ILLINOIS TECH

Synchronization: Advanced

CS351: Systems Programming
Day 27: Nov. 29, 2022

Instructor:
Nik Sultana

Slides adapted from Bryant and O’Hallaron

Review: Semaphores

Semaphore: non-negative global integer synchronization
variable. Manipulated by P and V operations.
P(s)

" |fsis nonzero, then decrement s by 1 and return immediately.

= |f sis zero, then suspend thread until s becomes nonzero and the thread
is restarted by a V operation.

= After restarting, the P operation decrements s and returns control to the
caller.

V(s):
" |ncrement s by 1.

= |f there are any threads blocked in a P operation waiting for s to become
non-zero, then restart exactly one of those threads, which then
completes its P operation by decrementing s.

Semaphore invariant: (s >= 0)
lllinois Tech CS351 Fall 2022

Review: Using semaphores to protect shared
resources via mutual exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables)

= Surround each access to the shared variable(s) with P(mutex) and
V(mutex) operations

mutex = 1

P (mutex)
cnt++
V (mutex)

lllinois Tech CS351 Fall 2022 4

Using Semaphores to Coordinate
Access to Shared Resources

m Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true

= Use counting semaphores to keep track of resource state and to
notify other threads

" Use mutex to protect access to resource

m Two classic examples:
® The Producer-Consumer Problem
" The Readers-Writers Problem

lllinois Tech CS351 Fall 2022

Producer-Consumer Problem

| Shared _{ Consumer
buffer thread

Producer
thread

m Common synchronization pattern:

® Producer waits for empty slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

m Examples
" Multimedia processing:

= Producer creates MPEG video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display

Producer-Consumer on an n-element Buffer

m Requires a mutex and two counting semaphores:

" mutex: enforces mutually exclusive access to the the buffer
" s]ots: counts the available slots in the buffer
® jtems: counts the available items in the buffer

m Implemented using a shared buffer package called sbuf.

lllinois Tech CS351 Fall 2022 7

sbuf Package - Declarations

#include "csapp.h”

typedef struct {
int *buf;
int n;
int front;
int rear;
sem_t mutex;
sem_t slots;
sem_t items;

} sbuf_t;

/*
/*
/*
/*
/*
/*
/*

Buffer array *x/

Maximum number of slots x/
buf[(front+1)%n] is first item x/
buflrear%sn] is last item x/
Protects accesses to buf x/
Counts available slots x/

Counts available items x/

void sbuf_init(sbuf_t %sp, int n);

void sbuf_deinit(sbuf_t *sp);

void sbuf_insert(sbuf_t *sp, int item);
int sbuf_remove(sbuf_t *sp);

sbuf.h

lllinois Tech CS351 Fall 2022

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf_init(sbuf_t *sp, int n)

{
sp—buf = Calloc(n, sizeof(int));
Sp—>n = n; /* Buffer holds max of n items */
sp—>front = sp—->rear = 0; /* Empty buffer iff front == rear */
Sem_init(&sp—>mutex, 0, 1); /* Binary semaphore for locking */
Sem_init(&sp—>slots, 0, n); /* Initially, buf has n empty slots */
Sem_init(&sp—>items, 0, 0); /* Initially, buf has @ items *x/

}

/* Clean up buffer sp x/
void sbuf_deinit(sbuf_t sp)

{
Free(sp—>buf);
5 sbuf.c

lllinois Tech CS351 Fall 2022 9

sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf_insert(sbuf_t xsp, int item)

{
P(&sp—>slots); /* Wait for available slot *x/
P(&sp—>mutex); /* Lock the buffer x/
sp—>buf [(++sp—>rear)%(sp—>n)] = item; /% Insert the item *x/
V(&sp—>mutex) ; /* Unlock the buffer x/
V(&sp—>items); /* Announce available item x/
} sbuf.c

lllinois Tech CS351 Fall 2022 10

sbuf Package - Implementation

Removing an item from a shared buffer:

/* Remove and return the first item from buffer sp *x/
int sbuf_remove(sbuf_t *sp)

{
int item;
P(&sp—>items); /* Wait for available item x/
P(&sp—>mutex); /* Lock the buffer x/
item = sp—>buf[(++sp—>front)%(sp—>n)]l; /* Remove the item %/
V(&sp—>mutex) ; /* Unlock the buffer x/
V(&sp—>slots); /* Announce available slot x/
return item;

} sbuf.c

lllinois Tech CS351 Fall 2022 11

Readers-Writers Problem

m Generalization of the mutual exclusion problem

m Problem statement:
" Reader threads only read the object
= Writer threads modify the object
= Writers must have exclusive access to the object
= Unlimited number of readers can access the object

m Occurs frequently in real systems, e.g.,
® Online airline reservation system
® Multithreaded caching Web proxy

lllinois Tech CS351 Fall 2022

12

Variants of Readers-Writers

m First readers-writers problem (favors readers)

= No reader should be kept waiting unless a writer has already been
granted permission to use the object

= A reader that arrives after a waiting writer gets priority over the writer

m Second readers-writers problem (favors writers)
" Once a writer is ready to write, it performs its write as soon as possible

= A reader that arrives after a writer must wait, even if the writer is also
waiting

m Starvation (where a thread waits indefinitely) is possible in
both cases

lllinois Tech CS351 Fall 2022

13

Solution to First Readers-Writers Problem

Readers: Writers:
int readcnt; /* Initially = 0 */ void writer(void)
sem_t mutex, w; /% Initially = 1 %/ {
while (1) {
void reader(void) P(&w);
{

Whilg(é;&téx)_ /* Critical section x/
T /* Writing happens *x/
if (readcnt == 1) /* First in x/]

P(&w); } V(&w);
V(&mutex): ! rwl.c
/% Critical section x/
/* Reading happens */
P(&mutex):
readcnt——;
if (readcnt == Q) /* Last out */
V(&w);
V(&mutex):
}
}

14

Putting It All Together: Prethreaded
Concurrent Server

U, Service client
) Worker
~~~~~~~~~~~~ Insert
Accept 7~ Main "\ descriptors
connections \ thread t_Buffer

Pool of
worker
threads

thread

Remove

lllinois Tech CS351 Fall 2022

descriptors

Service client \lhread

16



Prethreaded Concurrent Server

sbuf_t sbuf; /% Shared buffer of connected descriptors */
int main(int argc, char *%argv)
{
int i, listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
pthread_t tid;
listenfd = Open_listenfd(argv([1]l);
sbuf_init(&sbuf, SBUFSIZE);
for (i = @; 1 < NTHREADS; i++) /% Create worker threads */
Pthread_create(&tid, , thread, );
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
sbuf_insert(&sbuf, connfd); /% Insert connfd in buffer sx/
}
}
echoservert_pre.c

lllinois Tech CS351 Fall 2022 17



Prethreaded Concurrent Server

Worker thread routine:

void *thread(void *vargp)

{
Pthread_detach(pthread_self());
while (1) {
int connfd = sbuf_remove(&sbuf); /% Remove connfd from buf x/
echo_cnt(connfd); /* Service client x/
Close(connfd);
}
} echoservert_pre.c

lllinois Tech CS351 Fall 2022 18




Prethreaded Concurrent Server

Worker thread service routine:

void echo_cnt(int )
{
int n;
char [MAXLINE];
rio_t ;
static pthread_once_t = PTHREAD_ONCE_INIT;

Pthread_once(&once, init_echo_cnt);
Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {

P(&mutex);
byte_cnt += n;
printf(
(int) pthread_self(), n, byte_cnt, connfd);
V(&mutex);

Rio_writen(connfd, buf, n);

echo_cnt.c

lllinois Tech CS351 Fall 2022

19



Prethreaded Concurrent Server

echo_cnt initialization routine:

static int byte_cnt;
static sem_t mutex;

/* Byte counter x/
/* and the mutex that protects it */

static void init_echo_cnt(void)

{

Sem_init(&mutex, 0, 1);

byte_cnt = 0;

echo_cnt.c

lllinois Tech CS351 Fall 2022

20



Real-world example

Making Break-ups Less Painful: Source-level Support for
Transforming Legacy Software into a Network of Tasks

Nik Sultana Achala Rao Zihao Jin
University of Pennsylvania University of Pennsylvania Tsinghua University
Pardis Pashakhanloo Henry Zhu Ke Zhong

University of Pennsylvania

University of Pennsylvania

Shanghai Jiao Tong University

Boon Thau Loo

University of Pennsylvania

ABSTRACT

“Breaking up” software into a dataflow network of tasks can improve
availability and performance by exploiting the flexibility of the
resulting graph, more granular resource use, hardware concurrency
and modern interconnects. Decomposing legacy systems in this
manner is difficult and ad hoc however, raising such challenges as
weaker consistency and potential data races. Thus it is difficult to
build on battle-tested legacy systems.

We propose a paradigm and supporting tools for developers to
recognize task-level modularity opportunities in software. We use
the Apache web server as an example of legacy software to test
our ideas. This is a stepping stone towards realizing a vision where
automated decision-support tools assist in the decomposition of
systems to improve the reuse of components, meet performance
targets or exploit new hardware devices and topologies.

CCS CONCEPTS

« Computer sy or ization — Mai bility and main-
tenance: » Software and its engineering — Extra-functional prop-

erties; Software post-development issues;

KEYWORDS

program analysis; program transformation; distributed systems

ACM Reference Format:

Nik Sultana, Achala Rao, Zihao Jin, Pardis Pashakhanloo, Henry Zhu, Ke
Zhong, and Boon Thau Loo. 2018. Making Break-ups Less Painful: Source-
level Support for Transforming Legacy Software into a Network of Tasks.
In FEAST '18: 2018 Workshop on Forming an Ecosystem Around Software

5 void f (...) {
3 1:int* x = malloc(sizeol(*x)); void g (int *x) {
e 2:9(x); i 5 ;
2 g ... ' ol "\/‘Ci
5 6: free(x); } Split point
}
‘ Analyze + transform
void f (...) {
< 1: int* x = malloc(sizeof("x)); void g (int *x)
E 2 glx); ...
E } anqueuelx, ...);
}
H Queue
@ voldd2 (int* x, ...) { void g2 () {
o ... int "x;
g 8: free(x); dequeue(8x, ...);
3 £..
2(x, ...):
}

Figure 1: Transforming the subroutine call/return control-flow
paradigm to one based on enq /deq over ch Is be-
tween threads. We must analyse programs to ensure that suf-
ficient context is passed from one thread to the next, that the
transformation will not produce name clashes or type errors,
and to avoid introducing data races between threads (e.g., if one

m Apache pre-threaded
webserver “MPM”

o

(Worker li carries

out[] followed by[l.)

m Specializing threads,
forming a pipeline,
client partitioning.

#

L

lllinois Tech CS351 Fall 2022

21



Another use example https://qgitlab.com/niksu/hashtray

[©) README.md

About

libhashtray provides an implementation of cuckoo hashing, and can provide wrappers to use third-party hash tables using the same
interface.

The latter is useful for applications that want to use one or more of these hashtable implementations simultaneously.
Version

1.0

Downloading

gitlab

Building

Running make headers and make libhashtray.a generates the outputs for development and linking.

The included tests and example code is compiled using make tests . Specific tests can be compiled using the appropriate target, and an
extensive debug mode can be used by prepending a flag, e.g., DEBUGGING=1 make hashtray_multiprocess .

Using

lllinois Tech CS351 Fall 2022 22


https://gitlab.com/niksu/hashtray

Another use example https://qgitlab.com/niksu/hashtray

struct idxs { assert((int)result.idx[i] >= 0);

}; }
! #endif // HASHTRAY_ASSERT

return result;

static HASHTRAY (key_t) alt_idx(HASHTRAY(key_t) idx, HASH y

static struct idxs idxs_of_DATA_TYPE(HASHTRAY(data_t) d

static inline void

struct entry { unlock_index(struct HASHTRAY(table) * t, int table_idx) {

bool clear;

int error;
HASHTRAY (key_t) key; #if !'defined (MULTITHREADED) && !'defined (MULTIPROCESS)
HASHTRAY (value_t) value; // Do nothing
¥i
#elif defined (MULTITHREADED) && defined (MULTIPROCESS)
struct cell { #error Simultaneous MULTITHREADED and MULTIPROCESS not supported.
struct entry entry[NUM_CELL_ENTRIES];
¥; #elif defined (MULTITHREADED)
error = pthread_mutex_unlock(&(t->lock[table_idx]));
struct HASHTRAY(table) { #ifdef HASHTRAY_ASSERT
struct cell cell[TABLE_SIZE]; assert(!error); // FIXME check when !'HASHTRAY_ASSERT
#ifdef MULTITHREADED #endif // HASHTRAY_ASSERT

pthread_mutex_t lock[TABLE_SIZE
#endif // MULTITHREADED
#ifdef MULTIPROCESS

sem_t * lock[TABLE_SIZE];
#endif // MULTIPROCESS

#elif defined (MULTIPROCESS)

error = sem_post(t->lock[table_idx]);
#ifdef HASHTRAY_ASSERT

assert(!error); // FIXME check when 'HASHTRAY_ASSERT
#endif // HASHTRAY_ASSERT

b
#endif
#ifdef REMEMBER_LOSS }
struct overfill_t {
struct entry entry[NUM_OVERFILL_ENTRIES]; static inline void
} overfill; lock_index(struct HASHTRAY(table) * t, int table_idx) {

lllinois Tech CS351 Fall 2022 23



https://gitlab.com/niksu/hashtray

Crucial concept: Thread Safety

m Functions called from a thread must be thread-safe

m Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads

m Classes of thread-unsafe functions:
= (Class 1: Functions that do not protect shared variables
= Class 2: Functions that keep state across multiple invocations
® (Class 3: Functions that return a pointer to a static variable
= (Class 4: Functions that call thread-unsafe functions

lllinois Tech CS351 Fall 2022

25



Thread-Unsafe Functions (Class 1)

m Failing to protect shared variables

= Fix: Use P and V semaphore operations
= Example: goodecnt.c

= |ssue: Synchronization operations will slow down code

lllinois Tech CS351 Fall 2022

26



Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations
= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)

{
next = next*%1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{
s

next = seed;

lllinois Tech CS351 Fall 2022 27



Thread-Safe Random Number Generator

m Pass state as part of argument

= and, thereby, eliminate global state

/* rand_r - return pseudo-random integer on 0..32767 x/

int rand_r(int *nextp)
{
knextp = xnextp * 1103515245 + 12345;
return (unsigned int) (sknextp/65536) % 32768;

m Consequence: programmer using rand r must maintain seed

lllinois Tech CS351 Fall 2022

28



Thread-Unsafe Functions (Class 3)

Returning a pointer to a
static variable

Fix 1. Rewrite function so
caller passes address of
variable to store result
= Requires changes in caller and
callee
Fix 2. Lock-and-copy

= Requires simple changes in
caller (and none in callee)

® However, caller must free
memory.

/* lock—-and-copy version */
char xctime_ts(const time_t *timep,

{

char *privatep)
char *xsharedp;

P(&mutex);

sharedp = ctime(timep);
strcpy(privatep, sharedp);
V(&mutex);

return privatep;

lllinois Tech CS351 Fall 2022 29




Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

= Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

= Fix: Modify the function so it calls only thread-safe functions

lllinois Tech CS351 Fall 2022 31



Reentrant Functions

m Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
" |mportant subset of thread-safe functions
= Require no synchronization operations

= Only way to make a Class 2 function thread-safe is to make it
reetnrant (e.g.,, rand r)

All functions

Thread-safe
functions

Thread-unsafe

Reentrant functions

functions

lllinois Tech CS351 Fall 2022



Thread-Safe Library Functions

m All functions in the Standard C Library (at the back of your
K&R text) are thread-safe

= Examples:malloc, free, printf, scanf

m Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime r

ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)

localtime 3 localtime r
rand 2 rand r

lllinois Tech CS351 Fall 2022



Summary

Concurrency provides more flexibility and resource utilization.

® Prethreading: creating pools of threads to lower start-up overhead.
But it is difficult to reason about concurrent logic flows.
We use synchronization to manage access to shared resources.
Critical sections of code access and use these resources.

Semaphores: provide abstraction for synchronization.
Can be used for mutual exclusion.

Risks:

® Races
= Deadlocks

Thread-safety and re-entrancy - likely to be encountered in
other courses.

lllinois Tech CS351 Fall 2022 34



Per-lecture feedback

Better sooner rather than later!
| can help with issues sooner.
There is a per-lecture feedback form.

The form is anonymous.

(It checks that you’re at lllinois Tech
to filter abuse, but | don’t see who
submitted any of the forms.)

https://forms.gle/qoeEbBUTYXo5FiU1A
I’ll remind about this at each lecture.

lllinois Tech CS351 Fall 2022

35


https://forms.gle/qoeEbBuTYXo5FiU1A

Course Evaluation Survey

Course-level evaluation (vs lecture-level)
Your feedback is important!
The survey is anonymous.

lllinois Tech CS351 Fall 2022

You'll receive an email with the survey link.

36



Extra slides

lllinois Tech CS351 Fall 2022

37



One worry: Races
m A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches pointy

/* A threaded program with a race */
int main()

{ N threads are sharing i
pth readW
int i;

for (1 =0; i < N; i++)

Pthread create(&tid[il], , thread, &i);
for (1 = 0; i < N; i++)
Pthread_join(tid[il, );
exit(0);
}
/* Thread routine %/
void *thread(void )
{
int = x((int *)vargp);
printf( , myid);
return :

38

} race.c




Race lllustration

for (1 =0; i < N; i++)

Pthread_create(&tid[il, , thread, &i);
Main thread
i=0
................................. Peer thread 0

i=1 é———é;l myid = *((int *)vargp)
Race!
!

m Race between increment of i in main thread and deref of
vargp in peer thread:
= |f deref happens while i =0, then OK
= Otherwise, peer thread gets wrong id value

39



Could this race really occur?

Main thread Peer thread
int i; void sthread(void *vargp) {
for (i = 0; i < 100; i++) { Pthread_detach(pthread_self());
Pthread_create(&tid, NULL, int i = *x((int *)vargp);
thread, &i); save_value(i);
} return NULL;
} race.c
m Race Test

" |f no race, then each thread would get different value of i

= Set of saved values would consist of one copy each of 0 through 99

lllinois Tech CS351 Fall 2022 40




Experimental Results

No Race

2
1
L LLEEELCCCLLLLL L ELEEEEEEELELL L ELEEEEEECELELLLELEE L LEEEEEEELELELLLLLLLEL

0246 81012141618202224 2628 303234 3638404244 4648505254 5658606264 6668 7072747678 8082848688 9092949698

Single core laptop

3

1]

1

T T T A N,

0246 81012141618202224 2628 303234 3638404244 4648505254 5658606264 666870727476788082848688909294 9698

Multicore server
14

12

10

SRR

0246 81012141618202224 2628303234 3638404244 4648505254 5658606264 6668707274767880828486889092 949698

m The race can really happen! 4




Race Elimination

/* Threaded program without the race %/
int main() . . .
{ m Avoid unintended sharing of
pthread_t [N];
Sl ; state
for (i = 0; 1 < N; i++) {
ptr = Malloc(sizeof(int));
xptr = 1i;
Pthread_create(&tid[il, , thread, ptr);
s
for (i = 0; 1 < N; i++)
Pthread_join(tid[il, );
exit(0);
}
/* Thread routine */
void *thread(void x* )
{
int = x((int *)vargp);
Free(vargp);
printf( , myid);
return ; 42
} norace.c



Another worry: Deadlock

m Def: A process is deadlocked iff it is waiting for a condition
that will never be true

m Typical Scenario
" Processes 1 and 2 needs two resources (A and B) to proceed
" Process 1 acquires A, waits for B
® Process 2 acquires B, waits for A
= Both will wait forever!

lllinois Tech CS351 Fall 2022

43



Deadlocking With Semaphores

int main()

{
pthread_t tid[2];
Sem_init(&mutex[0], @, 1); /* mutex[0]
Sem_init(&mutex[1], @, 1); /% mutex[1]

1 x/
1 x/

Pthread_create(&tid[0], NULL, count, (voidx) 0);
Pthread_create(&tid[1], NULL, count, (voidx) 1);

Pthread_join(tid[@0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);

exit(0);
)
void *xcount(void *vargp)
{
int i; ;'dlo]
int id = (int) vargp; (So);
for (i = @; i < NITERS; i++) { P(s1);
P(&mutex[id]); P(&mutex[1-id]); cntt;
cnt++; V(so);
V(&mutex[id]); V(&mutex[1-id]); V(s4);

}
return NULL;

Tid[1]:
P(s1);
P(so);
cnt++;
V(s1);
V(so);

44



Deadlock Visualized in Progress Graph

Thread 1 Locking introduces the
potential for deadlock:
waiting for a condition that will
_ Deadlock never be true
V(so) AT TR state Any trajectory that enters
for so the deadlock region will
~ eventually reach the
V(s1) deadlock state, waiting for either
S or S4 to become nonzero
P(s0) ¢ . : Other trajectories luck out and
Deadlock Forbidden region (irt the deadlock reqi
_ region for's, skirt the deadlock region
P(s1) ,
Unfortunate fact: deadlock is
I l l I Thread 0 often nondeterministic (race)
P(so)  P(s4) V(so) V(s4)
$9=51=1

lllinois Tech CS351 Fall 2022 45



Avoiding Deadlock

{

¥

int main()

pthread_t tid[2];

Sem_init(&mutex[0], @, 1); /* mutex[0] = 1 %/
Sem_init(&mutex[1], 0, 1); /% mutex[1l] = 1 %/

Pthread create(&tid[@], NULL, count,
Pthread_create(&tid[1], NULL, count,
Pthread_join(tid[@], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);

exit(0);

(voidx) @);
(voidx) 1);

{

void *count(void *vargp)

int i;
int id = (int) vargp;
for (i = @3 i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

Tid[0]:
P(so);
P(s4);
cnt++;
V(so);
V(s1);

Acquire shared resources in same order

Tid[1]:
P(so);
P(s4);
cnt++;
V(s4);
V(so);

47



Avoided Deadlock in Progress Graph

Thread 1 No way for trajectory to get
stuck
- Processes acquire locks in
Forbidden region same order
V(SO) for s,
| Order in which locks released
immaterial
V(s4)
P(s1) Forbidden region
| for s,
P(so)
| I I I Thread 0
P(s) P(s1)  V(so))  V(s4)
$0=51=1

lllinois Tech CS351 Fall 2022

48



