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Who am I ?
● Guillaume /ɡi.jom/
● Software engineer at Cisco Meraki for ~3 years 
● Designing and implementing the MX firmware

○ Main focus on data plane & performance
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Meraki MX
● Cloud-managed security & routing appliance

○ 2M+ online

● SD-WAN
○ Automated VPN topology
○ Smart uplink usage

● IDS/IPS
● L3/L7 Firewall
● BGP/OSPF support
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Routers 101
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What’s inside a router ?
Traditionally divided in three main components

● Data plane
○ Forwards data packets

● Control plane
○ Routing daemons 
○ Configures the dataplane (e.g. installs forwarding tables)

● Management plane
○ Handles configuration
○ CLI/SSH/Yang/…
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Data plane architectures
● Hardware data planes

○ Dedicated ASICs
○ Maximize performance
○ Energy efficient

Why bother with a software data plane then ?

6ASR 9000 system architecture https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf 

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf


Software data planes
● Use off-the-shelf processors

○ Economy of scale
○ Performance can be good
○ Energy efficiency can follow as well

● Cloud deployments
○ Can’t use ASICs in the cloud ☁

● Deep packet inspection (DPI) is control flow heavy
○ Regular expressions/Reassembly/series of lookups
○ Hard to do in hardware

● Updates are simpler

Examples: Linux, DPDK, VPP, Click…
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Example: L2 forwarding in Linux
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netdev_tx_t br_dev_xmit(struct sk_buff *skb, struct net_device *dev)
{

[...]
dest = eth_hdr(skb)->h_dest;
if (is_broadcast_ether_addr(dest)) {

br_flood(br, skb, BR_PKT_BROADCAST, false, true);
} else if (is_multicast_ether_addr(dest)) {

             [...]
} else if ((dst = br_fdb_find_rcu(br, dest, vid)) != NULL) {

br_forward(dst->dst, skb, false, true);
} else {

br_flood(br, skb, BR_PKT_UNICAST, false, true);
}

out:
rcu_read_unlock();
return NETDEV_TX_OK;

}

● Series of function calls: 
run-to-completion

● DPDK/Click is similar (though DPDK 
offers another programming model)

● Barebones



Example: L2 forwarding in VPP
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● Series of nodes processing up to 256 
buffers

● Explicit batch support in nodes: 
enables multiple optimizations 
(prefetch/unrolling/SIMD…)

static_always_inline uword
l2fwd_node_inline (vlib_main_t * vm, vlib_node_runtime_t * node,

         vlib_frame_t * frame, int do_trace) {
  from = vlib_frame_vector_args (frame);
  n_left = frame->n_vectors; /* number of packets to process */
  vlib_get_buffers (vm, from, bufs, n_left);
  while (n_left > 0)
    {
      u32 sw_if_index0;
      ethernet_header_t *h0;
      l2fib_entry_key_t key0;
      l2fib_entry_result_t result0;

      sw_if_index0 = vnet_buffer (b[0])->sw_if_index[VLIB_RX];

      h0 = vlib_buffer_get_current (b[0]);

      /* process 1 pkt */
      l2fib_lookup_1 (msm->mac_table, &cached_key, &cached_result,

      h0->dst_address, vnet_buffer (b[0])->l2.bd_index, &key0,
      /* not used */ &result0);

      l2fwd_process (vm, node, msm, em, b[0], sw_if_index0, &result0, next);

      next += 1; b += 1; n_left -= 1;
    }

  vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors);
  return frame->n_vectors;
}



First steps in VPP
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What is VPP ?
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● Vector packet processing
● Software dataplane for common architectures (x86-64/aarch64)
● Originally developed by Cisco

○ Open-sourced in 2016, now managed by the Linux Foundation (fd.io)
○ Rumor says it was designed to be the slow-path for a hardware dataplane… 

● Performance as 1st class citizen
○ Multithreaded scalability
○ Optimized data-structures (vector/bitmap/pool/hash table/prefix tree)
○ Lots of tooling to gain insight on what’s going on during execution

● Used by Intel to showcase performance gains of new architectures
○ Unusual payload as it tends to be backend bound

https://fd.io/technology/ 
https://lfnetworking.org/wp-content/uploads/sites/7/2022/06/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf 

https://fd.io/technology/
https://lfnetworking.org/wp-content/uploads/sites/7/2022/06/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf


Example: dummy IP-in-IP tunnel
● Input: L2 frame
● Destination IP lookup to retrieve a tuple of IPs

○ Encapsulate the IP packet inside an IP packet with the retrieved IPs
○ Drop if not present in the table

● Send back to original interface
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VPP

Example: test setup
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pg-input

device-input

interface-outputdemoperf

Internal packet 
generator

Demo node Send to interface
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Walkthrough

● VPP CLI
● Packet generator config
● show runtime



Optimizing a node
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Software data planes (cont.)
● Performance metrics:

○ Throughput: usually packets per seconds (pps), or bits per second (bps)
○ Latency (time spent in router)
○ Multithreading scalability

● Some orders of magnitudes
○ Current CPUs are running around 2-3GHz (so as much cycles per second)
○ Typical workloads: non-crypto: 10Mpps per core; crypto workloads: 1Mpps per core
○ → CPU budget is roughly 300 cycles per packet for non-crypto, 3000 for crypto
○ Cache latencies (for Intel haswell) L1: 4 cycles, L2: 12 cycles, L3 ~40-50 cycles, RAM 200 

cycles
■ Not much room for cache misses !
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https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.ht
ml#b-ip4routing-base-scale-avf VPP routing performance results
https://www.7-cpu.com/cpu/Haswell.html Intel Haswell latencies

https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.html#b-ip4routing-base-scale-avf
https://docs.fd.io/csit/master/report/vpp_performance_tests/throughput_speedup_multi_core/ip4-2n-icx-e810cq.html#b-ip4routing-base-scale-avf
https://www.7-cpu.com/cpu/Haswell.html


1st step: batching
● VPP’s signature move (it’s in the name !)
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Results:

1 buffer:

252 buffers:



1st step: batching
● VPP’s signature move (it’s in the name !)

○ Increased IPCs
○ Instruction cache is hot
○ Hardware prefetcher can already start kicking in
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Processor pipeline

20From Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture

Hot L1 Instruction Cache +
Hardware prefetcher +
⇒ Less memory stalls and 
easier for the branch 
predictor
⇒ More instructions in 
parallel



1 step further
● What’s the cache behaviour like ?

○ Perfmon (uses CPU performance counters – PMU)
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Count:
● Cycles
● Cache hits/misses
● Instruction 

issued/retired
● Branch 

mispredictions
● …



1 step further
● What’s the cache behaviour like ?

○ 2 L1 misses/pkt
○ Non negligible amount of L2 misses per packet
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Quiz
● What are the memory accesses that trigger this ?
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Proper methodology
● Use a profiler to detect hot paths
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Proper methodology
● Use a profiler to detect hot paths

○ Vlib_buffer metadata, data and (data - 20)
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Fix: help the prefetcher
● Hardware instructions to trigger prefetch

○ _mm_prefetch

● Prefetch the memory locations one buffer before they are used
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Results
● Much better !
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Wait a minute…
● Only one address was looked up. What happens if there’s much more ?

○ 10k addresses with ~uniform distribution
○ ~half of the addresses are on the table
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Result
● Cache misses for bihash lookup

○ Let’s prefetch !

● ⇒ Important to benchmark with expected workloads
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Fix: unroll + help the prefetcher
● Use loop iterations to give time to prefetch
● Opens opportunity for SIMD
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Result
● Reduce L2 misses
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Result
● Also lots of branch misprediction !
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Fix: branchless code
● Unpredictable branches trigger lots of rollbacks: important to avoid those
● In our case, lookup fails half of the time: impossible to predict
● Can remove branches with conditional moves:

○ Ternary operator usually gets compiled to those int res = cond ? a : b;
○ Avoids rollback (but can stall it if data is far)

⇒ Can use conditional moves to split the buffers between those who have an 
entry and those who don’t !
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Additional topics
● Multi-threading:

● Avoid contention ⇒ per thread data when possible/fine-grained locking if 
not

○ Counters
○ Bihash

● Vector instructions (SIMD)
○ Single instruction can perform multiple operations in a reduced number of cycles
○ 128/256/512bits
○ Accelerated crypto: block size (AES-NI/Armv8 crypto extension)
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Recap/Lessons
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Common processor pipeline bottlenecks

36From Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture

Typical causes for 
stall/inefficiency for VPP
● Bad speculation
● Memory latency



Disclaimer
Premature optimization is the root of evil

Optimizing is pretty cool, but it’s easy to do it wrong:

● Optimize cold paths → limited gains
● Not benchmarking → No idea if you are actually optimizing
● Pipeline optimization is not everything: e.g. choosing the right data structures
● …
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Resources
https://www.brendangregg.com/perf.html 

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top
-down-microarchitecture-analysis-method.html Top-down analysis to identify 
bottlenecks

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.p
df ASR 9000 system architecture
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https://www.brendangregg.com/perf.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2024-1/top-down-microarchitecture-analysis-method.html
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKARC-2003.pdf


Questions ?
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