
 Page 1

Composing Aspect Models

Geri Georg, Robert France, and Indrakshi Ray
Department of Computer Science

Colorado State University, Fort Collins, CO 80523

Abstract.
Aspect-oriented modeling (AOM) techniques

allow system developers to address pervasive
objectives such as security and fault-tolerance
separately from core functional requirements during
system design. An aspect-oriented design model
consists of a set of aspects and a primary model. An
aspect describes how a single objective is addressed in
a design, and a primary model describes how core
functionality requirements are addressed. In order to
analyze the interactions between aspects and primary
models they must be composed. System developers
may need to create and analyze alternative
realizations in order to produce a design that balances
competing objectives (concerns). Treating realizations
of design objectives as aspects allows developers to
more easily swap in and out alternative realizations in
a design.

The iterative nature of design dictates that
composition and analysis be carried out in a flexible
and intuitive manner. Composing aspects and primary
models can produce designs with conflicting
structures or behaviors. We have developed a two-
level structure of composition constraints to address
this issue; a high level that identifies the aspects and
determines the order in which they will be composed
(composition strategy), and a lower level that
constrains how a single aspect is composed with a
primary model (composition directives). In this paper
we describe a model composition approach that
utilizes composition constraints. We illustrate the
approach using small examples of security and fault-
tolerance aspects.

1. Introduction
Problems and their solutions are

decomposed to manage complexity during system
development. Decisions made in the early stages of
design identify objectives that determine the primary
structure of the design. Given a primary structure, it
may not be possible to localize information about how
other equally important concerns (e.g., security and
fault tolerance objectives) are addressed in design
units. Using current design modeling techniques, these
objectives are addressed by functionality that is
distributed across the design. The distributed nature of
this functionality makes it difficult to understand,
analyze, and change the functionality. In the cases
where objectives compete, the distributed functionality
can make it difficult to consider and evaluate
alternative realizations of the objectives.

The Aspect-Oriented Modeling (AOM)
technique we are developing allows developers to
localize cross-cutting realizations of concern
objectives in aspects. An AOM design consists of one
or more aspects and a primary model. Aspect models
describe behavior that cross-cuts the primary model.
In order to obtain an integrated design view aspect and
primary models must be composed. The composed
model is needed to support design analysis that can
uncover inconsistencies arising from conflicting
structures or behaviors defined in aspect and primary
models. A conflict can occur when a property in an
aspect (e.g. a multiplicity, or the presence or absence
of an attribute or relation) contradicts a property in
another aspect or in the primary model. Conflicts can
also occur when behavior defined by an aspect cannot
be performed as specified because some of its sub-
behaviors have been modified (or deleted) after
merging with behaviors defined in other aspects or the
primary model. In these cases, conflict resolution
requires intervention by the system developer. We
have found that some conflicts can be resolved by
constraining how aspects are composed with primary
models. As part of our AOM work, we are developing
composition tools and techniques that allow
developers to constrain how composition is
performed.

The usability and utility of the AOM
approach is greatly enhanced if significant portions of
the composition activity are automated. At one
extreme are composition tools that take in aspect and
primary models and produce composed models
without further input from developers. This fixed
composition approach provides very little flexibility in
how aspect models are composed with primary
models. At the other extreme are composition tools
that require developers to specify how the aspect
models are to be composed with primary models. This
approach is very flexible, but requires more effort
from developers. More practical solutions are likely to
lie between these two approaches. We are developing
a composition tool that implements a basic
composition procedure but that also allow developers
to vary some aspects of the composition using
composition constraints. In this paper we discuss how
composition constraints can be used to vary
composition such that conflicts are minimized.

The rest of the paper is structured as
follows. Section 2 provides a brief overview of the
UML modeling techniques we use to specify both the
structure and behavior of aspects. Section 3 discusses
the types of conflicts we have encountered during

 Page 2

model composition and the composition constraints
(strategies and directives) we have developed to cope
with these conflicts. Section 4 discusses related work,
and Section 5 presents conclusions and future work.

2. Modeling design aspects using the
UML

The AOM approach we are developing can
be used to localize a cross-cutting realization of an
objective when the distributed parts of the realization
have common structural and behavioral
characteristics. This allows the developer to treat the
realization as a pattern that is instantiated in different
parts of the design. An aspect is thus a pattern of
structure and behavior [17]. An aspect model consists
of UML template diagrams that describe the pattern
from structural and behavioral perspectives. A primary
model consists of a set of UML diagrams describing
realizations of core functional requirements.

Typically, an aspect model consists of a
UML class diagram template and one or more
interaction diagram templates. The class diagram
template is used to generate class diagrams that
describe the structures that are distributed across the
design. Interaction diagram templates are used to
generate interaction diagrams that describe how
elements in the distributed structures interact to realize
the desired behavior. A template element specifies
properties that are to be incorporated into user
designated points of a primary model. Each template
element is a potential integration point with a
corresponding element in the primary model. The
specific integration points with a primary model are
not specified as part of the generic aspect model.
These points are specified separately as mapping rules.
This allows considerable flexibility in using and
reusing aspects

Composition of an aspect model and a
primary model is a two-stage process. In the first stage
the template diagrams in an aspect model are
instantiated using mapping rules that determine the
model elements passed in as parameters to the
templates. If a parameter value is a primary model
element then it represents a point of integration with
the primary model. If a parameter value is not a
primary model element then it represents a design
element that is to be added to the design during
composition. The result of the first stage is a set of
UML diagrams collectively called the context-specific
aspect model. The context-specific aspect model
presents a view of the design that describes how the
original objective is addressed. In the second stage the
context-specific aspect model is merged with the
primary model. Elements with matching names and
properties are merged to produce a composed model.
(Note that although composition proceeds using
elements with matching names and thus provides
syntactic composition, it also uses element properties
including those expressed in OCL, and thus also
provides some semantic composition.) The developer

can use composition strategies and directives to drive
how the models are merged as discussed in the next
section.

3. Model composition
From our work on modeling pervasive

security and dependability objectives as aspects it is
apparent that the combination of aspects chosen to
address objectives, the order in which the aspects are
composed, and the manner in which individual model
elements are composed all determine whether the
composed model will meet its objectives. We have
identified two types of composition constraints that
can be defined by developers to influence the
composition process. Composition strategies use high-
level heuristics to identify a set of aspects and to
determine how the aspects are composed with a
primary model in order produce a design that satisfies
specified dependability or security goals. The
heuristics provide answers, based on experience, to
questions such as “Is it enough to add encryption to a
system to ensure privacy?” (Possible answer:
Probably not; authentication and perhaps access
control are also needed.); “Does data replication
always ensure availability?” (Possible answer:
Probably not; it depends upon the environment in
which the system is deployed.). We presented
heuristics in a previous paper (see [4]) that can be used
to determine the aspects that should be composed with
a primary design to fulfill certain security goals.

Composition strategies can be suggested by
problem domain knowledge, the physical
configuration of a system, or prior experience and the
result of trade-off analyses. For example, in a system
where certain data is considered confidential,
particular aspects need to be composed with the
functionality surrounding that data in order to protect
it (problem domain knowledge). If the data will be
accessed over an un-trusted communication link,
further authentication and encryption aspects may be
needed (physical environment). Finally, prior
experience may show that complete protection in such
an environment is not possible, so auditing and
recovery aspects may need to be composed to part of
the system. Prior experience also dictates that if
auditing is added, special care must be taken to ensure
that all the functionality that should be audited is
audited. (In this case a simple ordering of aspect
composition, with auditing being last may be
sufficient to realize the desired behavior.)

In addition to composition strategies,
specific directives can often be used to prevent the
conflicts that can arise from merging a context-
specific aspect model and a primary model. We call
these composition directives. For example, a typical
default composition action is to conjugate class
attributes and operations. In some situations this may
result in the desired behavior of an operation, but in
others it can cause conflict. As an example of how
composition directives can be used to resolve such

 Page 3

conflicts consider the case in which the desired result
of composing an authentication aspect with a primary
model is an operation in the primary model, named
OP, that is wrapped with the authorization behavior
defined in the aspect. The authorization behavior in
the context-specific aspect is defined in terms of two
operations: an operation named OP that carries out the
authorization check and then calls another operation
called doOP to perform some task for authorized
clients. To merge these operations to get the desired
result and to avoid merging the conflicting OP
definitions, the OP operation in the primary model
needs to be renamed to doOP. The result is a
composed model in which OP performs the
authorization check, and then calls doOP if the check
reveals that the client is authorized to invoke the
behavior. A composition directive is used to rename
the operation in the primary model before composing
the operations. The renaming removes the conflict and
allows the primary operation to be properly composed
with the operation in the authorization aspect.

Another typical default composition action
is to use the stronger multiplicity at an association end
as the multiplicity at the corresponding association
end in the composed model. An example of a conflict
that can arise from this default composition is when a
replicated repository aspect is composed with a
primary model that contains an association from a
class to a single copy of a repository. In the aspect
view the class has an association to two or more
repositories. Merging these two view results in a
conflict: the multiplicity at the repository end in the
primary model is 1, and in the aspect model it is 2..*.
In this case a composition directive can be used to
override the primary model multiplicity with the
aspect model multiplicity.

In our composition technique then, a
directive can (1) define precedence or override
relationships between matching aspect and primary
model elements with conflicting properties or
definitions, (2) rename elements to resolve conflicts,
and (3) specify elements that are to be added or are
deleted in a composition.

In summary, composition strategies help
system developers decide what aspects need to be
composed with a primary model to realize system
design goals, and composition directives allow
developers to vary how aspect and primary models are
composed. A consequence of allowing the use of
composition directives is that aspect models do not
need to capture all possible variations (thus
simplifying their definitions). For example,
composition directives can be used to modify an
aspect model to obtain a variant that is more suitable
for the context in which it will be used. Composition
directives thus allow flexibility in the way models are
composed. At the same time, defining defaults for
each of the composition actions allows the process to
be simplified.

4. Related Research
Aspect-Oriented Development (AOD)

supports the separation of concerns principle that has
proven to be effective at tackling complexity [6].
AOD methods allow developers to represent pervasive
design and implementation concerns as aspects. In an
AOD approach, a design consists of (1) a primary
design or implementation artifact (e.g., a UML model
or code) in which the pervasive concerns are not
included, (2) a set of aspects, each representing a
pervasive design concern that impacts the elements of
the primary design artifact, and (3) a weaving
mechanism that composes aspects with the primary
artifact to obtain a view of the design that details how
the structures and behaviors modeled in the primary
artifact are impacted by the aspects. Examples of
AOD approaches are aspect-oriented programming
(e.g., see [1, 8, 9, 10, 11, 14, 15]) in which the primary
design artifacts are code, and aspects are concerns that
cross-cut code modules, and subject-oriented design
(e.g. see [2, 3, 7, 16]) in which aspects are design
realizations of requirements, and a design is created by
composing aspects. In our AOM approach, aspects
are design realizations of security and dependability
objectives. We do not treat the design realizations of
all requirements as aspects.

The subject-oriented design approach
proposed by Clarke et al. is a UML-based approach
that is closest to our AOM method [2]. In the subject-
oriented modeling approach a design is created for
each system requirement. The design for a system
requirement is referred to as a subject. A
comprehensive design is obtained by composing
subjects. In the subject-oriented approach aspects are
subjects expressed as UML model views, and
composition involves merging the views provided by
the subjects. Merging is restricted to adding and
overriding named elements in a model. Merging of
constraints is not supported, nor is there support for
deleting elements from models (except the implicit
deletion that occurs when an element is overridden).
Conflict resolution mechanisms are limited to defining
precedence and override relationships between
conflicting elements. In prior work [4, 5] we have
shown how security and dependability characteristics
can be modeled as design aspects, expressed as
structural and behavioral patterns specifications, and
woven into designs expressed in the UML. We have
also demonstrated some conflicts that can occur
during composition, and directives that can be used to
resolve them.

As part of the Early Aspects initiative,
Moreira, Araujo, and Rashid have targeted multi-
dimensional separation beginning early in the software
cycle [12, 13]. Their work supports modularization of
broadly scoped properties at the requirements level to
establish early trade-offs, provide decision support and
promote traceability to artifacts at later development
stages. Our AOM method complements this work by
supporting aspect modeling, composition, and analysis

 Page 4

of successively more detailed levels of abstraction
needed during system design.

5. Conclusions and Future Work
Aspect-oriented modeling provides a

straightforward way to model, compose, and analyze
multiple competing critical systems objectives such as
security and dependability. AOM allows system
developers to design these concerns separately, and
then compose them with primary models to create
integrated models that can be analyzed. Developers
can then use analysis results to drive further changes
to the design of competing concerns. Composition
and analysis must be powerful, yet flexible and easily
understood to enable this iterative process.

We have developed a two-level process for
constraining composition in our AOM method. The
first level is based on heuristics that help an architect
or system developer decide which particular aspect
models should be composed with primary models in
order to meet system design goals. The second level
allows the developer to specify particular directives to
drive the composition of all or portions of the aspect
model with the primary model. The combined two-
level approach has been successful in preventing
common model composition conflicts.

We continue to work in this area to develop
a terminology that will codify composition strategies,
and allow their inclusion into an automated prototype
tool. We are also developing notation for stating
composition directives.

6. References
[1] Bergmans, L. and M. Aksit, M., “Composing
multiple concerns using composition filters",
Communications of the ACM, vol 44, no 10, Oct 2001
[2] Clarke, S., Harrison, W., Ossher, H., and Tarr, P.,
“Separating concerns throughout the development
lifecycle”, Proceedings of the 3rd ECOOP Aspect-
Oriented Programming Workshop, June, Lisbon,
Portugal, 1999
[3] Fiadeiro, J. L. and Lopes, A., “Algebraic semantics
of co-ordination or what is it in a signature?",
Proceedings of the 7th International Conference on
Algebraic Methodology and Software Technology
(AMAST'98), Amazonia, Brasil, Lecture Notes in
Computer Science, vol 1548, pp 293-307, A. Haeberer
, ed, Springer-Verlag, Jan 1999
[4] Georg, Geri, France, Robert, and Ray, Indrakshi,
“Designing High Integrity Systems using Aspects",
Proceedings of the Fifth IFIP TC-11 WG 11.5
Working Conference
on Integrity and Internal Control in Information
Systems (IICIS 2002), Bonn, Germany, Nov 2002

[5] Georg, G., Ray, I., and France, R., “Using Aspects
to Design a Secure System", Proceedings of the
Interational Conference on Engineering Complex
Computing Systems (ICECCS 2002), ACM Press,
Greenbelt, MD, Dec 2002
[6] Ghezzi, C., Jazayeri, M., and Mandrioli, D.,
Fundamentals of Software Engineering, Prentice Hall,
1991
[7] Gray, J., Bapty, T., Neema, S., and Tuck, J.,
“Handling crosscutting constraints in domain-specific
modeling”, Communications of the ACM, vol 44, no
10, pp 87-93, Oct 2002
[8] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,
M., Palm, J., and Griswold, W. G., “An Overview of
AspectJ”, Proceedings of the European Conference on
Object-Oriented Programming (ECOOP '01), pp 327-
353, Budapest, Hungary, June, 2001
[9] Kieberherr, K., Orleans, D., and Ovlinger J.,
“Aspect-oriented programming with adaptive
methods”, Communications of the ACM, vol 44, num
10, pp 39-41, Oct 2001
[10] Ossher, H. and Tarr, P., “Using multidimensional
separation of concerns to (re)shape evolving
software”, Communications of the ACM, vol 44, num
10, p 43-50, Oct, 2001
[11] Pace, J. A. D. and Campo, M. R., “Analyzing the
Role of Aspects in Software Design”,
Communications of the ACM, vol 44, no 10, pp 66-73,
Oct 2001
[12] Rashid, A., Moreira, A., and Araujo, J.,
“Modularization and Composition of Aspectual
Requirements”, 2nd International Conference on
Aspect-Oriented Software Development, ACM, pp 11-
20, Boston, Mar 2003
[13] Rashid, A., Sawyer, P., Moreira, A., and Araujo,
J., Early Aspects: A Model for Aspect-Oriented
Requirements Engineering, IEEE Joint International
Conference on Requirements Engineering, IEEE
Computer Society Press, pp 199-202, Essen, Germany,
Sept 2002
[14] Silva, A. R., “Separation and composition of
overlapping and interacting concerns”, OOPSLA '99
First Workshop on Multi-Dimensional separation of
Concerns in Object-Oriented Systems, Denver,
Colorado, Nov 1999
[15] Sullivan, G. T., “Aspect-oriented programming
using reflection and metaobject protocols”,
Communications of the ACM, vol 44, num 10, pp 95-
97, Oct 2001
[16] Suzuki, J. and Yamamoto, Y., “Extending UML
with Aspects: Aspect Support in the Design Phase”,
Proceedings of the 3rd ECOOP Aspect-Oriented
Programming Workshop, Lisbon, Portugal, June 1999
[17] The Object Management Group, “The Unified
Modeling Language", OMG, formal/2001-09-67,
version 1.4, 2001

