
Exceptional Control Flow:
Exceptions & Processes

CS351: Systems Programming
Day 16: Oct. 18, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

¢ Processors do only one thing:
§ From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
§ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

3Illinois Tech CS351 Fall 2022

Altering the Control Flow
¢ Up to now: two mechanisms for changing control flow:

§ Jumps and branches
§ Call and return
React to changes in program state

¢ Insufficient for a useful system:
Difficult to react to changes in system state
§ Data arrives from a disk or a network adapter
§ Instruction divides by zero
§ User hits Ctrl-C at the keyboard
§ System timer expires

¢ System needs mechanisms for “exceptional control flow”
4Illinois Tech CS351 Fall 2022

Exceptional Control Flow
¢ Exists at all levels of a computer system
¢ Low level mechanisms

§ 1. Exceptions
§ Change in control flow in response to a system event

(i.e., change in system state)
§ Implemented using combination of hardware and OS software

¢ Higher level mechanisms
§ 2. Process context switch

§ Implemented by OS software and hardware timer
§ 3. Signals

§ Implemented by OS software
§ 4. Nonlocal jumps: setjmp() and longjmp()

§ Implemented by C runtime library
5

Illinois Tech CS351 Fall 2022

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

Exceptions
¢ An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
§ Kernel is the memory-resident part of the OS
§ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

7Illinois Tech CS351 Fall 2022

0
1
2 ...

n-1

Exception Tables

¢ Each type of event has a
unique exception number k

¢ k = index into exception table
(a.k.a. interrupt vector)

¢ Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

8Illinois Tech CS351 Fall 2022

Asynchronous Exceptions (Interrupts)
¢ Caused by events external to the processor

§ Indicated by setting the processor’s interrupt pin
§ Handler returns to “next” instruction

¢ Examples:
§ Timer interrupt

§ Every few ms, an external timer chip triggers an interrupt
§ Used by the kernel to take back control from user programs

§ I/O interrupt from external device
§ Hitting Ctrl-C at the keyboard
§ Arrival of a packet from a network
§ Arrival of data from a disk

9Illinois Tech CS351 Fall 2022

Synchronous Exceptions
¢ Caused by events that occur as a result of executing an

instruction:
§ Traps

§ Intentional
§ Examples: system calls, breakpoint traps, special instructions
§ Returns control to “next” instruction

§ Faults
§ Unintentional but possibly recoverable
§ Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
§ Either re-executes faulting (“current”) instruction or aborts

§ Aborts
§ Unintentional and unrecoverable
§ Examples: illegal instruction, parity error, machine check
§ Aborts current program

10Illinois Tech CS351 Fall 2022

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

¢ Each x86-64 system call has a unique ID number
¢ Examples:

11Illinois Tech CS351 Fall 2022

System Call Example: Opening File
¢ User calls: open(filename, options)
¢ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %rax contains syscall number
¢ Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
¢ Return value in %rax
¢ Negative value is an error

corresponding to negative
errno 12

Illinois Tech CS351 Fall 2022

Fault Example: Page Fault
¢ User writes to memory location
¢ That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

13Illinois Tech CS351 Fall 2022

Fault Example: Invalid Memory Reference

¢ Sends SIGSEGV signal to user process
¢ User process exits with “segmentation fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

14Illinois Tech CS351 Fall 2022

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

Processes
¢ Definition: A process is an instance of a running

program.
§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

¢ Process provides each program with two key
abstractions:
§ Logical control flow

§ Each program seems to have exclusive use of the CPU
§ Provided by kernel mechanism called context switching

§ Private address space
§ Each program seems to have exclusive use of main

memory.
§ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data

16
Illinois Tech CS351 Fall 2022

Multiprocessing: The Illusion

¢ Computer runs many processes simultaneously
§ Applications for one or more users

§ Web browsers, email clients, editors, …
§ Background tasks

§ Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

17
Illinois Tech CS351 Fall 2022

Multiprocessing Example

¢ Running program “top” on Mac
§ System has 123 processes, 5 of which are active
§ Identified by Process ID (PID) 18

Multiprocessing: The (Traditional) Reality

¢ Single processor executes multiple processes concurrently
§ Process executions interleaved (multitasking)
§ Address spaces managed by virtual memory system (later in course)
§ Register values for nonexecuting processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

19Illinois Tech CS351 Fall 2022

Multiprocessing: The (Traditional) Reality

¢ Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

20Illinois Tech CS351 Fall 2022

Multiprocessing: The (Traditional) Reality

¢ Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

21Illinois Tech CS351 Fall 2022

Multiprocessing: The (Traditional) Reality

¢ Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

22Illinois Tech CS351 Fall 2022

Multiprocessing: The (Modern) Reality

¢ Multicore processors
§ Multiple CPUs on single chip
§ Share main memory (and some of

the caches)
§ Each can execute a separate process

§ Scheduling of processors onto
cores done by kernel

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

23Illinois Tech CS351 Fall 2022

Concurrent Processes
¢ Each process is a logical control flow.
¢ Two processes run concurrently (are concurrent) if their

flows overlap in time
¢ Otherwise, they are sequential
¢ Examples (running on single core):

§ Concurrent: A & B, A & C
§ Sequential: B & C

Process A Process B Process C

Time

24Illinois Tech CS351 Fall 2022

User View of Concurrent Processes
¢ Control flows for concurrent processes are physically

disjoint in time

¢ However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

25Illinois Tech CS351 Fall 2022

Context Switching
¢ Processes are managed by a shared chunk of memory-

resident OS code called the kernel
§ Important: the kernel is not a separate process, but rather runs as part

of some existing process.

¢ Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

26

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

System Call Error Handling
¢ On error, Linux system-level functions typically return -1 and

set global variable errno to indicate cause.
¢ Hard and fast rule:

§ You must check the return status of every system-level function
§ Only exception is the handful of functions that return void

¢ Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

}

28Illinois Tech CS351 Fall 2022

Error-reporting functions
¢ Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */
{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));
exit(0);

}

if ((pid = fork()) < 0)
unix_error("fork error");

29Illinois Tech CS351 Fall 2022

Error-handling Wrappers
¢ We simplify the code we present to you even further by

using Stevens-style error-handling wrappers:

pid_t Fork(void)
{

pid_t pid;

if ((pid = fork()) < 0)
unix_error("Fork error");

return pid;
}

pid = Fork();

30Illinois Tech CS351 Fall 2022

Obtaining Process IDs
¢ pid_t getpid(void)

§ Returns PID of current process

¢ pid_t getppid(void)
§ Returns PID of parent process

31Illinois Tech CS351 Fall 2022

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process
as being in one of three states

¢ Running
§ Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

¢ Stopped
§ Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

¢ Terminated
§ Process is stopped permanently

32Illinois Tech CS351 Fall 2022

Terminating Processes
¢ Process becomes terminated for one of three reasons:

§ Receiving a signal whose default action is to terminate (next
lecture)

§ Returning from the main routine
§ Calling the exit function

¢ void exit(int status)
§ Terminates with an exit status of status
§ Convention: normal return status is 0, nonzero on error
§ Another way to explicitly set the exit status is to return an integer

value from the main routine

¢ exit is called once but never returns.

33Illinois Tech CS351 Fall 2022

Creating Processes
¢ Parent process creates a new running child process by

calling fork

¢ int fork(void)
§ Returns 0 to the child process, child’s PID to parent process
§ Child is almost identical to parent:

§ Child get an identical (but separate) copy of the parent’s virtual
address space.

§ Child gets identical copies of the parent’s open file descriptors
§ Child has a different PID than the parent

¢ fork is interesting (and often confusing) because
it is called once but returns twice

34Illinois Tech CS351 Fall 2022

fork Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

}

linux> ./fork
parent: x=0
child : x=2

fork.c

¢ Call once, return twice
¢ Concurrent execution

§ Can’t predict execution
order of parent and child

¢ Duplicate but separate
address space
§ x has a value of 1 when

fork returns in parent and
child

§ Subsequent changes to x
are independent

¢ Shared open files
§ stdout is the same in

both parent and child
35Illinois Tech CS351 Fall 2022

Modeling fork with Process Graphs

¢ A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
§ Each vertex is the execution of a statement
§ a -> b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no inedges

¢ Any topological sort of the graph corresponds to a feasible
total ordering.
§ Total ordering of vertices where all edges point from left to right

36Illinois Tech CS351 Fall 2022

Process Graph Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

37Illinois Tech CS351 Fall 2022

Interpreting Process Graphs
¢ Original graph:

¢ Relabled graph:

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

fork Example: Two consecutive forks

void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

39

fork Example: Nested forks in parent

void fork4()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

40Illinois Tech CS351 Fall 2022

fork Example: Nested forks in children

void fork5()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

41Illinois Tech CS351 Fall 2022

Reaping Child Processes
¢ Idea

§ When process terminates, it still consumes system resources
§ Examples: Exit status, various OS tables

§ Called a “zombie”
§ Living corpse, half alive and half dead

¢ Reaping
§ Performed by parent on terminated child (using wait or waitpid)
§ Parent is given exit status information
§ Kernel then deletes zombie child process

¢ What if parent doesn’t reap?
§ If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
§ So, only need explicit reaping in long-running processes

§ e.g., shells and servers
42Illinois Tech CS351 Fall 2022

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

Zombie
Example

¢ ps shows child process as
“defunct” (i.e., a zombie)

¢ Killing parent allows child to be
reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

} forks.c

43

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Non-
terminating
Child Example

¢ Child process still active even
though parent has terminated

¢ Must kill child explicitly, or else will
keep running indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

} forks.c

44

wait: Synchronizing with Children
¢ Parent reaps a child by calling the wait function

¢ int wait(int *child_status)
§ Suspends current process until one of its children terminates
§ Return value is the pid of the child process that terminated
§ If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
§ Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See textbook for details

45Illinois Tech CS351 Fall 2022

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

46

Another wait Example
¢ If multiple children completed, will take in arbitrary order
¢ Can use macros WIFEXITED and WEXITSTATUS to get information about

exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

47

waitpid: Waiting for a Specific Process
¢ pid_t waitpid(pid_t pid, int &status, int options)

§ Suspends current process until specific process terminates
§ Various options (see textbook)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c 48

execve: Loading and Running Programs

¢ int execve(char *filename, char *argv[], char *envp[])

¢ Loads and runs in the current process:
§ Executable file filename

§ Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

§ …with argument list argv
§ By convention argv[0]==filename

§ …and environment variable list envp
§ “name=value” strings (e.g., USER=droh)
§ getenv, putenv, printenv

¢ Overwrites code, data, and stack
§ Retains PID, open files and signal context

¢ Called once and never returns
§ …except if there is an error 49

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

50Illinois Tech CS351 Fall 2022

execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

¢ Executes “/bin/ls –lt /usr/include” in child process
using current environment:

(argc == 3)

51

Summary
¢ Exceptions

§ Events that require nonstandard control flow
§ Generated externally (interrupts) or internally (traps and faults)

¢ Processes
§ At any given time, system has multiple active processes
§ Only one can execute at a time on a single core, though
§ Each process appears to have total control of

processor + private memory space

52Illinois Tech CS351 Fall 2022

Summary (cont.)
¢ Spawning processes

§ Call fork
§ One call, two returns

¢ Process completion
§ Call exit
§ One call, no return

¢ Reaping and waiting for processes
§ Call wait or waitpid

¢ Loading and running programs
§ Call execve (or variant)
§ One call, (normally) no return

53Illinois Tech CS351 Fall 2022

Next time: recorded lecture

¢ LEC 16 and LEC 17 will be pre-recorded and circulated on
Blackboard.
§ Do not come to SB104 those days – there will not be an in-person lecture.
§ My away-at-a-conference days are marked on the course calendar.

Per-lecture feedback

¢ Better sooner rather than later!
¢ I can help with issues sooner.
¢ There is a per-lecture feedback form.
¢ The form is anonymous.

(It checks that you’re at Illinois Tech
to filter abuse, but I don’t see who
submitted any of the forms.)

¢ https://forms.gle/qoeEbBuTYXo5FiU1A
¢ I’ll remind about this at each lecture.

55Illinois Tech CS351 Fall 2022

https://forms.gle/qoeEbBuTYXo5FiU1A

