public £\ Notifications % Fork 44.2k Yr Star 137k~

<> Code 9 Pullrequests 313 ® Actions [ Projects @ Security |~ Insights

¥ master ~  linux /arch /x86 / boot / copy.S Go to file

Jiri Slaby x86/asm: Do not annotate functions with GLOBAL ... Latest commit 37818af on Oct 11, 2019 'O History
A 3 contributors . '?
65 lines (58 sloc) = 1.02 KB Raw Blame 2 ~ @ §

/%* SPDX-License-Identifier: GPL-2.0-only x/

¥ Copyright (C) 1991, 1992 Linus Torvalds
Copyright 2007 rPath, Inc. - All Rights Reserved

ey

W NV A WN
%

#include <linux/linkage.h>

10

11 /%

12 * Memory copy routines

13 */

14

15 .codel6

16 Jtext

17

18  SYM_FUNC_START_NOALIGN(memcpy)
19 pushw  %si 20
20 pushw %di

21 movw %ax, %di


https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S

Assembly Usage

| Quake https://github.com/id-Software/Quake/blob/master/QW/server/math.s

i id-Software / Quake  Public £\ Notifications % Fork 771 Yy Star 37k -~
<> Code {9 Pullrequests 3 ® Actions @ Security |~ Insights
¥ master ~ Quake / QW / server / math.s Go to file

t% Travis Bradshaw The Quake sources as originally release und... - Latest commit 023db3 on Jan 31, 2012 'O History

A1 0 contributors

331 lines (295 sloc) 8.14 KB Raw  Blame Z |~ B G
1 //
2 // math.s
3 // x86 assembly-language math routines.
4
5 #include "asm_1i386.h"
6 #include "quakeasm.h"
7
8
9 #if 1d386
10
11 .data
12
13 .align 4
14 Ljmptab: .long Lcase®, Lcasel, Lcase2, Lcase3
15 . long Lcased4, Lcase5, Lcaseb, Lcase7
16
17 Jtext
18
19
20 #define EMINS  4+4

N
[

#define EMAXS  4+8

)
)


https://github.com/id-Software/Quake/blob/master/QW/server/math.s

Overview of x86_64

“x86” refers to a CPU architecture designed by Intel.
It’s also used to refer to the architecture’s instruction set.
It supports word sizes of 32/16/8 bits.

“x86_64" is a backwards-compatible extension by AMD.
It supports 64-bit words.
“x86_64" is also referred to as “amd64”.

Many Internet servers are currently based on x86 64 CPUs.

(And these days fewer laptops.)

Ok, so what is the x86_64 instruction set?
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1\ WARNING

Programming in assembly can be too much fun!




Abstractions?

It means many things!

For an example, let’s take “Hello, world!”

Three versions of the program: Python vs C vs Assembly
They all give the same output! ~500 ~30 S
How do they differ in their abstractions?

How do they differ in the resources required?

How did that difference come about?
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What else is your C program doing?

[nsultana@fourier 11]$ strace ./1l1_helloworld_c >\dev\null

execve("./1l1 helloworld c", ["./1l1] helloworld c"], 0x7ffe4c6£2350 /* 25 vars */) = 0

brk (NULL) = 0x2302000

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP_ PRIVATE|MAP ANONYMOUS, -1, 0) = 0x7£fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat(3, {st_mode=S IFREG|0644, st size=47878, ...}) = 0

mmap (NULL, 47878, PROT READ, MAP PRIVATE, 3, 0) = 0x7£d4518cbd000

close(3) =0

open("/1ib64/1libc.so.6", O RDONLY|O CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"&\2\0\0\O\O\O"..., 832) = 832
fstat(3, {st_mode=S IFREG|0755, st size=2156664, ...}) =0

mmap (NULL, 3985920, PROT READ|PROT EXEC, MAP PRIVATE|MAP DENYWRITE, 3, 0) = 0x7£d5186db000
mprotect (0x7£d51889£000, 2093056, PROT NONE) = 0

mmap (0x7£d518a9e000, 24576, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x1c3000)
mmap (0x7£d518aa4000, 16896, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP ANONYMOUS, -1, 0)
close(3) =0

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE |MAP_ ANONYMOUS, -1, 0)
mmap (NULL, 8192, PROT READ|PROT WRITE, MAP PRIVATE |MAP_ ANONYMOUS, -1, 0)
arch prctl(ARCH_SET FS, 0x7£fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii”, F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii”, F_OK) = -1 ENOENT (No such file or directory)
mprotect (0x7£d518a9e000, 16384, PROT READ) = 0

mprotect (0x600000, 4096, PROT_READ) =0

mprotect (0x7£d518cca000, 4096, PROT READ) = 0

munmap(0x7£d518cbd000, 47878) =0

fstat(l, {st_mode=S IFREG|0664, st size=0, ...}) = 0

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE |MAP ANONYMOUS, -1, 0) = 0x7£d518cc8000
write(l, "Hello, world!\n", 14) = 14

exit group(14) = 7?

+++ exited with 14 +++

0x7£d518cbc000
0x7£d518cbal00



What else is your ASM program doing?

[nsultana@fourier 11]$ strace ./1l1_helloworld_asm >\dev\null
execve("./11_helloworld asm", ["./11l helloworld asm"], 0x7fffb3bd4ec50 /* 25 vars */) = 0

write(l, "Hello, world!\n", 14) = 14

exit(0) = ?
+++ exited with 0 +++



Do you see the abstractions?

10

1", NEWLINE

Next time: You’ll learn how to
0 \ understand this.

Let’s do that now!



Do you see the abstractions?

1", NEWLINE

O

@ Next time: You’ll learn how to
3 understand this.

We'll use strace output to decipher what’s happening



System calls

m Invocation of OS-provided services.

® “man man”
we see: “2 System calls (functions provided by the kernel)”

m “man 2 write”
m “man 2 exit”
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System calls

https://qithub.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall 64.tbl

¥ master ~  linux /arch / x86 / entry / syscalls / syscall_64.tbl Go to file

g kvaneesh mm/mempolicy: wire up syscall set_mempolicy_home_node - Latest commit 21b@84f on Jan 14 (D History

Ax 22 contributors Q ﬁ‘ ’ i aL ub e et

419 lines (418 sloc) 14.5 KB

Raw  Blame 7 20|12
1 #
2 # 64-bit system call numbers and entry vectors
3 %
4 # The format is:
5 # <number> <abi> <name> <entry point>
6 #
7 # The __x64_sys_x() stubs are created on-the-fly for sys_x() system calls
8 #
9 # The abi is "common", "64" or "x32" for this file.
#
0 common read sys_read
1 common write sys_write
13 2 common open sys_open
14 3 common close sys_close
6 57 common fork sys_fork
58 common vfork sys_vfork
59 64 execve sys_execve
60 common exit sys_exit
72 61 common wait4 sys_wait4
73 62 common kill sys_kill
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https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

What else is your ASM program doing?

urier 11]$ strace ./11_helloworld_asm >\dev\null

[nsultman
execv " helloworld asm", ["./11l] helloworld asm"], 0x7fffb3bd4ec50 /* 25 vars */) = 0
writ "Hello, world!\n", 14) = 14

+++ ith 0 +++



Do you see the abstractions?

10

1", NEWLINE

= & Next time: You’ll learn how to
0 understand this.



Do you see the abstractions?

1", NEWLINE
‘Q What does the rest of it mean?
A - How do we know to store 1 in “rax”
;@ - What’s “rdi”, and what’s 1?

Next time: You’ll learn how to
understand this.



System calls

m “System V Application Binary Interface: AMD64
Architecture Processor Supplement” pg 123
https://refspecs.linuxbase.org/elf/x86 64-abi-0.99.pdf
Edited by Matz et al., 2012.

A.2.1 Calling Conventions

The Linux AMDG64 kernel uses internally the same calling conventions as user-
level applications (see section [3.2.3] for details). User-level applications that like
to call system calls should use the functions from the C library. The interface
between the C library and the Linux kernel is the same as for the user-level appli-
cations with the following differences:

1. User-level applications use as integer registers for passing the sequence
$rdi, $rsi, $rdx, $rcx, $r8 and $r9. The kernel interface uses $rdi,
$rsi, $rdx, $r10, $r8 and %$r9.

2. A system-call is done via the syscall instruction. The kernel destroys
registers $rcx and $rll.

3. The number of the syscall has to be passed in register $rax.
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https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

¥%define NEWLINE 10

section .data
message: db "Hello, world!", NEWLINE
message_len: equ $-message

section .text
global _start

_Start:
mov rax, 1
mov rdi, 1
mov rsi, message
mov rdx, message_len
syscall

mov rax, 60
mov rdi, O
syscall



11 _helloworld.asm

12 _helloworld.asm

I1_helloworld.c

/

C Standard Library

e.g., printf ()

Kernel Syscall Interface

e.g., write()

Above and beyond:

write & compile “Hello world” in C without using libc.

]
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System calls vs Standard library

m Functions made available by a programming language.

m Usually they wrap one/more syscalls.

= “man man”
we see: “3 Library calls (functions within program libraries)”

m “man 3 printf”
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12_helloworld.asm

A.2.1 Calling Conventions

The Linux AMD64 kernel uses internally the same calling conventions as user-
level applications (see section [3.2.3] for details). User-level applications that like
to call system calls should use the functions from the C library. The interface
between the C library and the Linux kernel is the same as for the user-level appli-
cations with the following differences:

1. User-level applications use as integer registers for passing the sequence
$rdi, $rsi, $rdx, $rcx, $r8 and $r 9. The kernel interface uses $rdi,
$rsi, $rdx, $r10, $r8 and $r9.

2. A system-call is done via the syscall instruction. The kernel destroys
registers $rcx and $rl11l.

3. The number of the syscall has to be passed in register $rax.
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12_helloworld.asm
10 ; "\n’
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W

Ideas for “above and beyond”

(If you’re up for a challenge)

m Port the lab assignments from C to another systems
language, such as Go or Rust,
or even to x86_64 or Aarch64.
Adapt the instructions for testing and debugging.

m Port the Makefiles to another build system,
such as Ninja or CMake.
Adapt the instructions for testing and debugging.

m There is no quantifiable academic credit for any of the
above, but there’s non-zero good karma and learning.
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Your first CS351 Lab!

m Make an effort to learn C and x86_64.
It will help you beyond this course.

Calendar
Aug 22 Aug 23

LEC 1: Introduction
Preparation: Read CS:APP Chapter 1

Qﬁ Aug 29 Aug 30

LAB LEC 3: Bits, Bytes, and Ints: Part 1
Preparation: Read CS:APP 2.1
Assigned: Lab 1: Preliminaries

Sep 05 Sep 06
Labor Day LEC 5: Floating Point
Preparation: Read CS:APP 2.4

Sep 12 Sep 13
LAB LEC 7: Machine Prog: Control
DUE: Lab 1 (Preliminaries) Preparation: Read CS:APP 3.6

Assigned: Lab 2: Datalab and Data Representations




Next steps

m Make sure that you can access Fourier.

m Once on Fourier, try out the C and assembly examples from
the lectures.

(If you’re not sure how to do any of the above, ask your TA)
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Per-lecture feedback

Better sooner rather than later!
| can help with issues sooner.
There is a per-lecture feedback form.

The form is anonymous.

(It checks that you’re at lllinois Tech
to filter abuse, but | don’t see who
submitted any of the forms.)

https://forms.gle/qoeEbBUTYXo5FiU1A
I’ll remind about this at each lecture.



https://forms.gle/qoeEbBuTYXo5FiU1A

Questions?



