## ILLINOIS TECH

## Floating Point

CS351: Systems Programming<br>Day 5: Sep. 6, 2022

Instructor:<br>Nik Sultana

Slides adapted from Bryant and O'Hallaron

## Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary


## Fractional binary numbers

■ What is $\mathbf{1 0 1 1 . 1 0 1}_{2}$ ?

## Fractional Binary Numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \times 2^{k}
$$

## Fractional Binary Numbers: Examples

■ Value
5 3/4
$27 / 8$
$17 / 16$

Representation
$101.11_{2}$
$10.111_{2}$
$1.0111_{2}$

■ Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$


## Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{k}$
- Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01]...2
- 1/5 0.001100110011[0011] ... 2
- 1/10 0.0001100110011[0011] ... 2
- Limitation \#2
- Just one setting of binary point within the $w$ bits
- Limited range of numbers (very small values? very large?)


## Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition

■ Example and properties
■ Rounding, addition, multiplication

- Floating point in C
- Summary


## IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard


## Floating Point Representation

- Numerical Form:

$$
(-1)^{\mathrm{S}} \mathrm{M} 2^{\mathrm{E}}
$$

- Sign bit s determines whether number is negative or positive
- Significand $M$ normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

■ Encoding

- MSB S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M )



## Precision options

- Single precision: 32 bits

| $s$ | $\exp$ |  | frac |
| :--- | :--- | :--- | :--- |
| 8-bits |  |  | 23-bits |

- Double precision: 64 bits

| $s$ | $\exp$ | frac |  |
| :--- | :--- | :--- | :--- |
| 1 | 11-bits | 52-bits |  |

■ Extended precision: 80 bits (Intel only)

| s | $\exp$ |  | frac |
| :--- | :--- | :--- | :--- |
| 1 | 15-bits | 63 or 64-bits |  |

## Interesting Numbers

\{single, double\}

Description

- Zero
- Smallest Pos. Denorm.
- Single $\approx 1.4 \times 10^{-45}$
- Double $\approx 4.9 \times 10^{-324}$
- Largest Denormalized
- Single $\approx 1.18 \times 10^{-38}$
- Double $\approx 2.2 \times 10^{-308}$
- Smallest Pos. Normalized
$00 . . .01$ 00... 00
$1.0 \times 2^{-\{126,1022\}}$
- Just larger than largest denormalized
- One
- Largest Normalized
- Single $\approx 3.4 \times 10^{38}$
- Double $\approx 1.8 \times 10^{308}$

| $\exp$ | frac | Numeric Value |
| :--- | :--- | :--- |
| $00 \ldots . .00$ | $00 \ldots 00$ | 0.0 |
| $00 \ldots 00$ | $00 \ldots . .01$ | $2^{-\{23,52\}} \times 2^{-\{126,1022\}}$ |

$00 . . .00$ 11... 11
$(1.0-\varepsilon) \times 2^{-\{126,1022\}}$
01... 11 00... 00
1.0
11... 10 11... 11
$(2.0-\varepsilon) \times 2^{\{127,1023\}}$

## "Normalized" Values

■ When: $\exp \neq 000 . . .0$ and $\exp \neq 111 . . .1$

- Exponent coded as a biased value: E = Exp - Bias
- Exp: unsigned value of exp field
- Bias $=2^{k-1}-1$, where $k$ is number of exponent bits
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

■ Significand coded with implied leading 1: $\mathrm{M}=1 . x x x$...x2

- xxx....x: bits of frac field
- Minimum when frac=000... 0 ( $\mathrm{M}=1.0$ )
- Maximum when frac=111...1 ( $\mathrm{M}=2.0-\varepsilon$ )
- Get extra leading bit for "free"


## Normalized Encoding Example

$$
\begin{aligned}
& v=(-1)^{\mathrm{S}} \mathrm{M} 2^{\mathrm{E}} \\
& \mathrm{E}=\mathrm{Exp}-\text { Bias }
\end{aligned}
$$

■ Value: float $F=15213.0$;

- $15213_{10}=11101101101101_{2}$

$$
=1.1101101101101_{2} \times 2^{13}
$$

■ Significand

| $M=$ | $1 . \underline{1101101101101}_{2}$ |
| :--- | :--- |
| frac $=$ | $\underline{11011011011010000000000} 2$ |

■ Exponent

| $E$ | $=$ | 13 |
| :--- | :--- | :--- |
| Bias $=$ | 127 |  |
| Exp $=$ | $140=10001100_{2}$ |  |

■ Result:

| 0 | 10001100 | 11011011011010000000000 |
| :---: | :---: | :---: |
| $s$ | $\exp$ | frac |

## Denormalized Values

$$
\begin{aligned}
& v=(-1)^{S} M 2^{E} \\
& E=1-\text { Bias }
\end{aligned}
$$

■ Condition: $\exp =000 . . .0$

- Exponent value: $\mathrm{E}=1$ - Bias (instead of $\mathrm{E}=0$ - Bias)

■ Significand coded with implied leading 0 : $M=0 . x x x$...x2

- xxx...x: bits of frac
- Cases
- exp $=000$...0, $\mathbf{f r a c}=000 . .0$
- Represents zero value
- Note distinct values: +0 and -0 (why?)
- $\exp =000 \ldots 0$, frac $\neq 000$... 0
- Numbers closest to 0.0
- Equispaced


## Special Values

■ Condition: $\exp =111$... 1

■ Case: $\exp =111 \ldots 1$, frac $=000 . . .0$

- Represents value $\infty$ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: $\exp =111 \ldots 1$, frac $\neq 000 . . .0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt( -1 ), $\infty-\infty, \infty \times 0$


## Visualization: Floating Point Encodings



## Today: Floating Point

■ Background: Fractional binary numbers
■ IEEE floating point standard: Definition
■ Example and properties
■ Rounding, addition, multiplication

- Floating point in C

■ Summary

## Tiny Floating Point Example



- 8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
- normalized, denormalized
- representation of $\mathrm{O}, \mathrm{NaN}$, infinity


## Dynamic Range (Positive Only)

$s$ exp frac $E$ Value
00000000
-6 0
00000001
00000010
...

| 0 | 0000 | 110 | -6 | $6 / 8 * 1 / 64=6 / 512$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0000 | 111 | -6 | $7 / 8 * 1 / 64=7 / 512$ |
| 0 | 0001 | 000 | -6 | $8 / 8 * 1 / 64=8 / 512$ |
| 0 | 0001 | 001 | -6 | $9 / 8 * 1 / 64=9 / 512$ |

$00110110 \quad-1 \quad 14 / 8 * 1 / 2=14 / 16$
$00110111 \quad-1 \quad 15 / 8 * 1 / 2=15 / 16$
$00111000 \quad 0 \quad 8 / 8 * 1=1$
$00111001 \quad 0 \quad 9 / 8 * 1=9 / 8$
$001110100 \quad 10 / 8 * 1=10 / 8$
$01110110 \quad 7 \quad 14 / 8 * 128=224$
$01110111 \quad 7 \quad 15 / 8 * 128=240$
01111000 n/a inf
$\mathrm{v}=(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$
$\mathrm{n}: \mathrm{E}=\mathrm{Exp}-$ Bias
d: E=1-Bias
closest to zero
largest denorm
smallest norm
closest to 1 below
closest to 1 above
largest norm

## Distribution of Values

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is $2^{3-1}-1=3$

- Notice how the distribution gets denser toward zero.



## Distribution of Values (close-up view)

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is 3



## Special Properties of the IEEE Encoding

■ FP Zero Same as Integer Zero

- All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider $-0=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity


## Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition

■ Example and properties

- Rounding, addition, multiplication
- Floating point in C

■ Summary

## Floating Point Operations: Basic Idea

■ $\mathrm{x}+\mathrm{f} \mathrm{y}=\operatorname{Round}(\mathrm{x}+\mathrm{y})$

■ $x x_{f} y=R o u n d(x \times y)$

- Basic idea
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac


## Rounding

- Rounding Modes (illustrate with \$ rounding)

| - | $\$ 1.40$ | $\$ 1.60$ | $\$ 1.50$ | $\$ 2.50$ | $-\$ 1.50$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - Towards zero | $\$ 1$ | $\$ 1$ | $\$ 1$ | $\$ 2$ | $-\$ 1$ |
| - Round down $(-\infty)$ | $\$ 1$ | $\$ 1$ | $\$ 1$ | $\$ 2$ | $-\$ 2$ |
| - Round up $(+\infty)$ | $\$ 2$ | $\$ 2$ | $\$ 2$ | $\$ 3$ | $-\$ 1$ |
| - Nearest Even (default) | $\$ 1$ | $\$ 2$ | $\$ 2$ | $\$ 2$ | $-\$ 2$ |

## Closer Look at Round-To-Even

- Default Rounding Mode

Peeling away abstractions!

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

| 7.8949999 | 7.89 | (Less than half way) |
| :--- | :--- | :--- |
| 7.8950001 | 7.90 | (Greater than half way) |
| 7.8950000 | 7.90 | (Half way-round up) |
| 7.8850000 | 7.88 | (Hllinois Tech CS351 Fall 2022 |

## Rounding Binary Numbers

- Binary Fractional Numbers
- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100... 2
- Examples
- Round to nearest 1/4 (2 bits right of binary point)

| Value <br> Value | Binary | Rounded | Action | Round |
| :--- | :--- | :--- | :--- | :--- |
| $23 / 32$ | $10.00011_{2}$ | $10.00_{2}$ | (<1/2-down) | 2 |
| $23 / 16$ | $10.00110_{2}$ | $10.01_{2}$ | (>1/2-up) | $21 / 4$ |
| $27 / 8$ | $10.11100_{2}$ | $11.00_{2}$ | (1/2-up) | 3 |
| $25 / 8$ | $10.10100_{2}$ | 10.102 | $(1 / 2-$ down) | $21 / 2$ |

## FP Multiplication

- $(-1)^{51} \mathrm{M} 12^{\mathrm{E} 1} \times(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$
- Exact Result: $(-1)^{\mathrm{s}} \mathrm{M}^{2 \mathrm{E}}$
- Sign s:
s1 ^ ${ }^{\wedge} 2$
- Significand M: M1×M2
- Exponent E:
- Fixing
- If $M \geq 2$, shift $M$ right, increment $E$
- If E out of range, overflow
- Round $M$ to fit frac precision
- Implementation
- Biggest chore is multiplying significands


## Floating Point Addition

- $(-1)^{51} \mathrm{M} 12^{\mathrm{E} 1}+(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$
-Assume E1 > E2
Get binary points lined up
Exact Result: $(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$
-Sign s, significand M:
- Result of signed align \& add
-Exponent E: E1

- Fixing
- If $M \geq 2$, shift $M$ right, increment $E$
-if $M<1$, shift $M$ left $k$ positions, decrement $E$ by $k$
- Overflow if E out of range
-Round M to fit frac precision


## Mathematical Properties of FP Add

- Compare to those of Abelian Group
- Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

- Associative?

No

- Overflow and inexactness of rounding
- $(3.14+1 \mathrm{e} 10)-1 \mathrm{e} 10=0,3.14+(1 \mathrm{e} 10-1 \mathrm{e} 10)=$ 3.14
- 0 is additive identity?
- Every element has additive inverse?

Yes
Almost

- Yes, except for infinities \& NaNs

■ Monotonicity
Almost

- $a \geq b \Rightarrow a+c \geq b+c$ ?
- Except for infinities \& NaNs


## Mathematical Properties of FP Mult

- Compare to Commutative Ring
- Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?

Yes
No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20=inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?
- Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- 1e20* (1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = NaN
- Monotonicity
- $a \geq b \& c \geq 0 \Rightarrow a * c \geq b * c$ ?

Almost

- Except for infinities \& NaNs


## Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition
- Example and properties

■ Rounding, addition, multiplication

- Floating point in C

■ Summary

## Floating Point in C

- C Guarantees Two Levels
$\begin{array}{ll}\text {-float } & \text { single precision } \\ \text {-double } & \text { double precision }\end{array}$
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float $\rightarrow$ int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int $\rightarrow$ double
- Exact conversion, as long as int has $\leq 53$ bit word size
- int $\rightarrow$ float
- Will round according to rounding mode


## Floating Point Puzzles

■ For each of the following $C$ expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor $£$ is NaN

- $x==$ (int) (float) $x$
- $x==$ (int) (double) $x$
- $f==$ (float) (double) $f$
- d == (double) (float) d
- $\mathbf{f}==-(-f)$;
- $2 / 3==2 / 3.0$
- $\mathrm{d}<0.0 \quad \Rightarrow \quad((\mathrm{~d} * 2)<0.0)$
- $\mathrm{d}>\mathrm{f} \quad \Rightarrow \quad-\mathrm{f}>-\mathrm{d}$
- d * d >= 0.0
- $(d+f)-d==f$


## Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $\mathbf{M} \times \mathbf{2}^{\mathrm{E}}$
- One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded

■ Not the same as real arithmetic

- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers


## Per-lecture feedback

- Better sooner rather than later!
- I can help with issues sooner.
- There is a per-lecture feedback form.
- The form is anonymous.
(It checks that you're at Illinois Tech to filter abuse, but I don't see who submitted any of the forms.)
■ https://forms.gle/qoeEbBuTYXo5FiU1A
- I'll remind about this at each lecture.



## Additional Slides

## Creating Floating Point Number

- Steps
- Normalize to have leading 1
- Round to fit within fraction

| $s$ | $\exp$ | frac |
| :---: | :---: | :---: |
| 1 | 4-bits | 3-bits |

- Postnormalize to deal with effects of rounding
- Case Study
- Convert 8-bit unsigned numbers to tiny floating point format Example Numbers
128 10000000
15
00001101
33
00010001
35
00010011
138
10001010
63
00111111


## Normalize

- Requirement

| $s$ | $\exp$ | frac |
| :---: | :---: | :---: |
| 1 | 4-bits | 3-bits |

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
- Decrement exponent as shift left

| Value | Binary | Fraction | Exponent |
| ---: | :--- | :--- | :--- |
| 128 | 10000000 | 1.0000000 | 7 |
| 15 | 00001101 | 1.1010000 | 3 |
| 17 | 00010001 | 1.0001000 | 4 |
| 19 | 00010011 | 1.0011000 | 4 |
| 138 | 10001010 | 1.0001010 | 7 |
| 63 | 00111111 | 1.1111100 | 5 |

## Rounding

## 1.BBGRXXX

Guard bit: LSB of result
Sticky bit: OR of remaining bits Round bit: $1^{\text {st }}$ bit removed

- Round up conditions
- Round =1, Sticky =1 $\rightarrow>0.5$
- Guard $=1$, Round $=1$, Sticky $=0 \rightarrow$ Round to even

| Value | Fraction | GRS | Incr? | Rounded |
| :--- | :--- | :--- | :--- | ---: |
| 128 | 1.0000000 | 000 | N | 1.000 |
| 15 | 1.1010000 | 100 | N | 1.101 |
| 17 | 1.0001000 | 010 | N | 1.000 |
| 19 | 1.0011000 | 110 | Y | 1.010 |
| 138 | 1.0001010 | 011 | Y | 1.001 |
| 63 | 1.1111100 | 111 | Y | 10.000 |

## Postnormalize

- Issue
- Rounding may have caused overflow
- Handle by shifting right once \& incrementing exponent

| Value | Rounded | Exp | Adjusted | Result |
| ---: | ---: | :--- | :--- | :---: |
| 128 | 1.000 | 7 |  | 128 |
| 15 | 1.101 | 3 |  | 15 |
| 17 | 1.000 | 4 |  | 16 |
| 19 | 1.010 | 4 |  | 20 |
| 138 | 1.001 | 7 |  | 134 |
| 63 | 10.000 | 5 | $1.000 / 6$ | 64 |

