ILLINOIS TECH

Storage Allocation: Advanced

CS351: Systems Programming
Day 22: Nov. 08, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron

Today

m Explicit free lists

m Segregated free lists

m Garbage collection

m Memory-related perils and pitfalls

lllinois Tech CS351 Fall 2022

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| ~ 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key 3

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

Explicit Free Lists

m Logically:

—
v

/ Forward (next) links
A ‘/Q 8

4 —5 4.4 46 / < 64 44) 4

C _/
K Back (prev) links

lllinois Tech CS351 Fall 2022

Allocating From Explicit Free Lists

Before

After

conceptual graphic

2

(with splitting)

W

malloc(...)

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m LIFO (last-in-first-out) policy
" |nsert freed block at the beginning of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

lllinois Tech CS351 Fall 2022

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free(p)

Root % o)

m Insert the freed block at the root of the list

After

Root I ‘@

lllinois Tech CS351 Fall 2022

Freeing With a LIFO Policy (Case 2)

conceptual graphic
Before free (p)

Root } I % o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root lhﬂofi*\\@

4!

Freeing With a LIFO Policy (Case 3)

Before

Root

conceptual graphic

free(p)

]

I

ao

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

10

Freeing With a LIFO Policy (Case 4)

conceptual graphic

iy

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

1

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

lllinois Tech CS351 Fall 2022 12

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4

6

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

13

Today

m Explicit free lists
m Segregated free lists

m Garbage collection
m Memory-related perils and pitfalls

lllinois Tech CS351 Fall 2022

14

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1_2 > > > —>

9-inf ——p

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

lllinois Tech CS351 Fall 2022

15

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
" Place remainder as a single free block in largest size class.

lllinois Tech CS351 Fall 2022 16

Seglist Allocator (cont.)

m To free a block:
® Coalesce and place on appropriate list

m Advantages of seglist allocators
= Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

lllinois Tech CS351 Fall 2022

17

More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

" The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

lllinois Tech CS351 Fall 2022

18

Today

m Explicit free lists
m Segregated free lists

m Garbage collection
m Memory-related perils and pitfalls

lllinois Tech CS351 Fall 2022

19

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

lllinois Tech CS351 Fall 2022 20

Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

lllinois Tech CS351 Fall 2022 21

Classical GC Algorithms

Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

lllinois Tech CS351 Fall 2022 22

Memory as a Graph

m We view memory as a directed graph
= Each block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

rootnodes () O O
/ \

Heap nodes O reachable

O Not-reachable

(garbage)
e O

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application) 23

Mark and Sweep Collecting

m Can build on top of malloc/free package
" Allocate using malloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked
Note: arrows

root
/\V here denote

¢ /—\r o
peforemark L2 I
I

_I Mark bit set

After mark | | | °

After sweep | | | free | ° free N 24

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b, i) : read location i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
= addressedasb[-1], for a blockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether p is a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots

lllinois Tech CS351 Fall 2022

25

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

void mark (ptr p) ({

if ('is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // call mark on all words
mark (p[i]) ; // in the block

return;

Sweep using lengths to find next block

void sweep (ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p);

lllinois Tech CS351 Fall 2022

27

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

" is ptr () determinesif a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr

Header l

m So how to find the beginning of the block?

= Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) Head Data
Size
// \\ Left: smaller addresses

Right: lar
Left Right ight: larger addresses ;

Today

m Explicit free lists
m Segregated free lists

m Garbage collection
m Memory-related perils and pitfalls

lllinois Tech CS351 Fall 2022

29

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

lllinois Tech CS351 Fall 2022

30

C operators

Operators Associativity
() [1] -> . left to right
' ~ 44+ -- + - * & (type) sizeof righttoleft
* /% left to right
+ - left to right
<< >> left to right
< = > >= left to right
= I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
- right to left
= 4= —-= *= [= 9= g= ~= = <<= >>= right to left
, left to right

m ->, (),and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53

C Pointer Declarations: Test Yourself!

int

int

int

int

int

int

int

int

int

*P

*p[13]

*(p[13])

**p

(*p) [13]

*£()

(*£) ()

(*(*£()) [13]) ()

(* (*x[3]) ()) [3]

p is a pointer to int
p is an array[13] of pointer to int
p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

fis a function returning a pointer to int

fis a pointer to a function returning int

fis a function returning ptr to an array[13]
of pointers to functions returning int

X is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Dereferencing Bad Pointers

m The classic scanf bug

int wval;

scanf (“%d”, wval) ;

lllinois Tech CS351 Fall 2022

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; Jj++)
y[i]l += A[i][31*x[]]~
return y;

lllinois Tech CS351 Fall 2022 34

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int));

}

lllinois Tech CS351 Fall 2022

Overwriting Memory

m Off-by-one error

int **p;
p = malloc(N*sizeof (int *));
for (i=0; i<=N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

lllinois Tech CS351 Fall 2022

36

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s) ;

/* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

lllinois Tech CS351 Fall 2022

37

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p !'= wval)
p += sizeof (int);

return p;

lllinois Tech CS351 Fall 2022

38

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) ({
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

lllinois Tech CS351 Fall 2022

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

lllinois Tech CS351 Fall 2022

Freeing Blocks Multiple Times

m Nasty!

X

y

= malloc (N*sizeof (int)) ;
free (x) ;
= malloc (M*sizeof (int)) ;

free (x) ;

<manipulate x>

<manipulate y>

lllinois Tech CS351 Fall 2022

41

Referencing Freed Blocks

m Evil!

<manipulate x>
free (x) ;

yl[i] = x[i]++;

X = malloc(N*sizeof (int)) ;

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)

lllinois Tech CS351 Fall 2022

42

Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;

lllinois Tech CS351 Fall 2022

43

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

lllinois Tech CS351 Fall 2022

Dealing With Memory Bugs
m Debugger: gdb

" Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3

lllinois Tech CS351 Fall 2022 45

Hot off the press! http://pitchfork.cs.iit.edu

People ~

Funding ~

@ Pitchfork Project

The Pitchfork project developed a toolchain to implement the privilege separation ("privsep") technique for software security, and applied that toolchain
to several examples of third-party software. Privsep involves organizing software into mutually-dependent but differently-trusted compartments.
Compartments can be secured separately and even executed in different containers/VMs/machines.

Pitchfork and libcompart

Privilege separation (privsep) is an effective
technique for improving software's security, but
privsep involves decomposing software into
components and assigning them different
privileges. This is often laborious and error-
prone. This paper contributes the following for
applying privsep to C software: (1) libcompart:
a portable, lightweight, and distributed runtime
library that abstracts externally-enforced
compartment isolation; (2) an abstract
compartmentalization model of software for
reasoning about privsep; and (3) Pitchfork: a
privsep-aware Clang-based tool for code
analysis and semi-automatic software
transformation to use the runtime library.

To be presented at ACSAC 2022

GAPS CLOSURE

Our project also contributed to the CLOSURE
i i ure

Compartment-aware
Debugging

Compartmentalized software presents unique
challenges to debugging because of the
tension between usability, debuggability,
security, and distributed systems.
Compartment-Aware Debugging has been
explored in 2 projects: a paper by Henry Zhu at
APDCM and a poster by Junyong Zhao, and to
which Henry Zhu contributed, at ACSAC.

Presented at APDCM 2020:

Follow-up work presented at ACSAC 2020:

Compartmentalized
cURL

Systems we use daily make limited use of
compartmentalization because of the
engineering difficulty imposed by the
compartmentalization process. We wanted to
create a state-of-the-art example of a fine-
grained compartmentalization of cURL, a third-
party, long-standing and very widely-used
system, without compromising its performance,
usability and security. This was explored in
Stephen Carrasquillo's project, assisted in
part by Junyong Zhao and Henry Zhu.

Presented at ACSAC 2020:

lllinois Tech CS351 Fall 2022

46

http://pitchfork.cs.iit.edu/

Hot off the press! http://pitchfork.cs.iit.edu

Funding ~

D@f Pitchfork F

The Pitchfork project developed a toolchain to imple|
to several examples of third-party software. Privsep
Compartments can be secured separately and even

Pitchfork and libcompart

Privilege separation (privsep) is an effective
technique for improving software's security, but
privsep involves decomposing software into
components and assigning them different
privileges. This is often laborious and error-
prone. This paper contributes the following for
applying privsep to C software: (1) libcompart:
a portable, lightweight, and distributed runtime
library that abstracts externally-enforced
compartment isolation; (2) an abstract
compartmentalization model of software for
reasoning about privsep; and (3) Pitchfork: a
privsep-aware Clang-based tool for code
analysis and semi-automatic software
transformation to use the runtime library.

To be presented at ACSAC 2022

[rover | coe [P

GAPS CLOSURE

Our project also contributed to the CLOSURE

[F) README.md

OO0

|

v

T

This system release accompanies the paper "Towards Practical Application-level Support for Privilege Separation".

October 2022

Contents

Six classes of artifacts are included in this release:

1. Data and graphs from our survey of FreeBSD ports -- described in section 2.3 of the paper and in the Appendix. The data consists of

text files containing columnar data.
Directory: freebsd_ports_survey/data
Graphs derived from this data, shown in the paper: freebsd_ports_survey/graphs

. Full scripts that were used to generate the data in (1). These were run on FreeBSD 12.2 and do not rely on special dependencies.

Directory: freebsd_ports_survey/scripts

. libcompart -- the library described in section 6 of the paper. This consists of portable C code, and includes build automation scripts.

It was compiled and run on Linux, FreeBSD, and macOS.
Directory: libcompart/compartmenting/libcompart

The libcompart serializer is described in section 7.4 of the paper.
Directory: libcompart/compartmenting/libcompart_serializer

. Examples of applying libcompart to third-party software (e.g., Evince) -- described in section 9 of the paper. Instructions are

provided on which specific versions of the software were used, how to link them with libcompart, and what example output looks like.
The third-party software is widely-used and well-documented.

Directory: libcompart/compartmenting/.

Each example has a separate README.

lllinois Tech CS351 Fall 2022

47

http://pitchfork.cs.iit.edu/

Per-lecture feedback

Better sooner rather than later!
| can help with issues sooner.
There is a per-lecture feedback form.

The form is anonymous.

(It checks that you’re at lllinois Tech
to filter abuse, but | don’t see who
submitted any of the forms.)

https://forms.gle/qoeEbBUTYXo5FiU1A
I’ll remind about this at each lecture.

lllinois Tech CS351 Fall 2022

48

https://forms.gle/qoeEbBuTYXo5FiU1A

