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Today

m Cache memory organization and operation
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A

Example Memory
. LO:
H Iera rChy Regs CPU registers hold words

Smaller, retrieved from the L1 cache.
faster, L1:/ L1 cache

and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2: L(ZS(I:??AC\:ICI()%
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

Larger,

slower, L4: Main memory

and (DRAM) Main memory holds

cheaper disk blocks retrieved

(per byte) from local disks.

storage | 5. Local secondary storage

devices (local disks)
Local disks hold files
retrieved from disks
on remote servers

L6: Remote secondary storage

(e.g., Web servers)




Cache

Memory

General Cache Concept

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache

m Typical system structure:

Cache <—> |
memory %

ALU

System bus

Bus interface

110
bridge
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Memory bus

Main
memory




General Cache Organization (S, E, B)

S=2¢ sets<

E = 2¢ lines per set

A

o000
Vv tag 1 2 oooooo B-1
T —
~"
valid bit

Cache size:
C =S x E x B data bytes

B = 2b bytes per cache block (the data)



Cache Read

E = 2¢ lines per set

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

~ A * Locate data starting
e at offset
[ 3 BN Y )
Address of word:
eeee t bits s bits | b bits
= )Ss HM/
S =2 sets 4 oo tag set block
index offset
0 00000000000 00O0COCEOGCEOGOEOGOEOSGOEOSOEOS®OTO®TOO
[ 3 BN I )
\.
data begins at this offset
Vv tag 112 ¢cce-- B-1
valid bit -~

B = 2b bytes per cache block (the data)



Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S=2s sets<

Address of int:

tag
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2 4 7

tag 314[516 tbits | 0..01 | 100
ta 21314)15]6]|7 -

g find set

tag 2|13|4)15]|6]7




Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

'} tag 0|1

t bits

0..01

100
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

'} tag 0]1]112)1314]|5]6]7

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0@1211 hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set 1
Set 2
Set3 | 1 0 M[6-7]




E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

t bits 0..01 | 100
v tag 7 v tag 0 5|67
v tag 7 v tag 0 5|67 —1 find set
v tag 7 v tag 0 5|67
0 0000000000000 00000000 OC0OCOCGOGOOGONOSONOSONOEOONONOEOEOOOTOOOSOOO
v tag 7 v tag 0 5|67
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

Address of short int:

t bits 0..01 | 100
compare both
valid? + | match: yes = hit
v| | tag | [of1]2{3]a]5]6]7]| |[v] [ tag | |0f1]2[3|4]|5]|6]7|] —
block offset
lllinois Tech CS351 Fall 2022 13




E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

v tag 0|1]|2]|3]|4

67 v tag

short int (2 Bytes) is here

No match:

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

block offset




2-Way Set Associative Cache Simulation

t=2

s=1

b=1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit
v Tag Block
seto L1100 |M[O-1]
1 10 M[8-9]
Set 1 (1) 01 | M[6-7]




What about writes?

m Multiple copies of data exist:
= |1, L2, L3, Main Memory, Disk

m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?

= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical

= Write-through + No-write-allocate
" Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Processor package

______________________________________________________________________

L3 unified cache
(shared by all cores)

' Core 0 Core 3
Regs Regs
|| L L1 L1 L1 |
| d-cache| | i-cache d-cache| |i-cache |
| | L2 unified cache L2 unified cache | | !

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.



Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

m Huge difference between a hit and a miss

" Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

lllinois Tech CS351 Fall 2022
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Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

lllinois Tech CS351 Fall 2022
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Today

m Performance impact of caches

" The memory mountain
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

lllinois Tech CS351 Fall 2022
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Memory Mountain Test Function

long data[MAXELEMS]; /% Global array to traverse */

/* test — Iterate over first "elems" elements of

* array “data” with stride of "stride", using
* using 4x4 loop unrolling.
%/

int test(int elems, int stride) {
long 1, sx2=stridex2, sx3=stridex3, sx4=stridex4;
long acch = 0, accl = @0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time x/
for (i = 03 i < limit; i += sx4) {

acc@d = acc@ + datalil;

accl = accl + datali+stride];
acc2 = acc2 + datali+sx2];
acc3 = acc3 + datal[i+sx3];

}
/* Finish any remaining elements */
for (; i < length; i++) {
accd = acc@ + datalil;
}

return ((acc@ + accl) + (acc2 + acc3)):

} mountain/mountain.c

Call test () with many
combinations of elems
and stride.

For each elems
and stride:

1. Call test()
once to warm up
the caches.

2. Call test|()
again and measure
the read
throughput (MB/s)



Core i7 Haswell

1 2.1 GHz
The Memory Mountain %9 KB L1 ducache
256 KB L2 cache
Aggressive 8 MB L3 cache
prefetching : .
9 o0 54 B block size
— 14000 - ;
E 12000
% 10000 ’ B
E 8000 A Ridges
T | 2 |—>- of temporal
& 6000 /) ‘ - 7 locality
4000
2000 L3
Slopes % -
of spatial o 32k
locality s3 128k

512k

s5 2m

s7

Stride (x8 bytes) s9 8m

39m Size (bytes)

s11
128m



Today

m Cache organization and operation
m Performance impact of caches

" The memory mountain
= Rearranging loops to improve spatial locality
" Using blocking to improve temporal locality

lllinois Tech CS351 Fall 2022
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Matrix Multiplication Example

m Description:

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* i3k */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; Jj++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i] []]

sum,

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:
= Look at access pattern of inner loop

=X

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1++)
sum += a[0][i];
" accesses successive elements
" if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; i < n; 1i++)
sum += a[1][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

lllinois Tech CS351 Fall 2022
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *
sum = 0.0; L;;;J - (&D
for (k=0; k<n; k++) (i,%)
A B

sum += a[i] [k] * b[k][j]; C

c[i] [j] = sum; ‘ ‘ ‘
}

} matmult/mm.c B Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:
A B C

0.25 1.0 0.0
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Matrix Multiplication (jik)

/* jik */

Inner loop:
for (J=0; j<n; Jj++) {

for (i=0; i<n; i++) { *i
sum = 0.0; L;;;J - ﬁ]ii: (&D
for (k=0; k<n; k++) (i,%)

sum += a[i] [k] * b[k][]]~ A B

c[i] [j] = sum ‘ ‘ ‘
}

matmult/mm. c Row-wise Column- Fixed
wise

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

lllinois Tech CS351 Fall 2022
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i) E(k'*)g
r = a[i] [k]; B (i,)
B C

for (j=0; j<n; j++) A
c[1i][]J] += r * Db[k][]]~’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25
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Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i.k) E(k'*)g
r = a[i] [k]; u (i,*)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * b[k][]]; ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25
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Matrix Multiplication (jki)

/* 3ki */ Inner loop:
for (j=0,’ j<n; j++) { (*,k)
for (k=0; k<n; k++) { j:| (k)
r = b[k][j]; .
for (i=0; i<n; i++) A B
c[i] [J] += a[i][k] * r; ‘
matmult/mm.c Column- Fixed
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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|
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Matrix Multiplication (kiji)

/* kji */

Inner loop:
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k)
r = b[k][3]; (I:,J')

for (i=0; i<n; i++)

c[i][j] += a[i] [k] * r; ‘\\ T
matmult/mm. c
Column- Fixed
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

lllinois Tech CS351 Fall 2022
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for (i=0; i<n; i++) {
for (j=0; j<n; Jj++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i] [k] * b[k]l[]j];

c[i]l[]] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k]’
for (j=0; j<n; J++)
c[i][j] += r * b[k][]];
}
}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][3];
for (i=0; i<n; i++)
c[i]l[3] += al[il[k] * r;

Summary of Matrix Multiplication

ijk (& jik):
e 2 loads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
e misses/iter = 2.0



Core i7 Matrix Multiply Performance

100 -

jki / kji

c
9
©
2
§' ki
5 10 = kji
g - >¢ijk
£
’a;;_ -o-jik
” ——kij
g G = ik
L

1%\
bs
b
ohH
DhH
Db
ChH-
|
bt

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)



= Using blocking to improve temporal locality

lllinois Tech CS351 Fall 2022
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Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
*

lllinois Tech CS351 Fall 2022
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration: r

" n/8+n=9n/8 misses

I
*

= Afterwards in cache:
(schematic) . EEE—

]
*

8 wide



Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m Second iteration:

= Again:
n/8 + n = 9n/8 misses

m Total misses:
" 9n/8 * n?=(9/8) * n3

lllinois Tech CS351 Fall 2022
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Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; 1 < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl1l] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm.c

j1
C a b C
= e 3 +
] i1 [0 A

Block size B x B




Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B>< C

m First (block) iteration:
= B2/8 misses for each block W

= 2n/B * B?/8 =nB/4
(omitting matrix c)

= Afterwards in cache ]
(schematic)

n/B blocks
A

N\

—HAREER"

Block size B x B




Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B>< C

. . n/B blocks
m Second (block) iteration: A
" Same as first iteration ] BEEEE
= 2n/B * B2/8 = nB/4
= %
m Total misses: Block size B x B

= nB/4 * (n/B)? = n3/(4B)
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Blocking Summary

No blocking: (9/8) * n3
Blocking: 1/(4B) * n3

Suggest largest possible block size B, but limit 3B2 < C!

Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

lllinois Tech CS351 Fall 2022
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!

® Focus on the inner loops, where bulk of computations and memory
accesses occur.

= Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

lllinois Tech CS351 Fall 2022
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Per-lecture feedback

Better sooner rather than later!
| can help with issues sooner.
There is a per-lecture feedback form.

The form is anonymous.

(It checks that you’re at lllinois Tech
to filter abuse, but | don’t see who
submitted any of the forms.)

https://forms.gle/qoeEbBUTYXo5FiU1A
I’ll remind about this at each lecture.

lllinois Tech CS351 Fall 2022
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