
Storage Allocation: Basics

CS351: Systems Programming
Day 21: Nov. 03, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron

Next time: back to in-person in SB104

¢ Tuesday: 5th lab will be assigned – what we’re covering will be
useful for that lab.

¢ Monday: deadline for 4th lab assignment

Today
¢ Basic concepts
¢ Implicit free lists

3Illinois Tech CS351 Fall 2022

Dynamic Memory Allocation
¢ Programmers use

dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
§ For data structures whose

size is only known at
runtime.

¢ Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap

4

Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

¢ Types of allocators
§ Explicit allocator: application allocates and frees space

§ E.g., malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ E.g. garbage collection in Java, ML, and Lisp

¢ Will discuss simple explicit memory allocation today

5Illinois Tech CS351 Fall 2022

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero.
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap

6
Illinois Tech CS351 Fall 2022

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}
7

Illinois Tech CS351 Fall 2022

What else is your C program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_c >\dev\null
execve("./l1_helloworld_c", ["./l1_helloworld_c"], 0x7ffe4c6f2350 /* 25 vars */) = 0
brk(NULL) = 0x2302000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=47878, ...}) = 0
mmap(NULL, 47878, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd518cbd000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`&\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2156664, ...}) = 0
mmap(NULL, 3985920, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fd5186db000
mprotect(0x7fd51889f000, 2093056, PROT_NONE) = 0
mmap(0x7fd518a9e000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c3000) …
mmap(0x7fd518aa4000, 16896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) …
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cbc000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cba000
arch_prctl(ARCH_SET_FS, 0x7fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
mprotect(0x7fd518a9e000, 16384, PROT_READ) = 0
mprotect(0x600000, 4096, PROT_READ) = 0
mprotect(0x7fd518cca000, 4096, PROT_READ) = 0
munmap(0x7fd518cbd000, 47878) = 0
fstat(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc8000
write(1, "Hello, world!\n", 14) = 14
exit_group(14) = ?
+++ exited with 14 +++

From Day 2

What else is your C program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_c >\dev\null
execve("./l1_helloworld_c", ["./l1_helloworld_c"], 0x7ffe4c6f2350 /* 25 vars */) = 0
brk(NULL) = 0x2302000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=47878, ...}) = 0
mmap(NULL, 47878, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd518cbd000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`&\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2156664, ...}) = 0
mmap(NULL, 3985920, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fd5186db000
mprotect(0x7fd51889f000, 2093056, PROT_NONE) = 0
mmap(0x7fd518a9e000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c3000) …
mmap(0x7fd518aa4000, 16896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) …
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cbc000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cba000
arch_prctl(ARCH_SET_FS, 0x7fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
mprotect(0x7fd518a9e000, 16384, PROT_READ) = 0
mprotect(0x600000, 4096, PROT_READ) = 0
mprotect(0x7fd518cca000, 4096, PROT_READ) = 0
munmap(0x7fd518cbd000, 47878) = 0
fstat(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc8000
write(1, "Hello, world!\n", 14) = 14
exit_group(14) = ?
+++ exited with 14 +++

From Day 2

What else is your C program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_c >\dev\null
execve("./l1_helloworld_c", ["./l1_helloworld_c"], 0x7ffe4c6f2350 /* 25 vars */) = 0
brk(NULL) = 0x2302000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=47878, ...}) = 0
mmap(NULL, 47878, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd518cbd000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`&\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2156664, ...}) = 0
mmap(NULL, 3985920, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fd5186db000
mprotect(0x7fd51889f000, 2093056, PROT_NONE) = 0
mmap(0x7fd518a9e000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c3000) …
mmap(0x7fd518aa4000, 16896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) …
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cbc000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cba000
arch_prctl(ARCH_SET_FS, 0x7fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
mprotect(0x7fd518a9e000, 16384, PROT_READ) = 0
mprotect(0x600000, 4096, PROT_READ) = 0
mprotect(0x7fd518cca000, 4096, PROT_READ) = 0
munmap(0x7fd518cbd000, 47878) = 0
fstat(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc8000
write(1, "Hello, world!\n", 14) = 14
exit_group(14) = ?
+++ exited with 14 +++

From Day 2

What else is your C program doing?
[nsultana@fourier l1]$ strace ./l1_helloworld_c >\dev\null
execve("./l1_helloworld_c", ["./l1_helloworld_c"], 0x7ffe4c6f2350 /* 25 vars */) = 0
brk(NULL) = 0x2302000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc9000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=47878, ...}) = 0
mmap(NULL, 47878, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd518cbd000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`&\2\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2156664, ...}) = 0
mmap(NULL, 3985920, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fd5186db000
mprotect(0x7fd51889f000, 2093056, PROT_NONE) = 0
mmap(0x7fd518a9e000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c3000) …
mmap(0x7fd518aa4000, 16896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) …
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cbc000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cba000
arch_prctl(ARCH_SET_FS, 0x7fd518cba740) = 0
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/sysconfig/strcasecmp-nonascii", F_OK) = -1 ENOENT (No such file or directory)
mprotect(0x7fd518a9e000, 16384, PROT_READ) = 0
mprotect(0x600000, 4096, PROT_READ) = 0
mprotect(0x7fd518cca000, 4096, PROT_READ) = 0
munmap(0x7fd518cbd000, 47878) = 0
fstat(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fd518cc8000
write(1, "Hello, world!\n", 14) = 14
exit_group(14) = ?
+++ exited with 14 +++

From Day 2

Assumptions Made in This Lecture
¢ Memory is word addressed.
¢ Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

12Illinois Tech CS351 Fall 2022

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

13Illinois Tech CS351 Fall 2022

Constraints
¢ Applications

§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed 14

Performance Goal: Throughput
¢ Given some sequence of malloc and free requests:

§ R0, R1, ..., Rk, ... , Rn-1

¢ Goals: maximize throughput and peak memory utilization
§ These goals are often conflicting

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000 malloc calls and 5,000 free calls in 10 seconds
§ Throughput is 1,000 operations/second

15Illinois Tech CS351 Fall 2022

Performance Goal: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:

§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi<=k Pi) / Hk

16Illinois Tech CS351 Fall 2022

Fragmentation
¢ Poor memory utilization caused by fragmentation

§ internal fragmentation
§ external fragmentation

17Illinois Tech CS351 Fall 2022

Internal Fragmentation
¢ For a given block, internal fragmentation occurs if payload is

smaller than block size

¢ Caused by
§ Overhead of maintaining heap data structures
§ Padding for alignment purposes
§ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

¢ Depends only on the pattern of previous requests
§ Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

18

External Fragmentation
¢ Occurs when there is enough aggregate heap memory,

but no single free block is large enough

¢ Depends on the pattern of future requests
§ Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

19

Implementation Issues
¢ How do we know how much memory to free given just a

pointer?

¢ How do we keep track of the free blocks?

¢ What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

¢ How do we pick a block to use for allocation -- many
might fit?

¢ How do we reinsert freed block?
20

Knowing How Much to Free
¢ Standard method

§ Keep the length of a block in the word preceding the block.
§ This word is often called the header field or header

§ Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

21Illinois Tech CS351 Fall 2022

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

22

Today
¢ Basic concepts
¢ Implicit free lists

23Illinois Tech CS351 Fall 2022

Method 1: Implicit List
¢ For each block we need both size and allocation status

§ Could store this information in two words: wasteful!

¢ Standard trick
§ If blocks are aligned, some low-order address bits are always 0
§ Instead of storing an always-0 bit, use it as a allocated/free flag
§ When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding 24

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

25Illinois Tech CS351 Fall 2022

Implicit List: Finding a Free Block
¢ First fit:

§ Search list from beginning, choose first free block that fits:

§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

¢ Best fit:
§ Search the list, choose the best free block: fits, with fewest bytes left over
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

26

Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting

§ Since allocated space might be smaller than free space, we might want
to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

Implicit List: Freeing a Block
¢ Simplest implementation:

§ Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

§ But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

28Illinois Tech CS351 Fall 2022

Implicit List: Coalescing
¢ Join (coalesce) with next/previous blocks, if they are free

§ Coalescing with next block

§ But how do we coalesce with previous block?

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

29Illinois Tech CS351 Fall 2022

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

30Illinois Tech CS351 Fall 2022

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

31Illinois Tech CS351 Fall 2022

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

32Illinois Tech CS351 Fall 2022

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

33Illinois Tech CS351 Fall 2022

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

34Illinois Tech CS351 Fall 2022

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

35Illinois Tech CS351 Fall 2022

Disadvantages of Boundary Tags
¢ Internal fragmentation

¢ Can it be optimized?
§ Which blocks need the footer tag?
§ What does that mean?

36Illinois Tech CS351 Fall 2022

Summary of Key Allocator Policies
¢ Placement policy:

§ First-fit, next-fit, best-fit, etc.
§ Trades off lower throughput for less fragmentation
§ Interesting observation: segregated free lists (next lecture)

approximate a best fit placement policy without having to search
entire free list

¢ Splitting policy:
§ When do we go ahead and split free blocks?
§ How much internal fragmentation are we willing to tolerate?

¢ Coalescing policy:
§ Immediate coalescing: coalesce each time free is called
§ Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
§ Coalesce as you scan the free list for malloc
§ Coalesce when the amount of external fragmentation reaches

some threshold 37

Implicit Lists: Summary
¢ Implementation: very simple
¢ Allocate cost:

§ linear time worst case
¢ Free cost:

§ constant time worst case
§ even with coalescing

¢ Memory usage:
§ will depend on placement policy
§ First-fit, next-fit or best-fit

¢ Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

¢ However, the concepts of splitting and boundary tag
coalescing are general to all allocators 38

Per-lecture feedback

¢ Better sooner rather than later!
¢ I can help with issues sooner.
¢ There is a per-lecture feedback form.
¢ The form is anonymous.

(It checks that you’re at Illinois Tech
to filter abuse, but I don’t see who
submitted any of the forms.)

¢ https://forms.gle/qoeEbBuTYXo5FiU1A
¢ I’ll remind about this at each lecture.

39Illinois Tech CS351 Fall 2022

https://forms.gle/qoeEbBuTYXo5FiU1A

