
 1

Using Aspects to Develop Built-In Tests for Components

 Jean-Michel Bruel1 João Araújo2 Ana Moreira2 Albert Royer1

1Computer Science Research Laboratory
LIUPPA, University of Pau, France

Phone: (+33)559.40.76.37

{bruel,royer}@univ-pau.fr

2Departamentode Informática
FCT, Universidade Nova de Lisboa, Portugal

Phone: (+351) 21.294.85.36

{ja,amm}@di.fct.unl.pt

ABSTRACT
The quality of component-based software critically depends on
how effectively testing is carried out. To address this problem, we
have incorporated built-in tests into components as a way to
facilitate their validation in different execution environments.
However, the modularization of crosscutting concerns is ignored,
leading to redundancy of code spread among several components.
Aspect-orientation can improve component-based software
development as it provides the appropriate mechanisms to keep in
different modules concerns that cut across other concerns. Our
goal is to define an UML compliant approach to incorporate
testing features into components in an aspect-oriented software
development. This paper is a stepping stone towards this goal.
Here we explore how that can be achieved at the detailed design
and implementation levels.

Keywords
Aspects, Built-in Tests, UML, Testability.

1. INTRODUCTION
Despite the progresses made in component development,
especially platform-specific models (PSMs, such as CORBA,
.Net, etc.), the main problems that remain in component-based
software development (CBSD) are composition and certification.
This has been pointed out by number of surveys (e.g., [17]). In
this paper we are focusing on testability that we see as a key issue
in certification.
During the past few years we have developed a framework to
support the implementation of testability features built in
components [1, 21]. Components with such feature are called
BIT-components. The main goal of this project was to be able to
incorporate components in a new environment with the ability to
check that they behave as expected.
The main limitation of BIT-technology is that testability features

are attached to single components, without taking into
consideration the implication of composition. This can lead to
duplication of testing code spread among several different
components. This results in tangled implementations that are
difficult to maintain and evolve. These drawbacks are at the core
of the problems that aspect-oriented software development
(AOSD) techniques aim to solve [13].
Our goal is to define an approach, covering the whole
development lifecycle, to incorporate testing functionality into
components developed accordingly to AOSD principles. Aspects
will then be used to develop aspectual components, implement
interactions between components and implement testability
features in a component. In this paper we explore how testability
features can be expressed as aspects in BIT-components.
This paper is organized as follows. Section 2 gives some
background on BIT-technology. Section 3 introduces some initial
steps towards an approach to aspect-oriented and component-
based development and illustrates the use of aspects at the
detailed design and implementation levels. Section 4 discusses
some related work and, finally, section 5 draws some conclusions
and points directions for future work.

2. BACKGROUND
Component-based software engineering has been adopted in order
to improve software development as well as maintenance
efficiency and quality. It also aims to increase reuse rate of
existing software in multiple applications. Viewing software
architectures as being composed of components is helpful for
enabling software development, test, and maintenance to be
carried out at a higher level than that of language statements.
Nevertheless, despite the progresses made in component
development, especially platform-specific models (PSMs, such as
CORBA, .Net, etc.), the main problems that remain in CBSD are
composability and testability. This has been pointed out by
number of surveys (e.g., [17]). The European COMPONENT+
project1, sponsored by the European 5th Framework Program and
by a number of leading industrial partners in component-based
software engineering, has developed a technology to provide a set
of testability features to components, called BIT – Built-In Test
[21]. This section starts by introducing the concepts developed in
this project, then presents in more detail the “Contract-testing”
part of the technology, in which we have been particularly

1 European IST-1999-20162 project. See http://www.component-plus.org

for more details.

Submitted in July 03 to the AO Modeling with UML Workshop at
UML’03, San Francisco, USA.

 2

involved and which we are focusing here, it then follows by
describing the implementation of the technology by presenting
our BIT Java library, and finally, illustrates this library with an
example.

2.1 Concepts and definitions
In BIT [21], a component is defined by a number of provided and
required interfaces, through which its functionality is understood.
In general, a system developer is unable to look inside a
component. However, problems can arise in a system composed
of components, especially with COTS, when there is no provision
for testing. The developer must be able to verify that the
components used will function correctly when deployed in the
target system, and when exposed to a specific usage profile. It
must also be verified that components interact correctly in order
to meet the overall system requirements. To address these issues,
the notion of a built-in-test-component (BIT-component) has been
introduced. A BIT-component is composed of its functional
interface(s), augmented by one or more test interfaces. The
purpose of these BIT interfaces is to enable detection of errors,
which, in a component-based system, can be classified in two
levels:

1. those that are confined to a specific component (and can
be detected within that component), and

2. those at system level arising from incorrect component
interaction (which cannot be detected within the
components involved).

The BIT architecture is based on several architectural elements
such as BIT-components (components that provide a number of
built-in test services), Testers (components that use the test
services of BIT-components to determine whether a system-level
error condition exists), Handlers (components that handle errors
detected by BIT-components or test components), and System
constructor (a conceptual element, nominally responsible for the
instantiation of BIT-components, testers, and handlers, and their
interconnection).

2.2 Contract testing
The correct functioning of a system of components at run time is
dependant on the correct interaction of individual pairs of
components according to the client-server model. Component-
based development can be viewed as an extension of the object
paradigm in which, following Meyer [15], the set of rules
governing the interaction of a pair of objects (and thus
components) is typically referred to as a contract. This
characterizes the relationship between a component and its clients
as a formal agreement, expressing each party’s rights and
obligations.
The testing approach we are focusing here is based on the notion
of building contract tests [8] into components so that they can
validate that the servers to which they are "plugged" dynamically
at deployment time will fulfill their contract. Although built-in
contract testing is primarily intended for validation activities at
deployment and configuration-time, the approach also has

important implications on the development phases of the overall
software lifecycle. In the overall BIT project, some partners
focused in a more real-time oriented type of testing, closer in fact
to monitoring than testing. These particular testing activities were
called in the project Quality of Service testing. In this paper we
focus on contract testing, since that was the focus of our team at
University of Pau. In this context, and to demonstrate the
feasibility of the technology we have developed the library
described in the next subsection.

2.3 BIT/J library
In this paper we describe the development of a pragmatic Java
library (BIT/J) that supports the BIT technology [1]. The
architecture of the library described here is partially illustrated in
Figure 1. Built-in contract testing can initially be carried out using
three primary concepts: an <<interface>>, that implement the
testability contract; and two classes, that implement the test cases
and the tester. These three implementations, shown in Figure 1,
are: IBITQuery, BIT test case and BIT tester. These
implementations mainly support the assessment of test results,
control of the execution environment, and actions to be taken if
faults are encountered. Additionally, the library provides state-
based testing support that is essential to built-in contract testing.
The state-based concepts abide by the principles of Harel’s state
machines, whose mechanisms are fully available in the library
(definition of states, combination of these states, definition of
transitions, etc.) [11]. This is the reason for the three
implementations we have: State-based IBITQuery, State-based
BIT test case, and State-based BIT tester.
The Java library is bounded to the original Java (even a COTS
one) component either through an extension mechanism
(inheritance) or through a containment relationship. The access to
COTS components can be realized through Java’s Reflection
mechanism inside the library. The behavioral model that is
required for the contract-testing interface must be defined
according to the generic behavioral facilities that the library is
providing and it is completely incorporated in the newly created
wrapper. Through this technique, the wrapper component
represents an executable behavioral model of the original COTS
component. In addition to this library, a full generation code
environment, described in Figure 1, is provided. The tool, based
on the Sun’s JMX tool, allows component and testers
management. For a complete description of the tool, see the user
manual [2].

The strength of the tool is the ability to support COTS (through
the Java introspection mechanism) and to ease the job of the
(human) tester that manipulates the components for testing
purposes by generating as much code as possible. The problem is
that the tool remains dependent on the Java and JMX technology .
In addition, it is only dedicated to the generation of a BIT
component out of a component without consideration on potential
subcomponents or existing sub-BIT-components. We hope that
the use of aspect-oriented technology will help us overcome those
drawbacks.

 3

«interface»
IBITQuery

Result : {#Failure, #Success, #TBD}

execution condition() : Boolean
is testable() : Boolean

initialize test()
finalize test()

BIT test case

BIT state monitor

State-based BIT
test case

State-based BIT
tester

BIT
component

COTS
component

«interface»
State-based
IBITQuery

check(contract : Boolean)
in_state(String) : Boolean

to_state(String)

: depend upon

: realize

: inherit from

: refer to

Part of the BIT/J library

Manipulation
via JMX and

a Web browser

COTS Component and it
behavioral specification

: Automated
Generation

SUNTM JMX
component

manager

BIT tester

Fig. 1 – Use of the BIT/J library

2.4 An example of the use of the library
In order to illustrate our ideas, we have used very simple
stack/queue java classes. These classes have been considered as
components and the existing BIT/J tool has been used to generate
the corresponding BIT code. Some manual information has been
added to the testers to check some particular behavior of the
component and the component implementation has been manually
altered to illustrate that we were able to detect some specification
violations (bad component implementation).
As mentioned before, the BIT/J library is a suite of programs
supporting the Built-In Test software technology. The BIT/J
library also provides monitoring, configuration and remote testing
capabilities based on JMX: a specific agent, which is called a
JMX agent, launches a BIT component in its environment.
Operations of the BIT component testing interface are accessible
via a Web browser from the network. The BIT/J library is
supplied with a code generator. It generates a skeleton for the BIT
component code as well as the BIT tester code and the JMX code.
The use of JMX was not discussed in the previous section because
it adds no particular testing capabilities. The parts of the code
generated by the tool and that are directly related to JMX, do not
need any additional human intervention, as they are mainly
wrappings of components into manageable beans (the entities
manipulated by JMX).
We reuse in this paper the step-by-step example taken from our
user guide2 which consists in making a BIT version of the Java
Stack component. Java Stack is offered by Java SDK without
source code. Thus we consider the Java Stack as a COTS
component.

2 Available at http://liuppa.univ-pau.fr/themes/aoc/aoc/BITJ

Fig. 2 – The BIT/J generator tool

After the BIT Generator (illustrated in Figure 2) has been
launched, and all the fields answered and selected (name of the
component, generation directory, use of inheritance or not, etc.),
the BIT component, the BIT tester and the JMX components are
generated. In our Stack example, four Java files have been
generated. The result of the generation process (which is visible
on the text area of Figure 2) are: BIT_stack.java (the BIT
component), BIT_stack_tester.java (the tester),
BIT_stack_tester_JMX_agent.java (the JMX agent, needed for
remote testing executions), and BIT_stack_testeMBean.java (the
JMX interface specifying what are the operations that can be
tested through the browser). The JMX files are then modifiable by
the user (e.g., removing some operations from the methods list,
etc.).
The user then needs to add some specific code into the generated
files. Indeed, the BIT Generator supplies a skeleton of the BIT
component. Users must, for example, initialize it before using it.

 4

First of all, in the state-based BIT model, users must implement
the BIT component statechart (we have used in our example the
one illustrated in Figure 3). To do so, they must modify the
init_behavior() operation. This is part of the generated
code of the BIT Stack:

protected void init_behavior()
{
/* state defs and formal relationships here */
}

Fig. 3 – The Stack statechart

And here is the modified one:
protected void init_behavior(){
/* state defs and formal relationships here */
_Empty = new BIT_state("Empty");
_Only_one = new BIT_state("Only one");
_More_than_one = new BIT_state("More than one");
_Not_empty = (BIT_state)

(_Only_one.xor(_More_than_one)).name("Not
empty");

_BIT_stack=new BIT_state_monitor
(_Empty.xor(_Not_empty), "BIT stack");

_Empty.inputState();
}

As can be easily understood in the code, four states were declared
(Empty, Only one, More than one and Not empty). Not empty is a
composite state composed from Only one and More than one. The
BIT Stack state monitor contains the Not empty and the Empty
states. The testing interface has been generated automatically and
no modification is required.
The third part of the skeleton is composed of operations
corresponding to public operations within the original component.
Each generated operation contains a call to an original operation.
Moreover, in the state-based model, users must also code the state
transitions appearing in the statechart according to a precise
process. For example, below there is (a simplified version of) the
final push operation after modification by the user (generated
code is in regular font and added one is in italic):

public Object push(java.lang.Object o1) {
java.lang.Object result = _stack.push(o1);
/* state transitions here */
_BIT_stack.fires(_Empty, _Only_one);
_BIT_stack.fires(_Only_one, _More_than_one);
_BIT_stack.fires(_More_than_one,
_More_than_one);
_BIT_stack.used_up();
return result;
}

For this particular operation the user has defined three mandatory
state transitions (Empty to Only one, Only one to More than one
and More than one to More than one). For the peek operation, a
single state transition is necessary which keeps the BIT
component in the same state. Lastly, the user could add manually
specific testing operations in the BIT component. For the BIT
tester, configuration operations may be added to the tester to set
the component in a certain state. The JMX tester interface can be
modified using the BIT_component_testerMBean.java file. The
user can set up the accessible operations from the remote testing
interface. S/he can, for example, forbid access to some operations
by just removing them from this file or add new ones. To be
consistent, s/he has to remove or add the associated
implementation in the BIT component tester class. The JMX
agent, by default, is launched on the port number 8082. If needed
this can be changed by modifying the port number into the JMX
agent code.
After the modifications, and the compilation of all of the files, the
JMX agent and the browser can be launched. The user can
manipulate the component through the JMX Web-based interface
(see Figure 4).

Fig. 4 – The JMX Interface

3. TOWARDS AN ASPECT-ORIENTED
APPROACH FOR BIT-COMPONENTS
In this section we discuss our views of how aspects can contribute
to help handling CBSD problems, more specifically testability.

3.1 Overview
Figure 5 depicts our general idea, where aspect-orientation should
be used during the full software life cycle.

 5

Problem
Domain

Aspect-Oriented
Component-Based

Software Development

BIT-Components
with strong support

for composition

(Non-aspectual) Components
Aspectual Components
Testability Features as Aspects

Fig. 5. BIT-Components by way of aspects

Aspects can play a major role in a component-based software
development, as they can be used to:

1. develop aspectual components;
2. implement interactions between components;
3. plug and unplug testability features in a component.

The first point is related to the aspectization of the component-
based software development, i.e., develop components according
to the AOSD principles, by applying advanced separation of
concerns to their development. To accomplish this we need to
borrow from the AOSD its main concepts and techniques. The
justification is that components, besides having to satisfy a given
functionality, also need to conform to certain design restrictions
that affect all (or a subset of its) sub-components. Examples are
the so-called non-functional requirements, such as performance,
accuracy and security (e.g., [3]). Therefore, it makes sense, in an
object-oriented development, for example, to have in a
component some sub-components implemented as classes, called
here non-aspectual components, and others implemented as
aspects, the aspectual components. The resulting global behavior
of that component will be obtained by weaving those aspects with
the classes they cut across.
The second point is probably the most interesting one in the
context of CBSD. As agreed by many authors [17], the
specification and implementation of interactions between
components is a difficult task. We believe that aspects can
facilitate this job. The composition of components will then be
accomplished by composing aspects, which implement
interactions between components, and the components
themselves.
Finally, the third point proposes the use of aspects to implement
built-in test cases. This is not surprising as testability can be seen
as a non-functional requirement and therefore better suited to be
implemented as an aspect [16, 18]. Such a solution will aim at
externalizing from each sub-component, within a component, all
the code that implements a test case, by keeping it in a module
separated from those that implement both aspectual and non-
aspectual functionalities of the component.

3.2 Develop Aspect-Oriented and Component-
Based Software
In this paper we take the work already developed for BIT
components and show how aspects can be used within that
framework at both detailed design and implementation levels.

Design & Implementation

Component
Interactions

Testable System
(with

BIT Components)

Composition
Process

Aspectual
Components

Non-Aspectual
Components

Requirements Analysis & Modelling

Aspect-Oriented and Component-Based

Test Cases
(as Aspects)

Figure 6. A model for AOCBSD

There are four major activities to achieve before we can think of
composing all the elements to form a testable system (see
Figure 6). The first and the second ones are dedicated to the
implementation of the components, both aspectual and non-
aspectual. The third activity aims at defining the test cases
necessary to fully test a component by itself. Test cases
generation is an interesting area of research. Here we have used
state transition diagrams can help testing by adapting path testing.
This is a testing strategy whose aim is to exercise all independent
execution paths through a component or program [20]. If every
independent path is executed then all statements in the component
must have been executed at least once. After discovering the
number of independent paths the next step is to design test cases
to execute each of these paths.

In our approach, test cases will be designed for both aspectual and
non-aspectual components. We propose each test case to be
implemented as an aspect.

The fourth activity is aimed at specifying and implementing
interactions between components. As we said above, this is a very
interesting theme in the area of CBSD. Here we propose that
interactions between components are implemented as aspects.
Having accomplished these four activities we can then weave all
the obtained elements and composing them together. The
composition process uses the weaving mechanisms available in
AspectJ and should first take into consideration the interactions
between components already defined.

3.3 The example using AspectJ
We have used the approach described in the previous section to
define testability features as aspects. For comparison purposes we
will use the stack example discussed in section 2. This section

 6

describes how we have reached the same testability provided by
the BIT/J tool, by defining aspects in AspectJ [14]. We also
discuss the limitations of the example, and provide some ideas on
the generalization of our approach, only illustrated in this paper in
the Java world.
The full description of the case studies is available in a detailed
technical report [4].

3.3.1 The component
We have worked with a “home-made” implementation of the
stack component for two reasons. First, we wanted to highlight
the ability to detect bad implementations (e.g. functionally tested,
but not conforming to its statechart). Second, we wanted to
simplify our work in the use of AspectJ as we had doubts about its
introspection mechanisms. Figure 7 depicts a simple class
diagram of the simple experimental environment we have
developed in Java.

Figure 7. Component implementation

The StackTesting program illustrates the typical use and test of
the STACK component (a class in our example), when no
particular testing functionality is available.

3.3.2 The aspect
According to what we discussed above, the testability features
associated with our component should be implemented separately
as an aspect. In this paper we are not introducing the reader to the
basic concepts of AspectJ. Good tutorials on AspectJ are available
[13] and a lot of information can be found on the AOP web site3.
The aspect, a modular unit of crosscutting implementation, is
going to be used in order to:

1. add some attributes to the STACK class, and also new
methods,

2. declare some pointcuts (execution, events, etc. in which
we are particularly interested).

The result of the weaving of the class and its aspect will be a
testable class. We have chosen in our example to write only one
aspect for the component. This is of course not the only possible
way to use aspect technology possibilities. It is only an
illustration. In fact we believe that it is more readable and
consistent to have each test case described by an aspect and have
a composition of aspects attached to a particular component.
3.3.2.1 New attributes
The introduction of new attributes (and new methods) illustrates
the fact that it does not matter if the component has not been
developed to be tested (absence of methods such as IsEmpty for

3 http://www.eclipse.org/aspectj

example). AspectJ allows us to add whatever is needed. Here is
the beginning of the definition of the aspect with the two new
attributes _history and _current_state:

aspect AspectedStack{

… STACK._history = new java.util.LinkedList();
… STACK._current_state = "Empty";

The two attributes are used to keep track of what is going on in
the Stack component, and to implement its state (here initialized
to “Empty”). Notice that for readability reasons we have removed
some parts from the AspectJ code (e.g. static).

3.3.2.2 New methods
The new added methods implement the test cases. They can
complement the interface of the component if needed, and they
link the regular functional interface of the component with the
way its statechart is going to be described. Our aspect includes: (i)
some generic testing functions, such as the one used in the BIT
approach, and (ii) some specific methods such as some particular
values for parameters the user wants to test, etc. For example, in
the case study we add the following void_push_Integer method
that simply add the integer 999 into the stack:

public void STACK.void_push_Integer() {
 Object[] inputs = new Object[1];
 Integer I = new Integer(999);
 push(I);
 _history.add("push"+I.toString());
 }

We then define three predicates (_Empty, _Only_one,
_More_than_one) to check the three possible states (cf. statechart
in Figure 3):

public boolean STACK._Empty () {

return _top_rank == -1;}
public boolean STACK._Only_one () {

return _top_rank == 0; }
public boolean STACK._More_than_one () {

return _top_rank > 0; }

3.3.2.3 Transitions
Transitions are “captured” using pointcuts and advices. Let us just
briefly cite the AspectJ documentation for those not familiar with
these concepts: “A join point is a well-defined point in the
program flow. Pointcuts select certain joint points and values at
those points. Advice defines code that is executed when a pointcut
is reached.” In our simple example we only consider if the
number of items in the stack is increasing or decreasing. We then
define two pointcuts:

pointcut increasing(STACK s) :
 target(s)&&call(STACK.push());
pointcut decreasing(STACK s) :
 target(s)&&call(STACK.pop());

Transitions are treated by advices executions. We have used here
the after mechanism to adjust the Stack state after the event (we
only give the code for increasing as an illustration):

 7

after(STACK s): increasing(s){
 if (s._current_state.equals("Empty"))
 s._current_state = "Only_one";
 else if (s._current_state.equals("Only_one"))
 s._current_state = "More_than_one";
}

The overall architecture of the new environment is illustrated in
Figure 8 (where we are using a UML notation for describing
aspect proposed by [19]). The TestableStack is representing in
this UML class diagram the conceptual weaving result of STACK
and its aspect. We modified the testing program according to the
new testability features and made the same kind of manipulation
of the component that we did in the BIT version.

Figure 8. Component + Aspect

The example can be seen as too simple to draw interesting
conclusions. We have taken a minimalist approach to show that
we could get the same testability power than the one obtained
using the BIT/J library. This is why we have started by applying
our approach to only one component. We have repeated the
experiment with other components, and used different aspect
definitions to explore the potential use of aspects. These
experiments (described in [4]) have led to promising conclusions.
Not only could we repeat the same kind of testability potential we
got from the BIT/J, but there are far more possibilities of testing
and monitoring components using aspects. Despite potential
limitations from AspectJ in comparison with theoretical
possibilities of aspects, we could, for example, substitute method
calls by others, according to the current state of the component.
Here is a short illustration of what it can look like:

void around(Stack s): decreasing(s){
 if (s.is_empty())
 System.out.println("Empty Stack!");
 else
 proceed(q);
}

This advice, called around, is used to substitute the execution of
the called method. This is a powerful tool for debugging or
implementing an aspect related to non-functional requirement (for
example, when memory is low, then use this method instead of
this one, etc.). If the method preconditions are verified, then the
regular method is executed (through the command proceed(...))
otherwise a specific action is executed (in our simple example it is
only a message).
But this is only one part of the benefits we found in using aspects.
The other, which is only expected because it has not yet been
experimented, but it surely will have the most interesting
improvements, is when we deal several components linked
together by dependencies and client-server collaborations.

4. RELATED WORK
The approach by Grundy [9] is also committed to component
based software development. In his method AOCE (Aspect-
Oriented Component Engineering) he categorizes various aspects
of a system that each component provides to end users or other
components. The strength of this approach is that it addresses the
whole development lifecycle, from requirements to
implementation. However, the approach does not contemplate
testability to be incorporated in components.
 In distributed systems based on CORBA, some interesting ideas
can be found in [7] where they extend the existing CORBA
Component Model (CCM) with some aspectual features (the
overall model being called AspectCCM). They illustrate the need
to differentiate between the required interfaces of a component,
the ones that “are vital to make the component functional”, from
the ones that “depend on the context in which the component is
developed”. They call the former “intrinsic dependencies”, and
apply the current “uses” CCM artifact, and they call the latter
“non-intrinsic dependencies” and then define a new “aspect_uses”
artifact, which applies the AOP approach to separate the
dependencies from the component itself. Our approach aims to be
platform-independent while they are mainly addressing interface
definitions in a CORBA-related environment, which is not yet
suitable for our purpose.
The closest approach to ours is described in [12], where they use
aspects as a way to implement quality of service contracts. They
are also convinced that “AOP is an appropriate solution for
separating the implementation of a contract from the rest of the
model”. Their focus is on providing a new and organized way to
express non-functional requirements, and aspects comes as an
implementation of these contracts, the idea being to reuse AOP
weaving approach. As illustrated in this paper, we have started to
implement BITs as aspects also in order to reuse weaving
capacities of languages such as AspectJ. But our goal is really to
have, as soon as at the requirements level, aspects describing
features such as testability.
One important issue in our work is the way abstract aspects (the
definition of abstract and common testability features) will be
implemented into concrete aspects (testability features of one
particular component). There are some works that deal with this
problem. In [12] for example, they benefit from their existing
model transformation tool, UMLAUT, to define abstract aspects.
Then, before the weaving, there is an “adaptation” transformation,
to first match the aspect with its particular targets, using a kind of
parameterized approach. In [10], they try to avoid the “vanishing”

 8

of design patterns throughout the implementation code by
implementing these patterns as aspects so that instead of being
spread out through the whole application, the pattern remains as
an entity. In [5, 6] they strengthen the use of aspects by using
composition patterns. They have the merit of illustrating the way
aspects at design level can be mapped to implementation level.
Similarly, we would like to use extension mechanisms where
abstract aspects would be seen as interfaces and concrete aspects
have implementation of these interfaces.

5. CONCLUSION AND FUTURE WORK
In this paper we have addressed how aspect-oriented concepts and
techniques can be used to improve BIT-technology. In order to
illustrate our ideas, we took an existing example of BIT-
components and redeveloped it using aspects. We started by
building a UML class diagram, extended with some aspectual
stereotypes, to represent the new structure of a BIT-component.
The next step was to implement the classes and aspects. As the
available BIT-library was implemented in Java, we used AspectJ
to express testability features with aspects. The results of this
experiment were that we not only gained the same testability
power but also we could go a lot further in terms of integrating
the BIT part within the component.
Thanks to the advantages of aspect-orientation, we believe that
enhanced modularization, evolvability and, therefore overall
quality of components, will be less difficult to achieve.
For future work we want to contemplate the testability features
inserted in a full aspect-oriented software development from
requirements to implementation. In particular, we are interested in
(i) deriving test cases from requirements models using aspect-
orientation, (ii) investigate how aspects can help specifying and
implementing composition and interactions between components,
(iii) provide an aspect-based composition model for testability
features.

6. ACKOWLEDGEMENTS
The work described in this paper is part of the “Agile
Requirements Analysis” project, partially funded by the joint
Portuguese-French agreement n° F-23/03. The authors from Pau
would like to thank Nicolas Belloir for his help in the BIT/J
example and for solving our Java problems in general.

7. REFERENCES
[1] Franck Barbier, Nicolas Belloir, Jean-Michel Bruel.

Incorporation of test functionality into software components.
2nd International Conference on COTS-Based Software
Systems, Ottawa, Canada, ISBN 3-540-00562-5, pp. 25-35,
2003.

[2] Nicolas Belloir, Jean-Michel Bruel and Franck Barbier.
BIT/J Library – user’s guide. Available online at:
http://liuppa.univ-pau.fr/themes/aoc/aoc/bitj.php.

[3] Jean-Michel Bruel, editor. Proceedings of the 1st
International Workshop on Quality of Service in Component-
Based Software Engineering. Cépadues Edition, Toulouse,
France, 2003. ISBN XX.

[4] Bruel, J.-M., and Royer, A. Aspects and BIT: a comparative
case study. UPPA Technical Report 2003-07-01, 2003.

[5] Siobhán Clarke and Robert J. Walker. Composition Patterns:
An Approach to Designing Reusable Aspects. In Proceedings
of the 23rd International Conference in Software Engineering
(ICSE’2001), IEEE Computer Society Press, 2001, pp. 5-14.

[6] Siobhán Clarke, and Robert J. Walker. Mapping
Composition Patterns to AspectJ and Hyper/J. In Workshop
of Advanced Separation of concerns in Software
Engineering, 2001.

[7] Pedro J. Clemente, Juan Hernández, Juan M. Murillo,
Miguel A. Pérez, Fernando Sánchez. AspectCCM: An
Aspect-Oriented Extension of the Corba Component Model.
Proceedings of the 28th Euromicro Conference
(EUROMICRO'02). IEEE Computer Press. September 04-
06, 2002.

[8] Hans-Gerd Gross, Colin Atkinson, Franck Barbier, Nicolas
Belloir, Jean-Michel Bruel. Buit-In Contract Testing for
Component-Based Development, Chap. 4 in Business
Component-Based Software Engineering, Kluwer, vol. 705,
ISBN 1-4020-7207-4, pp. 65-82, 2002.
http://www.wkap.nl/prod/b/1-4020-7207-4.

[9] John Grundy. Multi-Perspective Secification, Design and
Implementation of Software Components using Aspects.
International Journal of Software Engineering and
Knowledge Engineering, vol. 10, No. 6, December 2000.

[10] Ouafa Hachani, Daniel Bardou. « Aspectisation » des
patrons de conception. In Proceedings of INFORSID’03,
Hermès. 2003.

[11] David Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231--274,
June 1987.

[12] Jean-Marc Jézéquel, Noël Plouzeau, Torben Weis, and Kurt
Geihs. From Contracts to Aspects in UML Designs. In
Proceedings of the Workshop on Aspect-Oriented Modeling
with UML at AOSD’2002.

[13] Gregor Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.M. Loingtier, and J. Irwin, Aspect-oriented
Programming, in M. Aksit and S. Matsuoka, editors,
Proceedings of the 1997 European Conference on
Object-Oriented Programming (ECOOP), Finland (June
1997), Springer-Verlag, LNCS 1241, pp. 220-242.

[14] Gregor Kiczales, et al. An Overview of AspectJ, in
Proceedings of the 5th European Conference on Object
Oriented Programming (ECOOP), Springer. Budapest,
Hungary, 2001.

[15] Bertrand Meyer. Applying Design by Contract, IEEE
Computer Special Issue on Inheritance and Classification,
25(10): pp. 40-52, 1992.

[16] Ana Moreira, João Arujo, and I. Brito. Crosscutting Quality
Attributes for Requirements Engineering. In Proceedings of
the Software Engineering and Knowledge Engineering
Conference. ACM Press, pp. 167-174. 2002.

 9

[17] National Coordination Office for Information Technology
Research and Development. High Confidence Software and
Systems Research Needs. January 2001.

[18] Awais Rachid, Ana Moreira, and João Arujo. Modularisation
and Composition of Aspectual Requirements. In Proceedings
of the 2nd Internatinal Conference on Aspect-Oriented
Software Development. ACM Press, pp. 11-20. 2003

[19] Junichi Suzuki and Yoshikazu Yamamoto. Extending UML
with Aspects: Aspect Support in the Design Phase. In
Proceedings of the 3rd Aspect-Oriented Programming
Workshop at ECOOP’99.

[20] Ian Sommerville. Sotware Engineering. 6th Edition,
Addidon-Wesley, 2001.

J. Vincent. Built-In-Test Vade Mecum, November 2002. Available
at http://www.component-plus.org.

