
Network Programming: Part 2

CS351: Systems Programming
Day 24: Nov. 15, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron

Next time: back to in-person in SB104

Third lab assignment

¢ Good overall!
¢ Zero grades: ensure timely completion of lab.
¢ Low grades: work with TA to get feedback.

N
um

be
r o

f S
tu

de
nt

s

Grade Percentage Deciles

State of the art: SDN
¢ “Software-Defined Networking”

¢ "Production Experience with SDN Systems”
Dr Richard Alimi (Principal Engineer at Google)
Thursday 1st December 2022 at 1pm-2pm
Sign up: https://forms.gle/3By54f6MV1iamoiB7

5Illinois Tech CS351 Fall 2022

https://forms.gle/3By54f6MV1iamoiB7

Host and Service Conversion: getaddrinfo

¢ getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
§ Replaces obsolete gethostbyname and getservbyname funcs.

¢ Advantages:
§ Reentrant (can be safely used by threaded programs).
§ Allows us to write portable protocol-independent code

§ Works with both IPv4 and IPv6

¢ Disadvantages
§ Somewhat complex
§ Fortunately, a small number of usage patterns suffice in most cases.

6Illinois Tech CS351 Fall 2022

Host and Service Conversion: getaddrinfo

¢ Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

¢ Helper functions:
§ freeadderinfo frees the entire linked list.
§ gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
const char *service, /* Port or service name*/
const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

7

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

¢ Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

¢ Servers: walk the list until calls to socket and bind succeed. 8

addrinfo Struct

¢ Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

¢ Also points to a socket address struct that can be passed
directly to connect and bind functions.

struct addrinfo {
int ai_flags; /* Hints argument flags */
int ai_family; /* First arg to socket function */
int ai_socktype; /* Second arg to socket function */
int ai_protocol; /* Third arg to socket function */
char *ai_canonname; /* Canonical host name */
size_t ai_addrlen; /* Size of ai_addr struct */
struct sockaddr *ai_addr; /* Ptr to socket address structure */
struct addrinfo *ai_next; /* Ptr to next item in linked list */

};

9Illinois Tech CS351 Fall 2022

Host and Service Conversion: getnameinfo

¢ getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
§ Replaces obsolete gethostbyaddr and getservbyport funcs.
§ Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
char *host, size_t hostlen, /* Out: host */
char *serv, size_t servlen, /* Out: service */
int flags); /* optional flags */

10Illinois Tech CS351 Fall 2022

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{

struct addrinfo *p, *listp, hints;
char buf[MAXLINE];
int rc, flags;

/* Get a list of addrinfo records */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET; /* IPv4 only */
hints.ai_socktype = SOCK_STREAM; /* Connections only */
if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {

fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
exit(1);

}
hostinfo.c

11Illinois Tech CS351 Fall 2022

Conversion Example (cont)

/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p->ai_next) {

Getnameinfo(p->ai_addr, p->ai_addrlen,
buf, MAXLINE, NULL, 0, flags);

printf("%s\n", buf);
}

/* Clean up */
Freeaddrinfo(listp);

exit(0);
} hostinfo.c

12Illinois Tech CS351 Fall 2022

Running hostinfo

fourier> ./hostinfo localhost
127.0.0.1

fourier> ./hostinfo www.cs.iit.edu
216.47.157.249

fourier> ./hostinfo twitter.com
104.244.42.129
104.244.42.1

14Illinois Tech CS351 Fall 2022

5. Drop client4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Recall: Socket Address Structures
¢ Generic socket address:

§ For address arguments to connect, bind, and accept
§ Necessary only because C did not have generic (void *) pointers when

the sockets interface was designed
§ For casting convenience, we adopt the Stevens convention:
typedef struct sockaddr SA;

struct sockaddr {
uint16_t sa_family; /* Protocol family */
char sa_data[14]; /* Address data. */

};

sa_family

Family Specific
16

Illinois Tech CS351 Fall 2022

Recall: Socket Address Structures
¢ Internet-specific socket address:

§ Must cast (struct sockaddr_in *) to (struct sockaddr *)
for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
uint16_t sin_family; /* Protocol family (always AF_INET) */
uint16_t sin_port; /* Port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

17
Illinois Tech CS351 Fall 2022

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

18

Sockets Interface: socket

¢ Clients and servers use the socket function to create a
socket descriptor:

¢ Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

19Illinois Tech CS351 Fall 2022

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

20

Sockets Interface: bind

¢ A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

¢ The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

¢ Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the arguments
addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

21Illinois Tech CS351 Fall 2022

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

22

Sockets Interface: listen

¢ By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

¢ A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

¢ Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

¢ backlog is a hint about the number of outstanding
connection requests that the kernel should queue up before
starting to refuse requests.

int listen(int sockfd, int backlog);

23

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

24

Sockets Interface: accept

¢ Servers wait for connection requests from clients by
calling accept:

¢ Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

¢ Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

25Illinois Tech CS351 Fall 2022

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

26

Sockets Interface: connect

¢ A client establishes a connection with a server by calling
connect:

¢ Attempts to establish a connection with server at socket
address addr
§ If successful, then clientfd is now ready for reading and writing.
§ Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)

§ x is client address
§ y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments
addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

27Illinois Tech CS351 Fall 2022

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

28
Illinois Tech CS351 Fall 2022

Connected vs. Listening Descriptors
¢ Listening descriptor

§ End point for client connection requests
§ Created once and exists for lifetime of the server

¢ Connected descriptor
§ End point of the connection between client and server
§ A new descriptor is created each time the server accepts a

connection request from a client
§ Exists only as long as it takes to service client

¢ Why the distinction?
§ Allows for concurrent servers that can communicate over many

client connections simultaneously
§ E.g., Each time we receive a new request, we fork a child to

handle the request
29

Illinois Tech CS351 Fall 2022

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

30

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

31

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {
int clientfd;
struct addrinfo hints, *listp, *p;

/* Get a list of potential server addresses */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_socktype = SOCK_STREAM; /* Open a connection */
hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */
hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */
Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

¢ Establish a connection with a server

32Illinois Tech CS351 Fall 2022

Sockets Helper: open_clientfd (cont)
/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */
if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Connect to the server */
if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

break; /* Success */
Close(clientfd); /* Connect failed, try another */

}

/* Clean up */
Freeaddrinfo(listp);
if (!p) /* All connects failed */

return -1;
else /* The last connect succeeded */

return clientfd;
} csapp.c

33Illinois Tech CS351 Fall 2022

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

34

Sockets Helper: open_listenfd

int open_listenfd(char *port)
{

struct addrinfo hints, *listp, *p;
int listenfd, optval=1;

/* Get a list of potential server addresses */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_socktype = SOCK_STREAM; /* Accept connect. */
hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */
hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */
Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

¢ Create a listening descriptor that can be used to accept
connection requests from clients.

35Illinois Tech CS351 Fall 2022

Sockets Helper: open_listenfd (cont)

/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */
if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */
Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */
if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

break; /* Success */
Close(listenfd); /* Bind failed, try the next */

} csapp.c

36Illinois Tech CS351 Fall 2022

Sockets Helper: open_listenfd (cont)

/* Clean up */
Freeaddrinfo(listp);
if (!p) /* No address worked */

return -1;

/* Make it a listening socket ready to accept conn. requests */
if (listen(listenfd, LISTENQ) < 0) {

Close(listenfd);
return -1;

}
return listenfd;

} csapp.c

¢ Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

37
Illinois Tech CS351 Fall 2022

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)
{

int clientfd;
char *host, *port, buf[MAXLINE];
rio_t rio;

host = argv[1];
port = argv[2];

clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf));
Rio_readlineb(&rio, buf, MAXLINE);
Fputs(buf, stdout);

}
Close(clientfd);
exit(0);

} echoclient.c
38

Illinois Tech CS351 Fall 2022

Iterative Echo Server: Main Routine
#include "csapp.h”
void echo(int connfd);

int main(int argc, char **argv)
{

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr; /* Enough room for any addr */
char client_hostname[MAXLINE], client_port[MAXLINE];

listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen = sizeof(struct sockaddr_storage); /* Important! */
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
Getnameinfo((SA *) &clientaddr, clientlen,

client_hostname, MAXLINE, client_port, MAXLINE, 0);
printf("Connected to (%s, %s)\n", client_hostname, client_port);
echo(connfd);
Close(connfd);

}
exit(0);

} echoserveri.c

39Illinois Tech CS351 Fall 2022

Echo Server: echo function

void echo(int connfd)
{

size_t n;
char buf[MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

printf("server received %d bytes\n", (int)n);
Rio_writen(connfd, buf, n);

}
}

¢ The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
§ EOF condition caused by client calling close(clientfd)

echo.c

40Illinois Tech CS351 Fall 2022

Testing Servers Using telnet
¢ The telnet program is invaluable for testing servers

that transmit ASCII strings over Internet connections
§ Our simple echo server
§ Web servers
§ Mail servers

¢ Usage:
§ linux> telnet <host> <portnumber>
§ Creates a connection with a server running on <host> and

listening on port <portnumber>

41Illinois Tech CS351 Fall 2022

Testing the Echo Server With telnet
testmachine > ./echoserveri 10315
Connected to (testmachine.cs.iit.edu, 58700)
server received 18 bytes
server received 8 bytes

fourier > telnet testmachine.cs.iit.edu 10315
Trying 216.47.155.6...
Connected to testmachine.cs.iit.edu.
Escape character is '^]'.
Can you hear me?
Can you hear me?
Hellow?
Hellow?
^]
telnet> quit
Connection closed.
fourier>

43Illinois Tech CS351 Fall 2022

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

¢ Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)
§ Client and server establish TCP

connection
§ Client requests content
§ Server responds with requested

content
§ Client and server close connection

(eventually)
¢ Current version is HTTP/1.1

§ RFC 2616, June, 1999.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

44Illinois Tech CS351 Fall 2022

Web Content
¢ Web servers return content to clients

§ content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

¢ Example MIME types
§ text/html HTML document
§ text/plain Unformatted text
§ image/gif Binary image encoded in GIF format
§ image/png Binar image encoded in PNG format
§ image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

45Illinois Tech CS351 Fall 2022

Static and Dynamic Content

¢ The content returned in HTTP responses can be either
static or dynamic
§ Static content: content stored in files and retrieved in response to

an HTTP request
§ Examples: HTML files, images, audio clips
§ Request identifies which content file

§ Dynamic content: content produced on-the-fly in response to an
HTTP request
§ Example: content produced by a program executed by the

server on behalf of the client
§ Request identifies file containing executable code

¢ Bottom line: Web content is associated with a file that is
managed by the server

46Illinois Tech CS351 Fall 2022

URLs and how clients and servers use them
¢ Unique name for a file: URL (Universal Resource Locator)
¢ Example URL: http://www.iit.edu:80/index.html
¢ Clients use prefix (http://www.iit.edu:80) to infer:

§ What kind (protocol) of server to contact (HTTP)
§ Where the server is (www.iit.edu)
§ What port it is listening on (80)

¢ Servers use suffix (/index.html) to:
§ Determine if request is for static or dynamic content.

§ No hard and fast rules for this
§ One convention: executables reside in cgi-bin directory

§ Find file on file system
§ Initial “/” in suffix denotes home directory for requested content.
§ Minimal suffix is “/”, which server expands to configured default

filename (usually, index.html) 48
Illinois Tech CS351 Fall 2022

HTTP Requests

¢ HTTP request is a request line, followed by zero or more
request headers

¢ Request line: <method> <uri> <version>
§ <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

§ <uri> is typically URL for proxies, URL suffix for servers
§ A URL is a type of URI (Uniform Resource Identifier)
§ See http://www.ietf.org/rfc/rfc2396.txt

§ <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

¢ Request headers: <header name>: <header data>
§ Provide additional information to the server

49
Illinois Tech CS351 Fall 2022

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses
¢ HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

¢ Response line:
<version> <status code> <status msg>

§ <version> is HTTP version of the response
§ <status code> is numeric status
§ <status msg> is corresponding English text

§ 200 OK Request was handled without error
§ 301 Moved Provide alternate URL
§ 404 Not found Server couldn’t find the file

¢ Response headers: <header name>: <header data>
§ Provide additional information about response
§ Content-Type: MIME type of content in response body
§ Content-Length: Length of content in response body

Example HTTP Transaction
$ { echo "GET /index.html HTTP/1.1"; echo "Host: www.iit.edu"; echo; sleep 1;
} | nc www.iit.edu 80
HTTP/1.1 301 Moved Permanently
Server: nginx
Date: Wed, 02 Nov 2022 06:03:56 GMT
Content-Type: text/html; charset=iso-8859-1
Content-Length: 238
X-Content-Type-Options: nosniff
Location: https://www.iit.edu/index.html
Cache-Control: max-age=1209600
Expires: Wed, 16 Nov 2022 06:03:56 GMT
X-Request-ID: v-22a5e508-5a74-11ed-b257-7334d81ceddf
Age: 671231
Via: varnish
X-Cache: HIT
X-Cache-Hits: 4
Connection: keep-alive

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>

Example HTTP Transaction, Take 2
$ telnet acme.com 80
Trying 23.93.76.124...
Connected to acme.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: acme.com

HTTP/1.1 200 OK
Server: thttpd/2.30 ??May2019
Content-Type: text/html; charset=UTF-8
Date: Thu, 10 Nov 2022 00:26:38 GMT
Last-Modified: Wed, 24 Aug 2022 17:22:01 GMT
Accept-Ranges: bytes
Connection: close
Content-Length: 7956

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html lang="en">

…
Connection closed by foreign host.

¢ HTTP standard requires that each text line end with “\r\n”
¢ Blank line (“\r\n”) terminates request and response headers

Tiny Web Server

¢ Tiny Web server described in the textbook
§ Tiny is a sequential Web server
§ Serves static and dynamic content to real browsers

§ text files, HTML files, GIF, PNG, and JPEG images
§ 239 lines of commented C code
§ Not as complete or robust as a real Web server

§ You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

55Illinois Tech CS351 Fall 2022

Tiny Operation

¢ Accept connection from client
¢ Read request from client (via connected socket)
¢ Split into <method> <uri> <version>

§ If method not GET, then return error

¢ If URI contains “cgi-bin” then serve dynamic content
§ (Would do wrong thing if had file “abcgi-bingo.html”)
§ Fork process to execute program

¢ Otherwise serve static content
§ Copy file to output

56Illinois Tech CS351 Fall 2022

Per-lecture feedback

¢ Better sooner rather than later!
¢ I can help with issues sooner.
¢ There is a per-lecture feedback form.
¢ The form is anonymous.

(It checks that you’re at Illinois Tech
to filter abuse, but I don’t see who
submitted any of the forms.)

¢ https://forms.gle/qoeEbBuTYXo5FiU1A
¢ I’ll remind about this at each lecture.

82Illinois Tech CS351 Fall 2022

https://forms.gle/qoeEbBuTYXo5FiU1A

