
Towards the Support for Crosscutting Concerns in Activity
Diagrams: a Graphical Approach

João Paulo Barros1,2,3

1Instituto Politécnico de Beja,
Escola Superior de Tecnologia

e Gestão,
Área Departamental de

Engenharia
Rua Afonso III, n.” 1,

7800-050 Beja, Portugal

jpb@uninova.pt

2UNINOVA
2829-516 Monte de Caparica,

Portugal

Luis Gomes2,3

3Universidade Nova de Lisboa
Fac. de Ciências e Tecnologia,

Dep. de Engenharia
Electrotécnica,

Campus da FCT,
2825 Monte de Caparica,

Portugal

lugo@uninova.pt

ABSTRACT
The current proposal for activity diagrams in UML 2.0 al-
lows for very complex graphs, reflecting the numerous inter-
dependencies among the several actions and resources. This
paper proposes a graphical composition operation support-
ing the addition of crosscutting requirements in activity dia-
grams through node fusion, addition, and subtraction. The
operation has a highly readable and intuitive graphical rep-
resentation and allows simple traceability and coupling. It
is illustrated by a set of examples related to the inclusion of
mutual exclusion and fair execution across several activity
nodes.

Keywords
Crosscutting requirements, activity diagrams, composition,
aspect-oriented design

1. INTRODUCTION
When reviewing the extensive UML literature it is easy to
notice that, when compared to other UML diagrams, ac-
tivity diagrams have been given little attention. This is
probably due to their status relatively to state diagrams: in
UML 1.x [9] activity diagrams are defined as a state dia-
grams subset. Yet, UML 2.0 [8] clearly separates activity
diagrams from state machines. Furthermore, activity dia-
grams are brought much closer to Petri nets [11]. As stated
in [8], ”this widens the number of flows that can be mod-
elled”. This fact and the additional defined activity node
types, clearly increase the activity diagrams modelling ca-
pabilities.

We believe the added modelling power, and its independence
towards state machines, will certainly give rise to a more

frequent use of activity diagrams and to its application in
the modelling of a larger number of system types. Also,
the different applications and the increase in the number
of flows to be modelled will mean more complex models.
Finally, the trend towards Model Driven Architecture will
certainly contribute to further increase model complexity.
To counter model complexity, which easily gives rise to un-
readable graphs, this paper proposes the use of an addi-
tional composition operation for activity diagrams. It al-
lows model modification in a traceable and additive way.
More specifically, the conducted modifications are encapsu-
lated as concerns (in the sense defined by Dijkstra [3]) that
can be added to the initial model. The objective is also to
maximise model readability even after modifications whose
effect is spread across the model. At the coding level, aspect-
oriented programming [7] shares these goals. There, the
well-modularised modifications with effect across the model
are named aspects. More exactly, aspects are defined as
well-modularised crosscutting concerns.

A previous paper [2] proposed the use of sub-activities (in-
voked activities) as aspects. There the aspects ”are partial
models (diagrams) that, when connected to the model, im-
pose a new behaviour to a set of existent activities”. Yet,
it was pointed out that the proposed use of sub-activities
introduces additional steps in the activity flow. These re-
sult from the use of a non-orthogonal construct for compo-
sition, namely the asynchronous interface between the ex-
istent graph and the added sub-activities, which is based
upon the addition of parameter object nodes.

Differently from [2], this position paper proposes the use of
a new composition operation (named activity addition) for
weaving a crosscutting concern into a primary model. This
is achieved through fusion of activity nodes in the primary
model with activity nodes (of the same class) in the activ-
ity diagram modelling the crosscutting concern. Besides the
known advantages in the use of an orthogonal composition
construct [14], the node fusion also avoids the use of the
additional interface nodes, which introduced potential addi-
tional steps (depending on the used semantics).

The activity addition operation is inspired by works in the



Petri net area [12, 5], and allows intuitive forms of syn-
chronous and asynchronous communication between activ-
ities. It provides support for incremental modification of
activity diagrams and is particularly interesting for support-
ing the specification of crosscutting concerns at the design
level, namely by offering a complementary and orthogonal
construct to the supported hierarchical one [10].

As stated by Tarr et al. [14], changes should have a low im-
pact and this requires additive rather than invasive changes.
For this reason the proposed activity operation forces a
structured modifications in the form of node additions and
node subtractions.

The paper follows an informal and strongly example-based
presentation of activity addition. The examples illustrate
the modification of execution policies, namely the addition
of arbiters and mutual exclusion related behaviour changes.
It is structured as follows. Section 2 gives a brief overview of
the new Behavior::Activities used in the presented examples
and details the motivations. Section 3 informally defines the
activity addition and presents its support as a simple UML
profile. Section 4 presents several examples and section 5
concludes and points to some future work.

In this paper we refer to the activities and the respective
activity diagrams as specified in the OMG final adopted
specification for the ”UML 2.0 Superstructure Specification”
document [8].

2. MOTIVATION
As already stated, the UML 2.0 specification [8] defines the
package Behavior::Activities which replaces Activity Dia-
grams in UML 1.x [9]. The activities in the proposal have
a Petri net based semantics and support a more explicit no-
tation regarding hierarchical composition of activities.

As already stated, the use of a Petri net based semantics
makes activity modelling more flexible as activities can have
multiple token flows at any one time. This deviates from
UML 1.x where multiple tokens were typically used only be-
tween paired forks and joins. These multiple token flows
make a true concurrent semantics more natural for activ-
ities. Stevens [13] has even pointed out that contrary to
the remaining of UML where interleaving semantics seems
more appropriate, a true concurrent semantics seems nat-
ural to activity diagrams. A true concurrent semantics is
often more adequate to model distributed systems with soft-
ware and hardware components. The availability of clearly
asynchronous elements (object nodes as token deposits) en-
able an intuitive modelling of asynchronous communication
which is often easier to implement in heterogeneous software-
hardware systems.

The hierarchical composition of activities now allows the
explicit use of input and output places by means of ob-
ject nodes (token buffers) which act as parameters to sub-
activities. The sub-activities are invoked by action nodes.
This invocation provides the ”dominant decomposition” con-
struct in activity diagrams. Yet, this decomposition con-
struct only allows a limited form of synchronous communi-
cation (through control edges) and of asynchronous commu-
nication (through parameter object nodes).

Due to the permissiveness and richness of their semantics, an
activity diagram can easily become highly complex, not only
in its static dimension (its the graphical representation) but
also in its dynamic behaviour. Given the necessity of future
model changes, the only available decomposition construct
(sub-activity invocation), similar to procedural decomposi-
tion in textual programming languages, will, in practice,
reveal too rigid to incorporated the necessary crosscutting
model changes. This will have the known consequence of im-
posing the scattering of model modification across one, or
several, activities with an explicit increase in the complex-
ity of the modified activities. The desired additive nature
of model modifications will be at risk as the modifications
will impose a new model instead of becoming an added part
that can be readily visualised, changed, or even removed.

What is desired is a simple and intuitive way to introduce
the desired modification in the least intrusive way. To that
end the added modifications must not compromise the vis-
ibility of the initial model and must be clearly isolated and
identified as an add-on to the initial model: they should be
additive.

As activity diagrams are graphs with several different types
of nodes, we believe that some type of node fusion, ad-
dition, and subtraction is the most intuitive and readable
way to specify modifications. Sub-activity invocation pro-
vides a vertical decomposition construct, similar to proce-
dure decomposition. The static version is sometimes re-
ferred as a refinement, or a macro-decomposition. Therefore
we believe an horizontal composition mechanism provides
the right complement for crosscutting concerns specification.
Note that due to the potential complexity and dimension of
a single activity graph, even the modelling of a single activ-
ity can benefit from an orthogonal modification.

The activity addition operation, defined in the following sec-
tion, provide a simple additive composition mechanism or-
thogonal to activity invocation that is able to specify syn-
chronous and asynchronous communication across an activ-
ity through the use of any activity node as a potential fusion
node (acting as a join node). Consequently, it can be used
to specify in a highly flexible way, the addition of model
modifications that crosscut several distinct activity parts.

The following section informally defines this operation and
shows how it can be supported by a simple UML profile.

3. ACTIVITY DIAGRAM ADDITION
Activity diagram addition is a graph addition binary opera-
tion based on node fusion. The following subsection defines
the activity diagram addition (from here on simply called
activity addition) in terms of a three part node partition. It
is followed by a subsection presenting a profile-based speci-
fication for activity addition.

3.1 Interface nodes, subtraction nodes, and
addition nodes

One or more pairs of activity nodes specify the activity ad-
dition node fusion. For each pair, each activity node belongs
to different activities: one belongs to an activity in the first
model (possibly a primary model to be modified) and the



other to the the second model (possibly an activity speci-
fying a crosscutting concern). Formally, the node fusion is
specified by a subset of the Cartesian product of the activity
nodes set of each activity.

These paired nodes can specify one of two possible roles:
they can be interface nodes, or they can be subtraction
nodes. The remaining activity nodes are not paired. They
are the ones appearing in the resulting model. We name
them addition nodes. In summary, we have an activity node
partition with three parts:

1. Interface nodes

2. Subtraction nodes

3. Addition nodes

In the resulting model we get one interface node for each
interface node pair: the interface node in the first model be-
comes connected to all the edges connected to the interface
node in the second.

For each subtraction node pair, the subtraction nodes in the
first and second models are removed together with all the
respective edges.

Addition nodes are not affected by the activity addition op-
eration: all addition nodes in both models appear in the
resulting model.

Finally, it is important to notice that although activity ad-
dition can be used to add one activity to several different
activities, it can not originate the interconnection of two
previously unconnected activities. This is due to the Ac-
tivityEdge constraint stating that ”The source and target
of an edge must be in the same activity as the edge” [8,
page 293]. This constraint may seem to weaken the fight
against ”tyranny of the dominant decomposition”. Yet, we
do not intent to break the activity encapsulation, as these
would bring additional complexity to the model. The con-
straint still allows the application of a crosscutting concern
to several different activities. The crosscutting should be
seen as token flow crosscut inside a given activity or sets of
independent activities.

Note also that we restrict node fusion to its graphical part,
more specifically we do not handle node operations and at-
tributes when the respective nodes are fused. This implies
we should view the presented examples as non-dependent on
non-graphical specifications.

Next we show how to use a simple UML profile to specify ac-
tivity addition, and classify activity addition in pure activity
addition and activity subtraction.

3.2 UML support for activity addition
An important question is how to specify in a UML diagram
the presented node fusion. As the UML 2.0 specification
has no general support for node fusion, we have to rely on
one (or two) of the available extension mechanism: Pro-

files and MOF -based extensions1. The profiles specification
clearly states that ”it is not possible to take away any of
the constraints that apply to a metamodel such as UML
using a profile (...)”. Through MOF-based extensions one
can to modify the UML meta-model. Profiles only allow for
meta-model extensions. Naturally, one should try to avoid
modifications to the metamodel if possible and this is the
case for the specification of the presented node partition:
we only use a Profile for providing the necessary data spec-
ifying interface node pairs and subtraction node pairs. All
unspecified nodes default to addition nodes.

The Profiles specification states that ”the profiles mecha-
nism does not allow for modifying existing metamodels” [8,
page 569]. Consequently, we can not add some type of node
removal capability as a way to specify the fusion of two in-
terface nodes or operation nodes. Yet, through a profile
we can specify the data necessary to transform one model
into another, that is, to compose (weave) the crosscutting
concern into the model. In fact, model transformation is ex-
plicitly suggested as a possible application for profiles: ”Add
information that can be used when transforming a model to
another model (...)” [8, page 569]. To that end we define
a profile named ActivityAddition containing two stereotypes
applicable to all activity nodes (see Fig. 1).

The two stereotypes are named, respectively, InterfaceNode,
and SubtractionNode. Both extend the ActivityNode class
with an attribute specifying the node that should be fused
with it. In both cases we impose a constraint restricting the
fusion of activity nodes to nodes of the same class: e.g. a fork
node can only be fused (as an interface node or subtraction
node) with another fork node.

«metaclass»

ActivityNode

«profile» ActivityAddition

«stereotype»

SubtractionNode

sn: ActivityNode

«stereotype»

InterfaceNode

in: ActivityNode

context InterfaceNode inv:
self.in.oclIsTypeOf(self.extension.metaclass)

context SubtractionNode inv:
self.sn.oclIsTypeOf(self.extension.metaclass)

Figure 1: ActivityAddition profile.

It is important to notice that a third stereotype for addition
nodes can be defined. Yet, the classification as an addition
node is the default for all remaining nodes (that are neither
interface nodes nor subtraction nodes), we decided to use
this fact as a way to simplify the diagram notation. This
means no addition node is stereotyped.

Fig. 2 exemplifies activity addition by showing how the ac-
tivity Process Order from [8, Fig. 203 on page 290] can be
constructed by the addition of two initially unrelated activ-
ities (Order Handling and Invoice Handling). Note the use
of node naming for the fork (a) and join (b) nodes in the
Order Handling activity, and the reference to those names
by the attributes in in the stereotyped join and fork in activ-
ity Invoice Handling. Interestingly, the use of join and fork
nodes with a single incoming and a single outgoing edge is

1MOF means Meta Object Facility



Receive
order

Fill
order

Skip
order

Close
order

[order
rejected]

[order
accepted] a b

Requested
Order

OrderHandling

Receive
order

Fill
order

Skip
order

Close
order

[order
rejected]

[order
accepted]

Send
Invoice

Make
Payment

Invoice

Accept
Payment

Process Order

Requested
Order

Send
Invoice

Make
Payment

Invoice

Accept
Payment

Invoice Handling

«stereotype»

InterfaceNode

in: OrderHandling.a

«stereotype»

InterfaceNode

in: OrderHandling.b

Figure 2: Activity addition and the respective re-
sult.

useful for activity addition specification. In fact, their use
provides the desired support for activity fusion by provid-
ing an additional fusion point that is also a join point (see
below). Sometimes simple edges should be transformed into
a fork or join with unique incoming and outgoing edges pri-
mary to their fusion. The same is true for DecisionNodes
and MergeNodes. The examples to be presented also illus-
trate this prior transformation from edges to fork or join
nodes, with a single incoming and a single outgoing edge.
We will call these transparent fork/join nodes.

3.3 Pure addition and subtraction
Activity modification through addition becomes more pow-
erful if it is possible to remove nodes. This is provided
by subtraction nodes. Subtraction nodes (see Fig. 1) can
be seen as negative elements in node fusion. This means
they specify which nodes should be removed from the ini-
tial model. In the context of a control version system for
UML models, this notion of negative elements also appears
(as ”negative model elements”) in the paper by Alanen and
Porres [1].

Fig. 3, shows the effect of a subtraction node. The specifi-
cation of the action node as a subtraction node associated
to node c in activity X results in activity Z.

When all nodes in the second activity diagram are classified
as interface nodes or subtraction nodes, we talk about net
subtraction. Subtraction nodes can also be seen as fusion
nodes, which, after fusion, are removed together with all
the connected edges.

a b c

X

«stereotype»

InterfaceNode

in: X.b

«stereotype»

SubtractionNode

sn: X.c

Y

a b

Z

Figure 3: General activity addition (X+Y=Z).

If there are no subtraction node stereotypes, we talk about
pure net addition, to differentiate from general net addition
(see Fig. 3) where addition nodes appear together with sub-
traction nodes.

As a rule, pure net addition, and net subtraction should
be preferred over general net addition as they provide more
readable a traceable model modifications.

Typically, activity subtraction provides a clean away to undo
previous modifications specified by pure net addition. On
the other hand, general net addition allows more complex
modifications to be specified. Unsurprisingly, another gen-
eral net addition (a dual one) will be necessary to undo those
modifications.

The following sub-sections present three examples of activ-
ity diagram modification through the use of pure activity
addition. In all cases activity subtraction can be used to
undo the effect of a previous node addition.

4. EXAMPLES
This section uses the examples in [2] to illustrate possible
uses of activity addition for the modification of existing mod-
els. We start by presenting the application of a mutual ex-
clusion to existent and independent token flows; after, we
present the application of simple round-robin arbiter forc-
ing a fair execution of a set of token flows; next we ”merge”
mutual exclusion and fair execution, and the last example
sets a preferred choice in a set of possible token flows. In all
cases, activity subtraction allows the rewind of the model
to its initial state, that is, the undo of the modifications
resulting from the activity addition.

4.1 Mutual exclusion
As a first example of a crosscutting concern in activity di-
agrams, we consider the case where we want to impose a
mutual exclusion between two, or more, independent activ-
ities. On the left of Fig. 4 we have two control flows: one
between a and b and another between c and d. On the right
we have the same diagram but with the four edges replaced
by transparent forks/join nodes. These will be useful for
activity addition. We want activities b and d to be mutu-
ally exclusive. To that end we will add a locking mechanism:
each action must get a token to be executed; after it releases
the token. Activity L1 in Fig. 5 specified this simple be-
haviour. Activity L2 is another instance of the same activ-
ity but ”stereotyped” by the specification of the object node
Lock as an interface node. L1 and L2 can then be added
resulting in activity L1+L2 (see it already stereotyped in
Fig. 6). We can now apply the interface node stereotype to
add activity L1+L2 to activity A1’ (see Fig. 6). We this we
get the modified model in Fig. 7.



a

b

c

d

a

b

c

d

A1 A1’

ab cd

b_out d_out

Figure 4: Introducing transparent fork/joins in two
independent token flows.

get

return

L1

get

return

L2

«stereotype»

InterfaceNode

in: L1.Lock

get

return

L1+L2

get

return

Lock
Lock Lock

Figure 5: Composing a crosscutting concern from
two instances of an activity.

get

return

L1+L2

«stereotype»

InterfaceNode

in: A1’.ab

«stereotype»

InterfaceNode

in: A1’.b_out

get

return

«stereotype»

InterfaceNode

in: A1’.cd

«stereotype»

InterfaceNode

in: A1’.d_out

Lock

Figure 6: A stereotyped activity for the crosscutting
concern on the right of Fig. 5.

A1’+L1+L2

a

b

c

d

Lock

ab cd

b_out d_out

Figure 7: The activity in Fig. 4 modified by the
activity in Fig. 6.

The modification introduced by the model in Fig. 6 can
be readily undone by the respective dual model (see Fig.
8). Notice that the dual uses the same interface nodes (the
”glue” points) and reverses the roles of the remaining node:
the Lock object node that was, implicitly, an addition node
in Fig. 6 is stereotyped as a subtraction node in the dual
model. As laready defined, in this case, where all nodes in

the second model are either interface nodes or subtraction
nodes, we talk about activity subtraction. Although this
dual operation can always be applied we will omit it in the
following examples so as to avoid unnecessary burden in the
presentation.

get

return

L1+L2

«stereotype»

InterfaceNode

in: A1’+L1+L2.ab

«stereotype»

InterfaceNode

in: A1’+L1+L2.b_out

get

return

«stereotype»

SubtractionNode

sn: A1’+L1+L2.Lock

«stereotype»

InterfaceNode

in: A1’+L1+L2.d_out

Lock
«stereotype»

InterfaceNode

in: A1’+L1+L2.cd

Figure 8: The dual of Fig. 6 model.

Note that the self-addition of the crosscutting concern L1
in Fig. 5, effectively provides a way to generalise the appli-
cation of the crosscutting concern prior to its application to
the model to be modified. This use of activity addition is
also used in the following examples.

4.2 Fair execution
Conflict resolution is an important issue when modelling
critical systems. Sometimes conflicts are undesirable be-
cause they model non-determinism and this may lead to un-
predictable behaviour; other times conflicts are necessary,
e.g. mutual exclusion semaphores or resource sharing. The
activities semantics in the UML 2.0 specification does not
provide an answer to conflict resolution: conflict resolution
requires specific user intervention. These interventions can
correspond to known strategies that can be applied in form
of pre-existent models. For example, the decision node is a
potential source of conflicts as it can easily originate non-
determinism if the outgoing edges guards do not guarantee
mutually exclusive token flows. The left of Fig. 9 shows
an example of a decision node with three possible outgo-
ing flows. The right side shows the same diagram with the
added transparent fork/join nodes).

A fair selection of the several possible token flows outgo-
ing from a decision node constitutes an example where a
known model specifying a crosscutting concern can be ap-
plied. This can be specified by a token-player where each
token flow passes its turn to another token flow. Activity
Transfer in Fig. 10 specifies this token transfer in an ele-
mentary way. In the same figure, activity Init provides the
support for specifying the initial token position. It should be
clear that activity 3Transfer can be readily obtained from
the composition of three instances of activity Transfer with
one instance of activity Init. When added to the initial ac-
tivity A’, the resulting activity acts as an arbiter: Fig. 11
shows the stereotyped 3Transfer activity and the result of
its addition to activity A’.

If we want to avoid the introduction of transparent fork/join
nodes as a prior condition to activity addition, one can usu-



ally find some other interface nodes (fusion points) allowing
the same final result. Fig. 12 exemplifies this fact with an
an alternative 3Transfer activity that provides the same fi-
nal result when added to the initial activity A in Fig. 9.
As already mentioned, all interface nodes must be seen as
graphical elements with irrelevant additional characteristics
(as attributes, operations, or others), namely the actions in
3Transfer do not affect the existent actions (a, b, and c):

a b c

dn

a b c

dn

A’

ta tb tc

A

Figure 9: Primary model and the same model with
with transparent fork/joins.

Init Transfer 3Transfer

Figure 10: Activity Init and activity Transfer.
3Transfer activity resulting from the activity ad-
dition of three Transfer instances and one Init in-
stance.

3Transfer

«stereotype»
InterfaceNode

in: A’.ta

«stereotype»
InterfaceNode

in: A’.tb

«stereotype»
InterfaceNode

in: A’.tc

a b c

dn
A’+3Transfer

ta tb tc

Figure 11: Stereotyped 3Transfer activity and the
result from its addition to the model on the right of
Fig. 9.

As already noticed in [2] the outgoing edge guards must
evaluate to true so as to avoid deadlocks, and the fairness
ratios can easily be changed by the addition of join/fork
pairs associated to the same output action.

4.3 Fair mutual exclusion
If we bring together the characteristics of mutual exclusion
and fair execution, we get a fair choice among mutual ex-
clusive processes. The token is transferred between process
locks. Fig. 13 shows this lock transfer on the left (activity
LT ). We opted for a separated activity modelling the lock
initialisation (activity Init on the right of Fig. 13).

Similarly to the previous examples, we can compose, by ac-
tivity addition, several instances of activity LT. Fig. 14 il-
lustrates this addition: one LT instance is stereotyped with

3Transfer

«stereotype»
InterfaceNode

in: A.a

«stereotype»
InterfaceNode

in: A.b

«stereotype»
InterfaceNode

in: A.c

«stereotype»
InterfaceNode

in: A.dn

Figure 12: An alternative stereotyped crosscutting
requirement to be added to the initial model A in
Fig. 9 (without transparent join/fork pairs).

get

transfer

LT
Lock1 Lock2

Init

Choose

Lock

Start

Figure 13: Activity LT and activity Init, used for
composing a fair mutual exclusive crosscutting con-
cern.

two interface nodes. An Init activity instance (Init1 ) is
them added to the resulting activity diagram (Fig. 15). The
resulting activity diagram (LT1+LT2+Init) is shown on the
left of Fig. 16. It already specifies a crosscutting concern
for an alternate mutual exclusion with deterministic initial-
isation (Lock1 always receives the initial token).

get

transfer

LT1
Lock1 Lock2

get

transfer

LT2

Lock1 Lock2

«stereotype»

InterfaceNode

in: LT1.Lock2

«stereotype»

InterfaceNode

in: LT1.Lock1

Figure 14: Two LT instances to be added.

We can further add another Init instance to obtain a non-
deterministic choice of Locks: adding Init2 (right of Fig.
16) we get the activity in Fig. 17 without the stereotypes.
The shown stereotyped LT1+LT2+Init1+Init2 activity can
finally be added to the A1’ activity in Fig. 4. We get activity
A1’+LT1+LT2+Init1+Init2 (see Fig. 18).



LT2.transfer

LT1.get

LT1.transfer

LT1+LT2+Init1

Lock1 Lock2

LT2.get

Choose

Start

Init2

Choose

Lock

Start

«stereotype»

InterfaceNode

in: LT1+LT2+Init1.Lock2

«stereotype»

InterfaceNode

in: LT1+LT2+Init1.Choose

«stereotype»

InterfaceNode

in: LT1+LT2+Init1.Start

Figure 15: Result of the activity addition in Fig. 13
(on the left) and the stereotyped Init instance to be
added (on the right).

LT2.transfer

LT1.get

LT1.transfer

LT1+LT2+Init1

Lock1 Lock2

LT2.get

Choose

Start

Init2

Choose

Lock

Start

«stereotype»

InterfaceNode

in: LT1+LT2.Lock2

«stereotype»

InterfaceNode

in: LT1+LT2.Choose

«stereotype»

InterfaceNode

in: LT1+LT2.Start

Figure 16: Result of the activity addition in Fig. 15
(on the left) and the stereotyped Init instance to be
added (on the right).

LT2.transfer

LT1.get

LT1.transfer

LT1+LT2+Init1+Init2

Lock1 Lock2

LT2.get

Choose

Start

«stereotype»

InterfaceNode

in: A1’.ab

«stereotype»

InterfaceNode

in: A1’.b_out

«stereotype»

InterfaceNode

in: A1’.cd

«stereotype»

InterfaceNode

in: A1’.d_out

Figure 17: Result of the activity addition in Fig. 16.

5. CONCLUSIONS AND FUTURE WORK
The UML 2.0 activity diagrams have an much richer se-
mantics. This fact will certainly give rise to a much more
widespread use of activity diagrams, namely in other ar-
eas, besides workflow systems. Areas such as critical sys-
tems with distributed hardware and software components
now seem suitable to be modelled by activity diagrams as
they are able to provide an alternative to state machines.
In this setting, it seems easy to foresee that the support
for crosscutting requirements will become highly desirable.
The proposed activity composition by graph addition is a
contribution in this direction. Node fusion provides a read-
able and intuitive composition mechanism allowing a non-

LT2.get

LT2.transfer

LT1.get

LT1.transfer

A1’+LT1+LT2+Init1+Init2

Lock1 Lock2

Choose

Start

a

b d

c

Figure 18: Modified model resulting from activity
addition of activity in Fig. 17 to activity A1’ in Fig.
4.

invasive addition of crosscutting concerns to existent models,
with minimal coupling and simple traceability. Interestingly,
the support for crosscutting concerns here presented does
not require any metamodel extension as it relies exclusively
on profiles based extensions. Yet, adequate tool support is
clearly necessary to permit an automatic generation of the
resulting models.

The proposed node fusion based on a three part node parti-
tion (interface nodes, subtraction nodes, and addition nodes)
seems readily applicable to other behaviour diagrams, na-
mely to UML state machines. Presently, we can only guess
that node fusion is probably also useful for the specification
of crosscutting requirements in non-behaviour diagrams.

In AspectJ terms [6], the activity nodes are all potential
join points of the primary model activity diagram; and the
fusion pairs can be seen as particular cases of pointcuts. In
that sense other more elaborate pointcuts can be useful. For
example, the use of pairs containing one set of nodes in the
primary model and one node in the crosscutting concern
model. This would allow the specification of several fusions,
between several nodes in the primary model with a single
node in the crosscutting concern model. In this sense the
definition of more elaborate fusion based pointcuts will be
part of our future work.

The fusion of non-graphical activity node specifications, na-
mely node operations and attributes, also needs to be de-
fined. The presented proposal leaves this open. Finally, tool
support in the form of XMI transformations is probably the
best way to rapidly put the proposed activity operation to
practice.

6. REFERENCES
[1] M. Alanen and I. Porres. Difference and union of

models. In UML 2002 - The Unified Modeling
Language 6th International Conference(UML’2003),
oct 2003. (to appear).

[2] J. P. Barros and L. Gomes. Activities as behaviour
aspects. In M. Kandé, O. Aldawud, G. Booch, and



B. Harrison, editors, Workshop on Aspect-Oriented
Modeling with UML, sep 2002. Satellite workshop of
the UML 2002 - The Unified Modeling Language 5th

International Conference(UML’2002).

[3] E. W. Dijkstra. On the role of scientific thought.
published as [4], Aug. 1974.

[4] E. W. Dijkstra. On the role of scientific thought. In
Selected Writings on Computing: A Personal
Perspective, pages 60–66. Springer-Verlag, 1982.

[5] L. Gomes and A. Steiger-Garção. Towards the
implementation of conflict resolution on a non
autonomous high-level petri net model. In Workshop
Manufacturing and Petri Nets, Osaka, Japan, jun
1996. Satellite workshop of the 17th International
Conference on Application and Theory of Petri Nets
(ICATPN’96).

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and William G. Griswold. An overview of
aspectj. In J. L. Knudsen, editor, 15th European
Conference on Object-Oriented Programming, volume
2072 of LNCS, pages 327–353, Berlin, Heidelberg, and
New York, 2001. Springer Verlag.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, 11th European Conference on
Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242, Berlin, Heidelberg, and New York,
1997. Springer Verlag.

[8] OMG. Uml 2.0 superstructure specification.
http://www.omg.org/cgi-bin/doc?ptc/03-08-02,
August 2003. version 2.0. Final Adopted Specification.
OMG Adopted Specification ptc/03-08-02.

[9] O. M. G. (OMG). Unified modeling language
specification, version 1.5. http:
//www.omg.org/cgi-bin/doc?formal/03-03-01.pdf,
mar 2003.

[10] H. Ossher and P. Tarr. Using multidimensional
separation of concerns to (re)shape evolving software.
Communications of the ACM, 44(10):43–50, 2001.

[11] W. Reisig. Petri nets: an introduction.
Springer-Verlag New York, Inc., 1985.

[12] E. Smith. Arbiter behaviour and petri nets.
Fachberichte Informatik, Universität Koblenz-Landau,
2/93, 1993.

[13] P. Stevens. Uml and concurrency. Available at
http://www.dcs.ed.ac.uk/home/pxs/asmtalk.pdf,
March 2003. Invited talk at 10th International
Workshop on Abstract State Machines (ASM 2003).

[14] P. Tarr, H. Ossher, W. Harrison, and J. Stanley
M. Sutton. N degrees of separation: multi-dimensional
separation of concerns. In Proceedings of the 21st
international conference on Software engineering,
pages 107–119. IEEE Computer Society Press, 1999.


