
Optimizing network packet processing on modern CPUs: VPP

12024/04/05

Who am I ?
● Guillaume /ɡi.jom/
● Software engineer at Cisco Meraki for ~3 years
● Designing and implementing the MX firmware

○ Main focus on data plane & performance

2

Meraki MX
● Cloud-managed security & routing appliance

○ 2M+ online

● SD-WAN
○ Automated VPN topology
○ Smart uplink usage

● IDS/IPS
● L3/L7 Firewall
● BGP/OSPF support

3

Routers 101

4

What’s inside a router ?
Traditionally divided in three main components

● Data plane
○ Forwards data packets

● Control plane
○ Routing daemons
○ Configures the dataplane (e.g. installs forwarding tables)

● Management plane
○ Handles configuration
○ CLI/SSH/Yang/…

5

Data plane architectures
● Hardware data planes

○ Dedicated ASICs
○ Maximize performance
○ Energy efficient

Why bother with a software data plane then ?

6ASR 9000 system architecture https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf

Software data planes
● Use off-the-shelf processors

○ Economy of scale
○ Performance can be good
○ Energy efficiency can follow as well

● Cloud deployments
○ Can’t use ASICs in the cloud ☁

● Deep packet inspection (DPI) is control flow heavy
○ Regular expressions/Reassembly/series of lookups
○ Hard to do in hardware

● Updates are simpler

Examples: Linux, DPDK, VPP, Click…

7

Example: L2 forwarding in Linux

8

netdev_tx_t br_dev_xmit(struct sk_buff *skb, struct net_device *dev)
{

[...]
dest = eth_hdr(skb)->h_dest;
if (is_broadcast_ether_addr(dest)) {

br_flood(br, skb, BR_PKT_BROADCAST, false, true);
} else if (is_multicast_ether_addr(dest)) {

 [...]
} else if ((dst = br_fdb_find_rcu(br, dest, vid)) != NULL) {

br_forward(dst->dst, skb, false, true);
} else {

br_flood(br, skb, BR_PKT_UNICAST, false, true);
}

out:
rcu_read_unlock();
return NETDEV_TX_OK;

}

● Series of function calls:
run-to-completion

● DPDK/Click is similar (though DPDK
offers another programming model)

● Barebones

Example: L2 forwarding in VPP

9

● Series of nodes processing up to 256
buffers

● Explicit batch support in nodes:
enables multiple optimizations
(prefetch/unrolling/SIMD…)

static_always_inline uword
l2fwd_node_inline (vlib_main_t * vm, vlib_node_runtime_t * node,

 vlib_frame_t * frame, int do_trace) {
 from = vlib_frame_vector_args (frame);
 n_left = frame->n_vectors; /* number of packets to process */
 vlib_get_buffers (vm, from, bufs, n_left);
 while (n_left > 0)
 {
 u32 sw_if_index0;
 ethernet_header_t *h0;
 l2fib_entry_key_t key0;
 l2fib_entry_result_t result0;

 sw_if_index0 = vnet_buffer (b[0])->sw_if_index[VLIB_RX];

 h0 = vlib_buffer_get_current (b[0]);

 /* process 1 pkt */
 l2fib_lookup_1 (msm->mac_table, &cached_key, &cached_result,

 h0->dst_address, vnet_buffer (b[0])->l2.bd_index, &key0,
 /* not used */ &result0);

 l2fwd_process (vm, node, msm, em, b[0], sw_if_index0, &result0, next);

 next += 1; b += 1; n_left -= 1;
 }

 vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors);
 return frame->n_vectors;
}

First steps in VPP

10

What is VPP ?

11

● Vector packet processing
● Software dataplane for common architectures (x86-64/aarch64)
● Originally developed by Cisco

○ Open-sourced in 2016, now managed by the Linux Foundation (fd.io)
○ Rumor says it was designed to be the slow-path for a hardware dataplane…

● Performance as 1st class citizen
○ Multithreaded scalability
○ Optimized data-structures (vector/bitmap/pool/hash table/prefix tree)
○ Lots of tooling to gain insight on what’s going on during execution

● Used by Intel to showcase performance gains of new architectures
○ Unusual payload as it tends to be backend bound

https://fd.io/technology/
https://lfnetworking.org/wp-content/uploads/sites/7/2022/06/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf

https://fd.io/technology/
https://lfnetworking.org/wp-content/uploads/sites/7/2022/06/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf

Example: dummy IP-in-IP tunnel
● Input: L2 frame
● Destination IP lookup to retrieve a tuple of IPs

○ Encapsulate the IP packet inside an IP packet with the retrieved IPs
○ Drop if not present in the table

● Send back to original interface

12

L2 header

Src IP Dst IP

IP header Payload

Src IP Dst IP

Inner IP header Payload

Src IP Dst IP

Outer IP header

Lookup

RX packet

TX packet

L2 header

VPP

Example: test setup

13

pg-input

device-input

interface-outputdemoperf

Internal packet
generator

Demo node Send to interface

14

Walkthrough

● VPP CLI
● Packet generator config
● show runtime

Optimizing a node

15

Software data planes (cont.)
● Performance metrics:

○ Throughput: usually packets per seconds (pps), or bits per second (bps)
○ Latency (time spent in router)
○ Multithreading scalability

● Some orders of magnitudes
○ Current CPUs are running around 2-3GHz (so as much cycles per second)
○ Typical workloads: non-crypto: 10Mpps per core; crypto workloads: 1Mpps per core
○ → CPU budget is roughly 300 cycles per packet for non-crypto, 3000 for crypto
○ Cache latencies (for Intel haswell) L1: 4 cycles, L2: 12 cycles, L3 ~40-50 cycles, RAM 200

cycles
■ Not much room for cache misses !

16
https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.ht
ml#b-ip4routing-base-scale-avf VPP routing performance results
https://www.7-cpu.com/cpu/Haswell.html Intel Haswell latencies

https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.html#b-ip4routing-base-scale-avf
https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.html#b-ip4routing-base-scale-avf
https://www.7-cpu.com/cpu/Haswell.html

1st step: batching
● VPP’s signature move (it’s in the name !)

17

18

Results:

1 buffer:

252 buffers:

1st step: batching
● VPP’s signature move (it’s in the name !)

○ Increased IPCs
○ Instruction cache is hot
○ Hardware prefetcher can already start kicking in

19

Processor pipeline

20From Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture

Hot L1 Instruction Cache +
Hardware prefetcher +
⇒ Less memory stalls and
easier for the branch
predictor
⇒ More instructions in
parallel

1 step further
● What’s the cache behaviour like ?

○ Perfmon (uses CPU performance counters – PMU)

21

Count:
● Cycles
● Cache hits/misses
● Instruction

issued/retired
● Branch

mispredictions
● …

1 step further
● What’s the cache behaviour like ?

○ 2 L1 misses/pkt
○ Non negligible amount of L2 misses per packet

22

Quiz
● What are the memory accesses that trigger this ?

23

Proper methodology
● Use a profiler to detect hot paths

24

Proper methodology
● Use a profiler to detect hot paths

○ Vlib_buffer metadata, data and (data - 20)

25

Fix: help the prefetcher
● Hardware instructions to trigger prefetch

○ _mm_prefetch

● Prefetch the memory locations one buffer before they are used

26

Results
● Much better !

27

Wait a minute…
● Only one address was looked up. What happens if there’s much more ?

○ 10k addresses with ~uniform distribution
○ ~half of the addresses are on the table

28

Result
● Cache misses for bihash lookup

○ Let’s prefetch !

● ⇒ Important to benchmark with expected workloads

29

Fix: unroll + help the prefetcher
● Use loop iterations to give time to prefetch
● Opens opportunity for SIMD

30

Result
● Reduce L2 misses

31

Result
● Also lots of branch misprediction !

32

Fix: branchless code
● Unpredictable branches trigger lots of rollbacks: important to avoid those
● In our case, lookup fails half of the time: impossible to predict
● Can remove branches with conditional moves:

○ Ternary operator usually gets compiled to those int res = cond ? a : b;
○ Avoids rollback (but can stall it if data is far)

⇒ Can use conditional moves to split the buffers between those who have an
entry and those who don’t !

33

Additional topics
● Multi-threading:

● Avoid contention ⇒ per thread data when possible/fine-grained locking if
not

○ Counters
○ Bihash

● Vector instructions (SIMD)
○ Single instruction can perform multiple operations in a reduced number of cycles
○ 128/256/512bits
○ Accelerated crypto: block size (AES-NI/Armv8 crypto extension)

34

Recap/Lessons

35

Common processor pipeline bottlenecks

36From Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture

Typical causes for
stall/inefficiency for VPP
● Bad speculation
● Memory latency

Disclaimer
Premature optimization is the root of evil

Optimizing is pretty cool, but it’s easy to do it wrong:

● Optimize cold paths → limited gains
● Not benchmarking → No idea if you are actually optimizing
● Pipeline optimization is not everything: e.g. choosing the right data structures
● …

37

Resources
https://www.brendangregg.com/perf.html

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top
-down-microarchitecture-analysis-method.html Top-down analysis to identify
bottlenecks

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.p
df ASR 9000 system architecture

38

https://www.brendangregg.com/perf.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top-down-microarchitecture-analysis-method.html
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf

Questions ?

40

