
Aspect-Oriented Framework Modeling
Andreas Rausch

Technische Universität München
Boltzmannstrasse 3
D-85748 Garching
+49 (89) 289 17362

rausch@in.tum.de

Bernhard Rumpe
Technische Universität München

Boltzmannstrasse 3
D-85748 Garching

+49 (89) 289 17376

rumpe@in.tum.de

Lucien Hoogendoorn
Technische Universität München

Boltzmannstrasse 3
D-85748 Garching

+49 (89) 289 17362

hoogendo@in.tum.de

ABSTRACT
Aspects and aspect-oriented programming have gained much
attention in recent years, but the focus was limited to the late
stages of software development, especially late design and
programming. In this paper, we describe a model-based approach
based on an industrial case study that uses aspects. The approach
provides a merge of the implementation of a requirements model
with the predefined and thus reusable aspect-implementation,
which is given in form of a framework.

Categories and Subject Descriptors
D.2. Design.

General Terms
Design, Languages.

Keywords
Aspects, UML, Framework, Modelling, Reuse.

1. INTRODUCTION
Practical experience has shown that aspect-oriented
programming is an interesting, although still rather new approach
that helps to increase reuse through separation of concerns and
decoupling, which in turn leads to cost reduction and at the same
time to a higher quality of the result [EFB01].

Aspects are used to weave cross-cutting functionality usually
provided by a framework together with the application code.
Application developers successfully (re-)use the framework
implementation, like for instance a tracing mechanism or
persistence functionality, for their own application
implementation. Therefore aspect-oriented programming
techniques are used to ease the connection of a framework with
application code using weaving techniques.

In the foreseeable future, many application as well as framework
development projects will follow a model-based development
approach. In these projects models of the application resp.
framework are built, detailed mappings and tracing-relationships
between different model abstraction levels are documented,
transformational approaches for model refinement are applied,
and models are used for code and test case generation as well as
animation for feedback to the customer (cf.
[HMR+98,RRH98,Rum03,Rum03b]). Consequently, a
framework vendor will not only deliver the framework to his
customers, but also the model that describes the framework.

As already mentioned, the aspect-oriented approach is up to now
successfully used as a programming paradigm to ease the
integration of application and framework on the implementation
level. Consequently, one would expect an aspect-oriented
modeling approach to integrate application and framework on the
requirement and design level.

However, there is still no generally accepted, clear and precise
concept available to integrate application and framework models.
Dependencies between application and framework models are
not explicitly defined or modeled at all. Because concrete
dependencies between application and framework are not
explicitly formulated and tracked during the development,
developers have to go into the details of the concerned code parts
and glue application and framework together. As frameworks are
usual complex pieces of code this is an extremely sensitive and
error-prone implementation step.

In addition, this leads to systems that are very brittle with respect
to changes, especially in the framework, as there is no clear
model or specification describing separately the application
concerns, the framework concerns, and the connection concerns
between application and framework.

To sum up, the problem we are investigating in this paper is the
question of how to integrate the advantages of a model-based and
an aspect-oriented development approach. The goal is to identify
and extract aspects already in the requirements and the design
model, to reuse independently developed frameworks as
implementations of the identified aspects.

Therefore we will provide aspect-oriented framework models on
the requirement and design level. Based on this, a technique to
glue framework models together with the application specific
model to an integrated system model is needed. We call this
“model-weaving” similar to code-weaving as provided by aspect-
oriented programming languages
[CW02,HJPP02,Paw02,SHU02].

The rest of the paper is structured as follows: Section 2 describes
– based on an industrial case study – the state of the art of gluing
an application together with an framework using aspect-oriented
programming techniques. Section 3 introduces aspect-oriented
framework models including the framework’s free parameter that
the application has to fill. Section 4 finally shows how an
application model can be weaved together with an aspect-
oriented framework model.

2. CONNECTING APPLICATIONS AND
FRAMEWORKS WITH AOP
This section gives a brief description of our case study, which
consists of a small application and a persistence framework. We
show how the application and the persistence framework can be
glued together using aspect-oriented programming techniques.

Our simplified persistence framework is shown in Figure 1. The
central part of the framework is the PersistenceService. The
persistence service provides a transaction mechanism. Any
actions of an application using persistence service have to take
place in the context of a transaction.

Transactions are opened by calling beginTransaction(), and
closed by calling commitTransaction() or abortTransaction(). A
Transaction manages an object store containing all the persistent
application objects, which have to implement the interface
Persistable.

If a Persistable object changes, a call to fireObjectUpdated() hast
to ensure that any changes will be stored when the transaction
commits. Similar methods for object creation and deletion exist
but are not relevant in the scope of this paper.

Figure 1. Simple persistence framework

Figure 2 shows our small sample application – a customer
management system. The system can manage customers and their
addresses. To store these objects persistently we will use the
introduced persistence framework.

Therefore during development the model and the code have to be
changed appropriately. All classes that have to be stored
persistently have to implement the Persistable interface.

Methods that can cause changes to persistent data have to call
fireObjectUpdated() at the end of the method execution. The
persistent object that was changed is passed as a parameter.

Hence, the code of all persistent classes must be changed. A
“implements Persistable” statement must be added and all
“setter” methods, e.g. setStreet() and setName(), have to be
changed by inserting the call of the method fireObjectUpdated().

Figure 2. Simple application

Manually applying these code changes causes code tangling and
scattering [KLM97]. For that reasons we may use AspectJ
[KHH01] to keep these cross-cutting concerns in a separate
aspect and to weave tool supported the aspect into the application
code. We refer to [AJT03] for a detailed description of AspectJ.

Figure 3 shows the AspectJ implementation of the aspect that
connects the application and the persistence framework. It
contains to introductions (declare parents…) to add the supertype
Persistable to the persistent application objects.

The pointcut setter(…) specifies all locations where the aspect
connects to the application – all methods with the prefix “set”.
The advice after(…)is used to describe what happens when the
join point is reached. In our case means this that the
fireObjectUpdated() method is called.

package CustomerManagement2PersistenceFramework;
import PersistenceFramework.*;
import CustomerManagement.*;

public aspect CustomerManagement2PersistenceFramework {

 declare parents: Customer implements Persistable;
 declare parents: Address implements Persistable;

 pointcut setter(Persistable p):
 target(p) && call(void set*(..));

 after(Persistable p): setter(p)

{
 PersistenceService.fireObjectUpdated(p);
 }

 …
}

Figure 3. Connecting application and framework with
AspectJ

3. ASPECT-ORIENTED FRAMEWORK
MODEL
AspectJ enables us to connect the application and the framework
at the code level, but we need a means of making aspects visible
in the model to reason about the solution before implementing it.

Therefore an aspect-oriented framework model has to contain
parts that represent the framework’s “hot spots” [FPR01]. A hot
spot serves as free parameter of a framework that the application
has to fill. Hence, framework’s hot spots have to be modeled as
aspects which are not bound to a particular part of the application
under construction. Figure 4 illustrates our approach. We have

modeled an aspect as a separate entity which has a set of join
points. For this purpose we introduced the stereotypes
«callJoinPoint» and «aspect». A join point has parameters,
which are shown in the attributes compartment of the join point
box. These parameters define the context of the join point,
similar to the way pointcut parameters expose context in
AspectJ.

Advice is written in the operations compartment of the aspect
box, and marked with the advice stereotype. A tag defines the
kind of advice (before, after or around). The join point is passed
as a parameter, so that the advice can access the join point
context.

AspectJ introductions can also be modeled, using a class symbol
with an «introduction» stereotype. The introduction entity serves
as a kind of template for classes that are to be modified through
aspect weaving. In our example, we introduce the Persistable
interface to persistent classes (this was achieved with the declare
parents construct in AspectJ). We use a generalization arrow
marked with the «implements» stereotype for this purpose.

Based on this static model, we can describe the dynamic
behavior of an advice. Figure 5 shows a sequence diagram for the
update advice, which is executed after the setCall join point is
reached. Here we can also see how the join point context is
accessed by the advice. The advice makes use of the
persistentObject parameter of the join point.

Figure 4. Aspect-oriented persistence framework

Figure 5. Persistence framework behavior modeling

4. WEAVING APPLICATION AND
ASPECT MODELS
Based on the aspect-oriented framework model either by
development on our own or by taking them from the shelf, we
have to model the connection between our application and the
framework.

To glue an aspect-oriented framework model with a given
application model together, the concrete set of hot spots, like join
points or introductions, have to be specified and the hot spots
free parameters have to be bounded to elements of the
application model.

«persistent»

Customer

getName() : String
setName(name : String)

…

«persistent»

Address

*

CustomerManagement

getStreet() : String
setStreet(name : String)

…

PersistenceService

«interface»

Persistable

abortTransaction(transaction : Transaction)
beginTransaction() : transaction : Transaction

commitTransaction(transaction : Transaction)

fireObjectUpdated(p : Persistable)
...

Transaction

managed

*

transactional

Objects

*

PersistenceFramework

«aspect»

PersistenceAspect
«advice» update(setCall : SetCall) {kind=after}
...

«callJoinPoint»

SetCall

persistentObject : PersistableObject

operation : Operation

...

«introduction»

PersistableObject

«implements»

*

«aspectBinding»
let allSetCalls : Sequence = self.SetCall.allInstances()->asSequence,
 allPersistentInstances : Sequence = self.CustomerManagement.
 ownedMember->select(oclIsKindOf(
 Persistable)).allInstances()->asSequence in

 allPersistentInstances->forAll(p | p.class.ownedOperation->forAll(o |
 allSetCalls->exists(s | (o.name.substring(1, 3).equals('set')) and
 (s.persistentObject = p) and (s.operation = o))))

«aspectBinding»
self.CustomerManagement.ownedMember->select(
 oclIsKindOf(persistent))->forAll(p |
 p.supertypes->includes(
 self.PersistableObject.supertypes))

Figure 6. Weaving application and aspect-oriented framework models

For each hot spot class, like for instance SetCall and
PersistentObject, at least one UML dependency between the
hot spot and an UML element has to be modeled. To precisely
describe the dependency, it is necessary to explicitly assess the
meta-level of the models.

For that purpose, we use an OCL [OCL03] constraint on the
meta-model that is labeled with the «aspectBinding»
stereotype, as shown in Figure 6. The constraint is used to bind
elements from the application package to hot spots in the
framework.

The first OCL constraint concerning the introduction states that
each persistent class in the application level has at least the
same supertypes than hot spot framework class
PersistableObject. Hence all persistent classes implement the
class Persistable as required.

The second OCL constraint is a little more complex. For each
operation of an instance of a persistent application class that
starts with “set” exists an instance of the class SetCall.
Whereas the attributes of this instance of the class SetCall refer
to the corresponding set-operation and the called persistent
application object.

5. FURTHER WORK
In this paper, we have presented some considerations and
techniques, how to better integrate framework implementations
in the early stages of software development. We have identified
aspect-oriented framework models as the primary concept to
allow this integration. It basically lifts the use of aspects from
the implementation task to the analysis and design task and
thus allows to incorporate aspects much earlier in the
development process. This will allow the developers to increase
their efficiency while at the same time to retain or even
improve the quality of the results.

We have already identified three primary issues to further
improve this approach:

• A specific language for the aspect binding has to
developed to avoid large complex OCL statements

• An appropriate complete profile of the UML needs to be
developed.

• Tool assistance for “model-weaving” is inevitable and
must be consistent with AOP’s code-weaving.

In the presented case study, we have shown how this approach
can work. However, more experience with this approach is
necessary to refine the presented concepts. Some interesting
questions in this context are:

• What is the appropriate level of detail to model an aspect
to be easily accessible and understandable for developers.

• Is it useful and feasible to provide several framework
implementations for one aspect and provide an automated
context sensitive selection process or an interactive
selection assistant.

• Can we use the same technique for modeling “domain
specific aspects” instead of technological aspects and thus
extract certain aspects already during requirement
elicitation.

• Can this technique be enhanced to develop own, domain
specific aspects that allow to reuse cross-cutting
functionality over similar applications. This is particularly
interesting in large companies with many applications.
E.g. calculation of interest rates can be regarded as such a
domain specific aspect.

• Can models be tightly integrated with their
implementations on a methodological level to ensure their
consistency? This is important for aspects (regarded as a

model plus a framework implementation) as well as for
components and includes the question, how to ensure that
the implementation matches the interface description.

In summary, we are confident, that aspect-oriented modeling
will become an important technique in the portfolio of software
engineers.

6. REFERENCES
[AJT03] The AspectJ Team. The AspectJ Programming Guide.

Available at: http://www.eclipse.org/aspectj/. 2003.
[Coc02] Cockburn, A. Agile Software Development. Addison-

Wesley, 2002.
[CW02] Clarke S., Walker R. J. Towards a Standard Design

Language for AOSD. In: Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD), ACM, 2002.

[EFB01] Elrad T., Filman R. E., Bader A. (guest eds.). Aspect-
Oriented Programming. In: Communications of the ACM 44,
10, 2001.

[Fow99] Fowler M. Refactoring. Addison-Wesley. 1999.
[FPR01] M. Fontoura, W. Pree, B. Rumpe. The UML Profile for

Framework Architectures. Addison-Wesley. 2001.
[GHJV94] Gamma E., Helm R., Johnson R., Vlissides J. Design

Patterns, Addison-Wesley, 1994.
[HJPP02] Ho W.-M., Jézéquel J.-M., Pennaneac’h F., Plouzeau

N. A Toolkit for Weaving Aspect Oriented UML Designs. In:
Proceedings of the 1st International Conference on Aspect-
Oriented Software Development (AOSD), ACM, 2002.

[HMR+98] Huber F, Molterer S., Rausch A., Schätz B., Sihling
M., Slotosch O.. Tool supported Specification and Simulation
of Distributed Systems. Proceedings of the International
Symposium on Software Engineering for Parallel and
Distributed Systems, IEEE Computer Society. 1998.

[HRR98] Huber F., Rausch A., Rumpe B. Modeling Dynamic
Component Interfaces. In: TOOLS 26, Technology of
Object-Oriented Languages and Systems. M. Singh, B.
Meyer, J. Gil, R. Mitchell (eds.). IEEE Computer Society.
1998.

[KHH01] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm
J., Griswold W. G. An Overview of AspectJ. In: Proceedings
of the 15th European Conference on Object-Oriented
Programming (ECOOP), Springer Verlag, 2001.

[KLM97] Kiczales G., Lamping J., Mendhekar A., Maeda C.,
Lopes C.,Loingtier J.-M., Irwin J. Aspect-Oriented
Programming. In: Proceedings of ECOOP ’97, Springer
Verlag, 1997.

[KPR97] Klein C., Prehofer C., Rumpe B. Feature Specification
and Refinement with State Transition Diagrams. In: Fourth
IEEE Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems. Ed.:
P. Dini. IOS-Press. 1997.

[Kru00] Kruchten P. The Rational Unified Process. An
Introduction, 2nd Ed. Addison-Wesley, 2000.

[OCL03] OMG. UML 2.0 OCL 2nd revised submission. OMG
Document ad/03-01-07, Object Management Group, 2003.

[OMG01] OMG. Model Driven Architecture (MDA). Technical
Report OMG Document ormsc/2001-07-01, Object
Management Group, 2001.

[OMG03] OMG - Object Management Group. Unified Modeling
Language Specification. V2.0. 2003.

[Paw02] Pawlak R. A Notation for Aspect-Oriented Distributed
Software Design. CEDRIC Research Report, 2002. Available
at : http://jac.aopsys.com/publications.html.

[PR03] Philipps J., Rumpe B.. Refactoring of Programs and
Specifications. In: Practical foundations of business and
system specifications. H.Kilov and K.Baclawski (Eds.), 281-
297, Kluwer Academic Publishers, 2003.

[Rum02] Rumpe, B. Executable Modeling with UML. A Vision
or a Nightmare? In: Issues & Trends of Information
Technology Management in Contemporary Associations,
Seattle. Idea Group Publishing, Hershey, London, pp. 697-
701. 2002.

[Rum03] Rumpe, B. Agile Modelling with the UML.
Habilitation Thesis. Munich University of Technology (in
German). 2003.

[Rum03b] Rumpe, B. Agile Modeling in Lightweight Projects.
In: Monterey 2002. Radical Innovations of Software and
Systems Engineering in the Future. Workshop Proceedings.
Venezia, Oct. 2002.

[Rum96] Rumpe B. Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. Utz Verlag Wissenschaft.

[SHU02] Stein D., Hanenberg S., Unland R. A UML-based
Aspect-Oriented Design Notation for AspectJ. In: Proceedings
of the 1st International Conference on Aspect-Oriented
Software Development (AOSD), ACM, 2002.

