Network Programming: Part I

CS351: Systems Programming
Day 23: Nov. 10, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron
A Client-Server Transaction

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

Note: clients and servers are processes running on hosts (can be the same or different hosts)
Hardware Organization of a Network Host

- CPU chip
 - register file
 - ALU
 - MI

- I/O bridge
 - system bus
 - memory bus

- I/O bus
 - USB controller
 - mouse
 - keyboard
 - graphics adapter
 - monitor
 - disk controller
 - disk
 - network adapter
 - network

- Expansion slots
- Main memory

Illinois Tech CS351 Fall 2022
Computer Networks

- A network is a hierarchical system of boxes and wires organized by geographical proximity
 - SAN (System Area Network) spans cluster or machine room
 - Switched Ethernet, Quadrics QSW, ...
 - LAN (Local Area Network) spans a building or campus
 - Ethernet is most prominent example
 - WAN (Wide Area Network) spans country or world
 - Typically high-speed point-to-point phone lines

- An internetwork (internet) is an interconnected set of networks
 - The Global IP Internet (uppercase “I”) is the most famous example of an internet (lowercase “i”)

- Let’s see how an internet is built from the ground up
Lowest Level: Ethernet Segment

- Ethernet segment consists of a collection of *hosts* connected by wires (twisted pairs) to a *hub*
- Spans room or floor in a building
- Operation
 - Each Ethernet adapter has a unique 48-bit address (MAC address)
 - E.g., 00:16:ea:e3:54:e6
 - Hosts send bits to any other host in chunks called *frames*
 - Hub simply copies each bit from each port to every other port
 - Every host sees every bit
 - Note: Hubs are virtually extinct. Bridges (switches, routers) became cheap enough to replace them
Next Level: Bridged Ethernet Segment

- Spans building or campus
- Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port
Conceptual View of LANs

- For simplicity, hubs, bridges, and wires are often shown as a collection of hosts attached to a single wire:

```
+-------------------+
| host  host … host |
+-------------------+
```
Next Level: internets

- Multiple incompatible LANs can be physically connected by specialized computers called *routers*
- The connected networks are called an *internet* (lower case)

LAN 1 and LAN 2 might be completely different, totally incompatible (e.g., Ethernet, Fibre Channel, 802.11, T1-links, DSL, ...)*
Logical Structure of an internet

- Ad hoc interconnection of networks
 - No particular topology
 - Vastly different router & link capacities

- Send packets from source to destination by hopping through networks
 - Router forms bridge from one network to another
 - Different packets may take different routes
The Notion of an internet Protocol

- How is it possible to send bits across incompatible LANs and WANs?

- Solution: *protocol* software running on each host and router
 - Protocol is a set of rules that governs how hosts and routers should cooperate when they transfer data from network to network.
 - Smooths out the differences between the different networks
What Does an internet Protocol Do?

- Provides a *naming scheme*
 - An internet protocol defines a uniform format for *host addresses*
 - Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it

- Provides a *delivery mechanism*
 - An internet protocol defines a standard transfer unit (*packet*)
 - Packet consists of *header* and *payload*
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host
Transferring internet Data Via Encapsulation

LAN1

1. Host A (client)
 - Data

2. Internet packet
 - Data PH FH1
 - LAN1 frame

3. Router
 - Data PH FH1

4. LAN2 frame
 - Data PH FH1

5. LAN1 adapter
 - Protocol software

6. LAN1 adapter
 - Protocol software

7. LAN2 frame
 - Data PH FH2

8. Host B (server)
 - Data

LAN2

PH: Internet packet header

FH: LAN frame header
Other Issues

- We are glossing over a number of important questions:
 - What if different networks have different maximum frame sizes? (segmentation)
 - How do routers know where to forward frames?
 - How are routers informed when the network topology changes?
 - What if packets get lost?

- These (and other) questions are addressed by the area of systems known as computer networking
Global IP Internet (upper case)

- Most famous example of an internet

- Based on the TCP/IP protocol family
 - IP (Internet Protocol):
 - Provides *basic naming scheme* and unreliable *delivery capability* of packets (datagrams) from *host-to-host*
 - UDP (Unreliable Datagram Protocol)
 - Uses IP to provide *unreliable* datagram delivery from *process-to-process*
 - TCP (Transmission Control Protocol)
 - Uses IP to provide *reliable* byte streams from *process-to-process* over *connections*

- Accessed via a mix of Unix file I/O and functions from the *sockets interface*
Hardware and Software Organization of an Internet Application

Internet client host

- Client
- TCP/IP
- Network adapter
- Sockets interface (system calls)
- Hardware interface (interrupts)
- User code
- Kernel code
- Hardware and firmware

Internet server host

- Server
- TCP/IP
- Network adapter

Global IP Internet

Illinois Tech CS351 Fall 2022
A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
 - 216.47.157.249

2. The set of IP addresses is mapped to a set of identifiers called Internet domain names
 - 216.47.157.249 is mapped to www.cs.iit.edu
 - At the time of writing, it also maps to babbage2.cs.iit.edu

3. A process on one Internet host can communicate with a process on another Internet host over a connection
Aside: IPv4 and IPv6

- The original Internet Protocol, with its 32-bit addresses, is known as *Internet Protocol Version 4 (IPv4)*

- 1996: Internet Engineering Task Force (IETF) introduced *Internet Protocol Version 6 (IPv6)* with 128-bit addresses
 - Intended as the successor to IPv4

- As of 2015, vast majority of Internet traffic still carried by IPv4
 - Only 4% of users access Google services using IPv6.

- We will focus on IPv4, but will show you how to write networking code that is protocol-independent.
(1) IP Addresses

- 32-bit IP addresses are stored in an **IP address struct**
 - IP addresses are always stored in memory in *network byte order* (big-endian byte order)
 - True in general for any integer transferred in a packet header from one machine to another.
 - E.g., the port number used to identify an Internet connection.

```c
/* Internet address structure */
struct in_addr {
    uint32_t s_addr; /* network byte order (big-endian) */
};
```
Dotted Decimal Notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: \(0x8002C2F2 = 128.2.194.242\)

- Use `getaddrinfo` and `getnameinfo` functions (described later) to convert between IP addresses and dotted decimal format.
(2) Internet Domain Names

- **First-level domain names**
 - .net
 - .edu
 - .gov
 - .com

- **Second-level domain names**
 - cmu
 - mit
 - iit
 - berkeley
 - amazon

- **Third-level domain names**
 - cs
 - ece
 - www
 - 176.32.98.166
 - fourier
 - 216.47.157.250
 - www
 - 216.47.157.249
 - pitchfork
 - 216.47.157.249
Domain Naming System (DNS)

- The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS.

- Conceptually, programmers can view the DNS database as a collection of millions of *host entries*.
 - Each host entry defines the mapping between a set of domain names and IP addresses.
 - In a mathematical sense, a host entry is an equivalence class of domain names and IP addresses.
Properties of DNS Mappings

- Can explore properties of DNS mappings using `nslookup`
 - Output edited for brevity

- Each host has a locally defined domain name `localhost` which always maps to the *loopback address* `127.0.0.1`

  ```
  linux> nslookup localhost
  Address: 127.0.0.1
  ```

- Use `hostname` to determine real domain name of local host:

  ```
  linux> hostname
  fourier.cs.iit.edu
  ```
Properties of DNS Mappings (cont)

- Simple case: one-to-one mapping between domain name and IP address:

  ```
  linux> nslookup fourier.cs.iit.edu
  Address: 216.47.157.250
  ```

- Multiple domain names mapped to the same IP address:

  ```
  linux> nslookup cs.mit.edu
  Address: 18.62.1.6
  ```
  ```
  linux> nslookup eecs.mit.edu
  Address: 18.62.1.6
  ```
Properties of DNS Mappings (cont)

- Multiple domain names mapped to multiple IP addresses:

```
linux> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230
```

```
linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70
```

- Some valid domain names don’t map to any IP address:

```
linux> nslookup edu
*** Can't find edu: No answer
```
(3) Internet Connections

- Clients and servers communicate by sending streams of bytes over **connections**. Each connection is:
 - *Point-to-point*: connects a pair of processes.
 - *Full-duplex*: data can flow in both directions at the same time,
 - *Reliable*: stream of bytes sent by the source is eventually received by the destination in the same order it was sent.

- A **socket** is an endpoint of a connection
 - *Socket address* is an *IP address:port* pair

- A **port** is a 16-bit integer that identifies a process:
 - *Ephemeral port*: Assigned automatically by client kernel when client makes a connection request.
 - *Well-known port*: Associated with some *service* provided by a server (e.g., port 80 is associated with Web servers)
Well-known Ports and Service Names

- Popular services have permanently assigned *well-known ports and corresponding well-known service names*:
 - echo server: 7/echo
 - ssh servers: 22/ssh
 - email server: 25/smtpl
 - Web servers: 80/http

- Mappings between well-known ports and service names is contained in the file `/etc/services` on each Linux machine.
Anatomy of a Connection

- A connection is uniquely identified by the socket addresses of its endpoints (*socket pair*)
 - (cliaddr:cliport, servaddr:servport)

Client socket address

128.2.194.242:51213

Server socket address

208.216.181.15:80

Client host address

128.2.194.242

Client

Connection socket pair

(128.2.194.242:51213, 208.216.181.15:80)

Server host address

208.216.181.15

Server (port 80)

51213 is an ephemeral port allocated by the kernel

80 is a well-known port associated with Web servers
Using Ports to Identify Services

Service request for 128.2.194.242:80 (i.e., the Web server)

Service request for 128.2.194.242:7 (i.e., the echo server)
Sockets Interface

- Set of system-level functions used in conjunction with Unix I/O to build network applications.

- Created in the early 80’s as part of the original Berkeley distribution of Unix that contained an early version of the Internet protocols.

- Available on all modern systems
 - Unix variants, Windows, macOS, IOS, Android, ARM
Sockets

■ What is a socket?
 ▪ To the kernel, a socket is an endpoint of communication
 ▪ To an application, a socket is a file descriptor that lets the application read/write from/to the network
 ▪ *Remember:* All Unix I/O devices, including networks, are modeled as files

■ Clients and servers communicate with each other by reading from and writing to socket descriptors

■ The main distinction between regular file I/O and socket I/O is how the application “opens” the socket descriptors
Socket Address Structures

- **Generic socket address:**
 - For address arguments to `connect`, `bind`, and `accept`
 - Necessary only because C did not have generic (`void *`) pointers when the sockets interface was designed
 - For casting convenience, we adopt the Stevens convention:

    ```
    typedef struct sockaddr SA;
    ```

    ```
    struct sockaddr {
        uint16_t sa_family;  /* Protocol family */
        char sa_data[14];    /* Address data. */
    }
    ```

`sa_family`
Socket Address Structures

- Internet-specific socket address:
 - Must cast `struct sockaddr_in *` to `struct sockaddr *` for functions that take socket address arguments.

```c
struct sockaddr_in  {
    uint16_t sin_family; /* Protocol family (always AF_INET) */
    uint16_t sin_port;  /* Port num in network byte order */
    struct in_addr sin_addr; /* IP addr in network byte order */
    unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};
```

<table>
<thead>
<tr>
<th>sa_family</th>
<th>sin_family</th>
<th>sin_port</th>
<th>sin_addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF_INET</td>
<td>3</td>
<td>0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

Family Specific
1. Start server
 - getaddrinfo
 - socket
 - bind
 - listen
 - accept

2. Start client
 - getaddrinfo
 - socket
 - connect

Client / Server Session

3. Exchange data
 - rio_readlineb
 - rio_writen
 - rio_readlineb
 - rio_writen

4. Disconnect client
 - close

5. Drop client
 - close

Connection request
Await connection request from next client
EOF

open_clientfd
open_listendif
Sockets Interface

Client
- `getaddrinfo`
- `socket`
- `connect`
- `rio_readlineb`
- `rio_writen`
- `close`

Server
- `getaddrinfo`
- `socket`
- `bind`
- `listen`
- `accept`
- `rio_readlineb`
- `rio_writen`
- `close`

Connection Request
- Open `clientfd`
- Open `listenfd`

Await Connection Request from Next Client
- Socket connection
- Request
- Accept
- `rio_readlineb`
- `rio_writen`
- `close`

Client / Server Session
- `getaddrinfo`
- `socket`
- `bind`
- `listen`
- `accept`
- `rio_readlineb`
- `rio_writen`
- `close`
Host and Service Conversion: getaddrinfo

- `getaddrinfo` is the modern way to convert string representations of hostnames, host addresses, ports, and service names to socket address structures.
 - Replaces obsolete `gethostbyname` and `getservbyname` funcs.

Advantages:
- Reentrant (can be safely used by threaded programs).
- Allows us to write portable protocol-independent code
 - Works with both IPv4 and IPv6

Disadvantages
- Somewhat complex
- Fortunately, a small number of usage patterns suffice in most cases.
Host and Service Conversion: getaddrinfo

```c
int getaddrinfo(const char *host, /* Hostname or address */
                 const char *service, /* Port or service name*/
                 const struct addrinfo *hints, /* Input parameters */
                 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */
```

- Given host and service, `getaddrinfo` returns result that points to a linked list of `addrinfo` structs, each of which points to a corresponding socket address struct, and which contains arguments for the sockets interface functions.

- **Helper functions:**
 - `freeaddrinfo` frees the entire linked list.
 - `gai_strerror` converts error code to an error message.
Clients: walk this list, trying each socket address in turn, until the calls to socket and connect succeed.

Servers: walk the list until calls to socket and bind succeed.
Each addrinfo struct returned by getaddrinfo contains arguments that can be passed directly to socket function.

Also points to a socket address struct that can be passed directly to connect and bind functions.
Host and Service Conversion: `getnameinfo`

- `getnameinfo` is the inverse of `getaddrinfo`, converting a socket address to the corresponding host and service.
 - Replaces obsolete `gethostbyaddr` and `getservbyport` funcs.
 - Reentrant and protocol independent.

```c
int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
                char *host, size_t hostlen,    /* Out: host */
                char *serv, size_t servlen,    /* Out: service */
                int flags);                    /* optional flags */
```
Conversion Example

```c
#include "csapp.h"

int main(int argc, char **argv)
{
    struct addrinfo *p, *listp, hints;
    char buf[MAXLINE];
    int rc, flags;

    /* Get a list of addrinfo records */
    memset(&hints, 0, sizeof(struct addrinfo));
    hints.ai_family = AF_INET; /* IPv4 only */
    hints.ai_socktype = SOCK_STREAM; /* Connections only */
    if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
        fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
        exit(1);
    }
}
```

hostinfo.c
/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p->ai_next) {
 Getnameinfo(p->ai_addr, p->ai_addrlen,
 buf, MAXLINE, NULL, 0, flags);
 printf("%s\n", buf);
}

/* Clean up */
Freeaddrinfo(listp);
exit(0);
Running hostinfo

```bash
fourier> ./hostinfo localhost
127.0.0.1

dduser> ./hostinfo www.cs.iit.edu
216.47.157.249

dduser> ./hostinfo twitter.com
104.244.42.129
104.244.42.1
```
Next time

- Using `getaddrinfo` for host and service conversion
- Writing clients and servers
- Writing Web servers!
Next lecture: recorded

- **LEC 24** will be pre-recorded and circulated on Blackboard.
 - **Do not come to SB104 that day** – there will not be an in-person lecture.
 - **My away-at-a-conference days are marked on the course calendar.**
State of the art
State of the art: SDN

- “Software-Defined Networking”

- CS543

- "Production Experience with SDN Systems”
 Dr Richard Alimi (Principal Engineer at Google)
 Thursday 1st December 2022 at 1pm-2pm
 Sign up: https://forms.gle/3By54f6MV1iamoiB7
Flightplan Demo Platform:
SIGCSE'21 demo

Welcome to the landing page for our SIGCSE'21 demo. From here you can run the demo and view the accompanying video.

Screenshot of the FDP demo prepared for SIGCSE'21: This shows the packets exchanged during a search on the Web, singling out particular phases in the transfer to explain the transmission in different levels of detail. "10" abstracts all the routing between the client and the various servers, and "00" abstracts all the various servers from which various types of content are downloaded for the results page to be displayed) as a single machine. A more detailed view of this scenario unpacks some of this detail.

Demo
The demo runs in your browser. It does not require anything to be installed, it relies on JavaScript and HTML5. The video on this page walks you through the demo. Once you start the demo, you can choose an experiment to explore. You can use the "Introduction" experiment to get a tutorial on the system.

Code
The sources for this demo are available under a permissive license from the FDP repo.

Video
The accompanying video by Meena Nagda, the implementer of FDP, explains the motivations and design of FDP, and walks you through the example demo that you can access from this page.

For more information contact Hile Sutlana or join the Flightplan mailing list.

Last updated May 2021

https://flightplan.cis.upenn.edu/sigcse21/
FLIGHTPLAN DEMO

Choose an Experiment...

Start

About
Per-lecture feedback

- Better sooner rather than later!
- I can help with issues sooner.
- There is a per-lecture feedback form.
- The form is anonymous. (It checks that you’re at Illinois Tech to filter abuse, but I don’t see who submitted any of the forms.)
- https://forms.gle/qoeEbBuTYXo5FiU1A
- I’ll remind about this at each lecture.
Additional slides
Basic Internet Components

- **Internet backbone:**
 - collection of routers (nationwide or worldwide) connected by high-speed point-to-point networks

- **Internet Exchange Points (IXP):**
 - router that connects multiple backbones (often referred to as peers)
 - Also called Network Access Points (NAP)

- **Regional networks:**
 - smaller backbones that cover smaller geographical areas (e.g., cities or states)

- **Point of presence (POP):**
 - machine that is connected to the Internet

- **Internet Service Providers (ISPs):**
 - provide dial-up or direct access to POPs
Private “peering” agreements between two backbone companies often bypass IXP.
IP Address Structure

- **IP (V4) Address space divided into classes:**
 - **Class A**
 - Net ID: 0
 - Host ID: 0
 - **Class B**
 - Net ID: 10
 - Host ID: 0
 - **Class C**
 - Net ID: 110
 - Host ID: 0
 - **Class D**
 - Net ID: 1110
 - Multicast address
 - **Class E**
 - Net ID: 1111
 - Reserved for experiments

- **Network ID Written in form w.x.y.z/n**
 - \(n \) = number of bits in host address
 - E.g., Part of IIT’s network written as 216.48.152.0/24
 - Class C address

- **Unrouted (private) IP addresses:**
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
Evolution of Internet

■ **Original Idea**
 ▪ Every node on Internet would have unique IP address
 ▪ Everyone would be able to talk directly to everyone
 ▪ No secrecy or authentication
 ▪ Messages visible to routers and hosts on same LAN
 ▪ Possible to forge source field in packet header

■ **Shortcomings**
 ▪ There aren't enough IP addresses available
 ▪ Don't want everyone to have access or knowledge of all other hosts
 ▪ Security issues mandate secrecy & authentication
Evolution of Internet: Naming

- **Dynamic address assignment**
 - Most hosts don't need to have known address
 - Only those functioning as servers
 - DHCP (Dynamic Host Configuration Protocol)
 - Local ISP assigns address for temporary use

- **Example:**
 - Laptop at IIT (wireless connection)
 - IP address e.g., 216.47.152.x
 - Assigned dynamically
 - Laptop at home
 - IP address 192.168.1.5
 - Only valid within home network
Evolution of Internet: Firewalls

- Firewalls
 - Hides organizations nodes from rest of Internet
 - Use local IP addresses within organization
 - For external service, provides proxy service
 1. Client request: src=10.2.2.2, dest=216.99.99.99
 2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
 3. Server responds: src=216.99.99.99, dest=176.3.3.3
 4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2