Optimizing network packet processing on modern CPUs: VPP

2024/04/05 1

Whoam | ?

e Guillaume /gi.jom/
e Software engineer at Cisco Meraki for ~3 years

e Designing and implementing the MX firmware
o Main focus on data plane & performance

‘deeh' Meraki

Meraki MX

e Cloud-managed security & routing appliance
o 2M+ online

e SD-WAN

o Automated VPN topology
o Smart uplink usage

e IDS/IPS
e L3/L7 Firewall
e BGP/OSPF support

‘tses’ Meraki

Routers 101

‘asee’ Meraki

What's inside a router ?

Traditionally divided in three main components

® Data plane

o Forwards data packets
e Control plane

o Routing daemons

o Configures the dataplane (e.g. installs forwarding tables)
e Management plane

o Handles configuration
o CLI/SSH/Yang!/...

‘tees’ Meraki

Data plane architectures

e Hardware data planes

o Dedicated ASICs
o Maximize performance
o Energy efficient

Why bother with a software data plane then ?

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf

Software data planes

e Use off-the-shelf processors
o Economy of scale
o Performance can be good
o Energy efficiency can follow as well
e Cloud deployments
o Can'’t use ASICs in the cloud
e Deep packet inspection (DPI) is control flow heavy
o Regular expressions/Reassembly/series of lookups
o Hard to do in hardware

e Updates are simpler

Examples: Linux, DPDK, VPP, Click...

‘deeh' Meraki

Example: L2 forwarding in Linux

netdev_tx_t br_dev_xmit(struct sk_buff *skb, struct net_device *dev)

{

e Series of function calls:

[...] run-to-completion

dest = eth_hdr(skb)->h_dest; e DPDK/Click is similar (though DPDK

if (is_broadcast_ether_addr(dest)) { offers another programming model)
br_flood(br, skb, BR_PKT_BROADCAST, false, true); Y Barebones

} else if (is_multicast_ether_addr(dest)) {

[...]

} else if ((dst = br_fdb_find_rcu(br, dest, vid)) '= NULL) {
br_forward(dst->dst, skb, false, true);

} else {
br_flood(br, skb, BR_PKT_UNICAST, false, true);

ks

out:

rcu_read_unlock();
return NETDEV_TX_OK;

T [T PR
csco Meraki

Example: L2 forwarding in VPP

static_always_inline uword
I12fwd_node_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame, int do_trace) {
from = vlib_frame_vector_args (frame);
n_left = frame->n_vectors; /* number of packets to process */
vlib_get_buffers (vm, from, bufs, n_left);
while (n_left > 0)
{
u32 sw_if_index0;
ethernet_header_t *h0;
12fib_entry_key_t keyO;
12fib_entry_result_t resultO;

sw_if _index0 = vnet_buffer (b[0])->sw_if_index[VLIB_RX];
hO = vlib_buffer_get_current (b[0]);

/* process 1 pkt */

12fib_lookup_1 (msm->mac_table, &cached_key, &cached_result,
hO->dst_address, vnet_buffer (b[0])->12.bd_index, &keyO,
/* not used */ &result0);

12fwd_process (vm, node, msm, em, b[0], sw_if index0, &result0, next);

next+=1;b+=1; n_left-=1;

b

vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors);
return frame->n_vectors;

b

T [T PR
csco Meraki

Series of nodes processing up to 256
buffers

Explicit batch support in nodes:
enables multiple optimizations
(prefetch/unrolling/SIMD...)

First steps in VPP

What is VPP ?

e \Vector packet processing
e Software dataplane for common architectures (x86-64/aarch64)
e Originally developed by Cisco

o Open-sourced in 2016, now managed by the Linux Foundation (fd.io)
o Rumor says it was designed to be the slow-path for a hardware dataplane...
e Performance as 1st class citizen
o Multithreaded scalability
o Optimized data-structures (vector/bitmap/pool/hash table/prefix tree)
o Lots of tooling to gain insight on what’s going on during execution
e Used by Intel to showcase performance gains of new architectures
o Unusual payload as it tends to be backend bound

Al ~ https:/fd.io/technology/
asco Meraki https://Ifnetworking.org/wp-content/uploads/sites/7/2022/06/benchmarking_sw_data_planes_skx_bdx_mar07_ 2019.pdf

11

https://fd.io/technology/
https://lfnetworking.org/wp-content/uploads/sites/7/2022/06/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf

Example: dummy IP-in-IP tunnel

e Input: L2 frame

e Destination IP lookup to retrieve a tuple of IPs
o Encapsulate the IP packet inside an IP packet with the retrieved IPs
o Drop if not present in the table

e Send back to original interface

RX packet
L2 header IP header Payload
SrcIP | DstIP
TX packet Lookup
L2 header Outer IP header Inner IP header Payload

Src IP Dst IP Src IP Dst IP

Example: test setup

VPP

[device-input

[pg-input]—{ demoperf

— A/

Internal packet
generator

Demo node

A4
)

interface-output]

Send to interface

13

Walkthrough

e VPP CLI
e Packet generator config
e show runtime

asco Meraki

14

Optimizing a node

‘asee’ Meraki

15

Software data planes (cont.)

e Performance metrics:
o Throughput: usually packets per seconds (pps), or bits per second (bps)
o Latency (time spent in router)
o Multithreading scalability

e Some orders of magnitudes

o Current CPUs are running around 2-3GHz (so as much cycles per second)
o Typical workloads: non-crypto: 10Mpps per core; crypto workloads: 1Mpps per core
o — CPU budget is roughly 300 cycles per packet for non-crypto, 3000 for crypto
o Cache latencies (for Intel haswell) L1: 4 cycles, L2: 12 cycles, L3 ~40-50 cycles, RAM 200
cycles
m Not much room for cache misses !

https://docs.fd.io/csit/master/report/vpp_performance tests/throughput speedup multi_core/ip4-2n-icx-e810cg.ht
alialn Aeraki ml#b-ip4routing-base-scale-avf VPP routing performance results
csco Meraki)
https://www.7-cpu.com/cpu/Haswell.html Intel Haswell latencies

16

https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.html#b-ip4routing-base-scale-avf
https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.html#b-ip4routing-base-scale-avf
https://www.7-cpu.com/cpu/Haswell.html

1st step: batching

e V\PP’s signature move (it’s in the name!)

‘tses’ Meraki

17

Results:

1 bUffer vpp# show runtime

Time .8, 1@ sec internal node vector rate 1.00 loops/sec 2119944.14

vector rates in 2.1166e6, out 2.1166e6, drop ©.0000e@, punt 0.0000e0
Name State Calls Vectors Suspends Clocks Vectors/Call
demoperf active 1683050 1683050 3.05e2 1.00

vpp# show perfmon statistics
instructions/packet, cycles/packet and IPC
Calls Packets Packets/Call Clocks/Packet Instructions/Packet IPC
vpp_main (0)
demoperf 4357275 4357275 1.00 310.20 411.00 1.32

252 buffers:

vpp# show runtime
Time .8, 10 sec internal node vector rate 252.00 loops/sec 51738.07
vector rates in 1.3071e7, out 1.3071e7, drop ©0.0000e0, punt 0.0000e0
Name State Calls Vectors Suspends Clocks Vectors/Call
demoperf active 44075 11106900 7.15e1 252.00

7

vpp# show perfmon statistics
instructions/packet, cycles/packet and IPC
Calls Packets Packets/Call Clocks/Packet Instructions/Packet IPC

vpp_main (0)
demoperf 194750 49077000 252 .00 71.39 108.39 1.52

18

1st step: batching

e V\PP’s signature move (it’s in the name!)
o Increased IPCs
o Instruction cache is hot
o Hardware prefetcher can already start kicking in

asco Meraki

19

Processor pipeline

,
vilear]ee)

Cisco

l Instruction Fetch and PreDecode

|l
|‘
I Instruction Queue |
Micro- '
code —-)l Decode |
ROM v
L
4 Shared L2 Cache
| Rename/Alloc | Up to 10.7 GB/s
FSB
|
Retirement Unit
(Re-Order Buffer) <
| Scheduler
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move l l
L1D Cache and DTLB e

Figure 2-3. The Intel® Core™ Microarchitecture Pipeline Functionality

Hot L1 Instruction Cache +
Hardware prefetcher +

= Less memory stalls and
easier for the branch
predictor

= More instructions in
parallel

From Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture

1 step further

e What's the cache behaviour like ?
o Perfmon (uses CPU performance counters — PMU)

Count:
| Instruction Fetc;and PreDecode I‘ . CyCl eS
[o] e Cache hits/misses

oy L oeeom | N e |Instruction

s 9 issued/retired
| (55‘5?2”;”3‘ B p 4 e Branch
|l L l| mispredictions
—_~ ¢
mche wgoTls e

N\ /4
Figure 2-3. The Intel® Cor%oarchitecture Pipeline Functionality

cisco |VIiEeraxk

1 step further

e \What's the cache behaviour like ?

o 2 L1 misses/pkt
o Non negligible amount of L2 misses per packet

vpp# show perfmon statistics
cache hits and misses
LT hit/pkt L1 miss/pkt L2 hit/pkt L2 miss/pkt L3 hit/pkt L3 miss/pkt

vpp_main (0)
demoperf 17.08 1.98 1.51 .47 .47 0.00

22

Quiz

e \What are the memory accesses that trigger this ?

‘tees’ Meraki

23

Proper methodology

e Use a profiler to detect hot paths

‘tses’ Meraki

24

Proper methodology

e Use a profiler to detect hot paths
o VIlib_buffer metadata, data and (data - 20)

‘tees’ Meraki

25

Fix: help the prefetcher

e Hardware instructions to trigger prefetch

O _mm_prefetch

e Prefetch the memory locations one buffer before they are used

‘tees’ Meraki

26

Results

Much better !

vpp# show runtime
Time 7.1, 10 sec internal node vector rate 252.00 loops/sec 59635.79
vector rates in 1.4849e7, out 1.4849e7, drop 0.0000e0, punt 0.0000e0
Name State Calls Vectors Suspends Clocks Vectors/Call
demoperf active 418200 105386400 4.19e1 252.00

vpp# show perfmon statistics
cache hits and misses
L1 hit/pkt L1 miss/pkt L2 hit/pkt L2 miss/pkt L3 hit/pkt L3 miss/pkt
vpp_main (0)
demoperf 29.08 101 .09 .02 .02 0.00

27

Wait a minute...

e Only one address was looked up. What happens if there’s much more ?
o 10k addresses with ~uniform distribution
o ~half of the addresses are on the table

‘tees’ Meraki

28

Result

e Cache misses for bihash lookup
o Let’s prefetch !
e = Important to benchmark with expected workloads

vpp# show runtime
Time 1.5, 10 sec internal node vector rate 151.82 loops/sec 52209.17
vector rates in 1.3171e7, out 6.6660e6, drop 6.5051e6, punt 0.0000e0
Name State Calls Vectors Suspends Clocks
demoperf active 20147400 7.14e1

vpp# show perfmon statistics
cache hits and misses
L1 hit/pkt L1 miss/pkt L2 hit/pkt L2 miss/pkt L3 hit/pkt L3 miss/pkt
vpp_main (0)
demoperf 22.08))

Vectors/Call
252.00

29

Fix: unroll + help the prefetcher

e Use loop iterations to give time to prefetch
e Opens opportunity for SIMD

‘tees’ Meraki

30

Result

e Reduce L2 misses

vpp# show runtime
Time 1.5, 10 sec internal node vector rate 150.97 loops/sec 56048.99
vector rates in 1.4097e7, out 7.0156e6, drop 7.0813e6, punt 0.0000e0
Name State Calls Vectors Suspends Clocks Vectors/Call
demoperf active 82000 20664000 5.53e1 252.00

vpp# show perfmon statistics
cache hits and misses
L1 hit/pkt L1 miss/pkt L2 hit/pkt L2 miss/pkt L3 hit/pkt L3 miss/pkt
vpp_main (0)
demoperf 28.08 .99 .93

31

Result
e Also lots of branch misprediction !
vpp# show perfmon statistics

Branches, branches taken and mis-predictions
Branches/call Branches/pkt Taken/call Taken/pkt % MisPred

vpp_main (0)
demoperf 2054 .36 8.15 1055.52 4.19

4

32

Fix: branchless code

e Unpredictable branches trigger lots of rollbacks: important to avoid those
e In our case, lookup fails half of the time: impossible to predict

e Can remove branches with conditional moves:

o Ternary operator usually gets compiled to those int res = cond ? a : b;
o Avoids rollback (but can stall it if data is far)

= Can use conditional moves to split the buffers between those who have an
entry and those who don’t !

‘deeh' Meraki

33

Additional topics

e Multi-threading:
e Avoid contention = per thread data when possible/fine-grained locking if

not
o Counters
o Bihash

e \ector instructions (SIMD)

o Single instruction can perform multiple operations in a reduced number of cycles
o 128/256/512bits
o Accelerated crypto: block size (AES-NI/Armv8 crypto extension)

‘deeh' Meraki

34

Recap/Lessons

‘asee’ Meraki

35

Common processor pipeline bottlenecks

Cisco

| Instruction Fetch and PreDecode I:

v -~

| Instruction Queue |

Micro- '
code —-)I Decode |
ROM
L
;2
| Rename/Alloc |
|

Retirement Unit
(Re-Order Buffer)

\ 4

Shared L2 Cache
Up to 10.7 GB/s
FSB

| Scheduler | /
ALU ALU ALU
Branch FAdd FMul Load Store
MM)ﬁSSE/FP MMX/SSE MMX/SSE
ove

L1D Cache and DTLB

<

Typical causes for
stall/inefficiency for VPP
—— e Bad speculation
e Memory latency

Figure 2-3. The Intel® Core™ Microarchitecture Pipeline Functionality

From Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture

Disclaimer

Premature optimization is the root of evil
Optimizing is pretty cool, but it's easy to do it wrong:

e Optimize cold paths — limited gains

e Not benchmarking — No idea if you are actually optimizing

e Pipeline optimization is not everything: e.g. choosing the right data structures
o

‘deeh Meraki

37

Resources

https://www.brendangregqg.com/perf.html

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top

-down-microarchitecture-analysis-method.html Top-down analysis to identify
bottlenecks

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/ BRKARC-2003.p

df ASR 9000 system architecture

‘deeh' Meraki

38

https://www.brendangregg.com/perf.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top-down-microarchitecture-analysis-method.html
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf

Questions ?

‘asee’ Meraki

40

