
Modeling and Validating Interaction
Aspects in UML

Jon Whittle
QSS Group/NASA Ames

Moffett Field
CA 94110

+1 650 604 3589

jonathw@email.arc.nasa.gov

João Araújo
Faculdade de Ciências e

Tecnologia,
Universidade Nova de Lisboa

+ 351-21-2948536

ja@di.fct.unl.pt

Dae-Kyoo Kim
Colorado State University

Fort Collins
CO 80523

+1 970 491 2466

dkkim@cs.colostate.edu

ABSTRACT
There has been significant recent interest, within the Aspect-
Oriented Software Development (AOSD) community, in
representing crosscutting concerns at various stages of the
software lifecycle. However, most of these efforts have
concentrated on the design and implementation phases. We focus
in this paper on representing aspects during requirements
modeling. In particular, we address the issue of how to model
aspects as part of interaction modeling. To illustrate this, we
describe how error-handling interactions can be modeled as
aspects and how they can be composed with non aspectual
interactions. Aspects are modeled as Interaction Pattern
Specifications (IPSs) and are composed with non-aspectual
interactions using instantiation. The composed collection of
interactions can then be translated automatically into a set of
state machines using an existing state machine synthesis
algorithm. This set of state machines can be simulated thus
providing early feedback to requirements engineers.

1. INTRODUCTION
Requirements engineers must know how to deal with the changing
and crosscutting nature of requirements. Having changing
requirements implies that any approach used to elicit and specify
them must provide mechanisms to address requirements change
and its impact on other requirements in an efficient way.
Furthermore, when requirements cut across other requirements,
tangled representations of those requirements all over the
requirements document may result. Consequently, the reaction to
change is more difficult, as the impact of the change is more
complicated to handle. That is why it is important to consider
crosscutting requirements early in the software lifecycle.

The best way to deal with crosscutting requirements is to separate
them from other requirements and model them independently.
This modularization avoids tangled representations in the
requirements document, facilitating requirements evolution. On
the other hand, if no attention is paid to how the cross-cutting
requirements relate to other requirements, there is a danger that
the nature of these interactions will only become clear during later
stages of software development. If problems with these
interactions are only discovered at this point, they will, in general,
be costly to rectify. Hence, it is necessary, at the requirements
stage, to have both a means of modeling cross-cutting concerns
independently but also a means of composing cross-cutting
concerns with other requirements in a way that will allow the
entire set of requirements to be validated.

In this paper, we will focus on interaction-based requirements.
Interactions show the behavior of several system components
communicating towards a common goal. Interactions are a good
way of modeling early requirements because they show global
exchanges between system components without showing all the
internal behavioral details of each component.

This paper will show how to model interactions (with aspects) in a
way that they can be immediately validated. Interactions will be
modeled as UML sequence diagrams. Aspectual interactions –
i.e., interactions that cross-cut other interactions – will be
modeled as Interaction Pattern Specifications (IPSs). Error-
handling will be used to illustrate the technique. The aspectual
and non-aspectual interactions will be composed by instantiating
the aspects. The resulting set of interactions will then be translated
automatically into a set of UML state machines. These state
machines can be executed thus providing a convenient and easy
way for the interaction-based requirements to be validated. The
overall approach was presented in [8] and is summarized in
Figure 1. Our aim here is to validate those ideas with a new
example, a car parking system, and a new aspect.

The paper is organized as follows: Section 2 describes aspectual
interactions; Section 3 shows the application of the approach to an
example. Section 4 depicts how state machines are generated;
Section 5 shows some related work; and, finally, Section 6
presents some conclusions and points directions to future work.

2. ASPECTUAL INTERACTIONS
Pattern Specifications (PSs) are introduced in [2]1 as a way of
formalizing the structural and behavioral features of a pattern. The
notation for PSs is based on the Unified Modeling Language
(UML). The abstract syntax of UML is defined by a UML
metamodel [UML 2003]. PSs specialize this metamodel by
specifying what model elements must participate in the pattern.
Each element in the PS is a role, that is, a UML metaclass
specialized by additional properties that any element fulfilling the
role must possess. Hence, a role specifies a subset of the instances
of the UML metaclass. A PS can be instantiated by assigning
UML model elements to the roles in the PS. A model conforms to
a PS if its model elements that play the roles of the PS satisfy the
properties defined by the roles.

1 Pattern Specifications are called Role Models in [2].

Figure 1: Overall Approach

France et. al [2] define PSs for pattern structure (Static Pattern
Specifications), interactions (Interaction Pattern Specifications)
and state-based behavior (State Machine Pattern Specifications).
In this paper, we will be concerned only with Interaction Pattern
Specifications (IPSs). An IPS defines a pattern of interaction
between its participants. It consists of a number of lifeline roles
and message roles which are specializations of the UML
metaclasses Lifeline and Message respectively. Each lifeline role
is associated with a classifier role, a specialization of a UML
classifier.

Figure 2: An IPS (left) and a conforming sequence diagram (right)

Figure 2 shows an example of an IPS and a conforming sequence
diagram (taken from [2]). The IPS formalizes the Observer
pattern. Role names are preceded by a vertical bar to denote that
they are roles. A conforming sequence diagram must instantiate
each of the roles with UML model elements satisfying any
multiplicity and other constraints (e.g., given in the Object
Constraint Language [Warmer & Kleppe, 1999]). Note that any
number of additional model elements may be present in a
conforming sequence diagram as long as the role constraints are
maintained.

In Figure 2, the right-hand diagram conforms to the left-hand
diagram if the following instantiations are made:

1. Bind |NotifyInteraction to KilnInteraction
2. Bind |s to s
3. Bind |Subject to Kiln
4. Bind |o[i] to t[i]
5. Bind |Observer to TempObs
6. Bind |Notify to NotifyObs
7. Bind |Update to UpdateTemp
8. Bind |GetState to GetKilnTemp
9. Bind |st to st

Additional modeling elements are allowed in the conforming
sequence diagram – namely, m, Monitor and LogUpdateRecd. An
IPS captures the fact that a sequence diagram is an instance of an
IPS if the relative ordering of the messages in the IPS is preserved
in the sequence diagram and the participants in the interaction in
the IPS are preserved as well.

In the same way as Georg et al. [3] and Clarke & Walker [1], we
represent aspects as patterns. In particular, we represent aspectual
interactions as Interaction Pattern Specifications (IPSs). France et
al. [2] do not address how to use IPSs to model aspects. They
define what it means for a sequence diagram to conform to an
IPS, but their notion of conformance is too restrictive when using
IPSs to model aspects. In particular, in [2], an IPS consists solely

|NotifyInteraction 1..*

|Notify()

loop <|NumOfObservers>

|o[i]:|Observer

|Update(|s)

|GetState():|st

KilnInteraction

s: Kiln

NotifyObs()

t[i]: TempObs

UpdateTemp(s)

GetKilnTemp(): st

LogUpdateRecd(s)

m: Monitor

|s: |Subject

Aspectual
interactions

Instantiation

Synthesis

Non-aspectual
interactions

State machines representing weaved
aspectual and non-aspectual interactions

Instantiated aspect

of role elements. We extend this definition to allow an IPS to
contain both role elements and non-role (i.e. concrete modeling)
elements. An example of this in Figure 2 would be if the |Subject
role was replaced with the concrete modeling element, Kiln.
Allowing non-role elements in an IPS gives much greater
flexibility in specifying aspects. For example, a security aspect
might specify that any new user to a system must have their
password checked. The actions to check the password will be the
same for any user and hence may be represented directly as
concrete modeling elements rather than role elements that must be
instantiated.

Given that we have extended the definition of an IPS, we must
also extend the definition of conformance to an IPS. A
conforming model (i.e., a sequence diagram) of an IPS consists of
model elements that play all the roles of the IPS. As before, a
conforming model may include its own application-specific
concrete model elements. Unlike before, however, it does not
need to include the non-role elements of the IPS. This last point
deserves an explanation. Consider an IPS security aspect for an
automated teller machine (ATM) that incorporates checking of a
password, and a conforming sequence diagram representing a cash
withdrawal. The IPS would include role elements for the user and
the ATM and non-role elements for checking a password. The
conforming sequence diagram would contain concrete elements
for a particular user and a particular ATM that conform to the
roles in the IPS, but it need not contain any elements
corresponding to checking a password because those elements
have been separated out in the aspect. Weaving the IPS and its
conforming sequence diagram would result in a new sequence
diagram containing the cash withdrawal interaction between the
user and ATM in addition to the password checking elements
from the security aspect.

3. EXAMPLE
We will illustrate the approach using a simple car parking
example. The top-level requirements for the car parking system
are as follows:

“To use a car parking system, a client has to get a ticket from a
machine after pressing a button. Afterwards, the car is allowed to
enter and park in an available place. The system has to control if
the car parking is full or if it still has places left. When s/he wants
to leave the parking place, s/he has to pay the ticket obtained
(described above) in a paying machine. The amount depends on
the time spent. After paying the client can leave by inserting the
ticket in a machine which will open the gate for her/him to leave.
Regular users of the parking system may pre-purchase time and
enter/exit by inserting a card and PIN number which will result in
money being deducted automatically from the user’s account.”

Figure 3 shows a Use Case diagram for the example. Interaction
scenarios can easily be identified based on the Use Case diagram.

Enter Lot

Pay

Driver

Exit Lot

Figure 3: Use Case Diagram for the Car Parking System

We refine each use case into a number of interactions. Error-
handling – i.e., how to react in the case of broken machinery,
incorrect PIN etc. – is modeled as an aspect. This leads to the
interactions given in Tables 1 and 2, where I1-I11 are non-
aspectual interactions, and A1-A3 are aspectual interactions.

Table 1: Non-Aspectual Interactions

I1 Enter, parking lot has space

I2 Enter, parking lot has no space

I3 Enter, regular user types in correct PIN and enters

I4 Exit, driver inserts ticket; ticket paid

I5 Exit, driver inserts ticket; ticket not paid

I6 Exit, driver has no ticket

I7 Exit, grace period from paying ticket exceeded

I8 Exit, regular user types in correct PIN and exits

I9 Exit, driver types in PIN but insufficient funds in
account

I10 Pay, driver inserts ticket and correct money

I11 Pay, driver adds money to PIN card

Table 2: Aspectual Interactions

A1 Machine is broken

A2 Ticket cannot be read

A3 PIN incorrect

We will give a representative example for modeling the aspects
using an Interaction Pattern Specification (IPS). Figure 4 shows
the IPS for interaction aspect A1. The IPS contains four role
names that must be instantiated to compose the aspect with UML
sequence diagrams.

Driver |Machine Supervisor

|Action(|a)

|CannotRespond

alertSupervisor(|a)

displayErrorMessage

Figure 4: IPS for the interaction aspect “Machine is broken”

To illustrate instantiation, we show how to compose the IPS of
Figure 4 with non-aspectual interaction I4, given by the sequence
diagram in Figure 5.

Driver Lot Exit
Machine

Data RecordBarrier

insertTicket(t)

checkTicket(t)

recordTransaction(t)

ejectTicket

open

takeTicket

drive

sensorValidatedExit

close

Figure 5: Sequence diagram for exiting with paid ticket

The process of instantiation of the aspect IPS has four inputs:
• an aspect IPS, I
• a sequence diagram, S, which I cross-cuts
• a binding of the role elements of I to concrete modeling

elements in S
• a composition operator, op, defining how I should be

integrated with S
and one output:

• a sequence diagram, T, representing the composition of
I and S

Instantiation is depicted in Figure 6 for a generic example (we
only deal with the instantiation of message roles there). It works
as follows:

A. Apply the binding to the role elements of I
resulting in a concrete sequence diagram, I_bound.

B. Derive a new sequence diagram, S_I, by matching
I_bound to S. The elements in I_bound are
“folded” into S to produce S_I.

C. Modify S_I into T by applying the composition
operator, op.

Figure 6: Process of Instantiation of Aspect (alt is the
alternative operator from UML2.0)

a

d

b

|a

c

|b

IPS, I Sequence diagram, S

a

c

b

a

c

b

d

a

c

b

d

alt

Bound IPS, I_bound, with

|a bound to a, |b bound to b

S_I derived from matching S

and I_bound

T derived from applying

composition operator, OR

The inputs to this process are the IPS, the sequence diagram
which the IPS cross-cuts, a binding for the elements in the IPS,
and a composition operator. The composition operator defines
how the scenario represented by I_bound and S should interact.
Currently, we allow three composition operators – OR, AND, and
IN. OR specifies that I_bound and S are alternative scenarios –
i.e., there is some choice point (e.g., the arrival of an event) that
decides between the execution of I_bound or S. AND specifies
that the scenarios I_bound and S should execute concurrently. IN
specifies that I_bound should be inserted into S – S will execute
as before except that the sub-scenario I_bound will execute within
S. After I_bound has completed, execution will return to S. One
can imagine additional composition operators, but we leave their
definition to further work.

The output of the process of instantiation is a new sequence
diagram, T, that represents the weaving of I into S.

Step B of the instantiation process involves “folding” I_bound
into S. In general, this can be done in multiple ways. Any
modeling elements that appear in I_bound but that do not appear
in S must be placed into S_I. The order of this placement cannot
be uniquely determined. In Figure 6, the ordering of messages c
and d could be interchanged in S_I. There needs to be either a
default heuristic or additional directives to decide between the
possible orderings.

Let us follow the process of instantiation for aspect A1 and
interaction I4. There are four role elements in A1 which must be
given a binding, as follows:

1. |Machine binds to Lot Exit Machine

2. |Action binds to insertTicket

3. |a binds to t

4. |CannotRespond binds to timeout

Note that bindings (1)-(3) bind role elements to concrete
modeling elements in I4. Binding (4), however, binds to a
modeling element that is not part of I4.

We must also define a composition operator to specify how to
compose I4 and A1. In this example, we will use the OR operator
because the broken ticket machine is an alternative interaction that
may occur when the driver attempts to leave the parking lot.

Given the bindings and the OR declaration, composition is done
automatically. The instantiated aspect A1 is compared to the
sequence diagram I4 and composition produces a new sequence
diagram that combines the behavior from instantiated A1 and I4
in such a way that the new sequence diagram contains all behavior
from instantiated A1 and I4 and, in addition, conforms to the
original aspect A1. The resulting new sequence diagram is shown
in Figure 7.

Barrier Driver Lot Exit
Machine

Data Record Supervisor

drive

insertTicket(t)

checkTicket(t)

ejectTicket

takeTicket

sensorValidatedExit

recordTransaction(t)

open

close

timeout

alertSupervisor(t)

displayErrorMessage

Figure 7: Composed sequence diagram

Once again there are multiple ways to carry out merging for the
OR operator. Messages such as timeout, which do not appear in
the non-aspectual interaction, do not have any constraints on their
ordering and so, could have been placed after checkTicket, for
example.

4. GENERATING STATE MACHINES
The previous section showed how our process of pattern
instantiation composes non-aspectual and aspectual interactions.
For purposes of validation, it is useful to transform the sequence
diagrams into an executable model, such as a UML state machine.
This can be done using the Whittle & Schumann algorithm [7].
The interactions can then be tested/simulated immediately. The
transformation from sequence diagrams to state machines is
completely automatic.

We give a brief description of the transformation algorithm here.
Further details can be found in [7]. Synthesis of state machines is
performed in two steps. First, each sequence diagram is converted
into a set of state machines, one for each object involved in the
interaction. Next, the individual state machines derived for each
object (from different sequence diagrams) are merged into a single
state machine for that object. Note that sequence diagrams refer to
objects rather than classes but state machines are normally defined
for classes. Hence, the synthesis process makes a generalization in

which state machines obtained for sequence diagram object, O ,

are assumed to hold for the class which owns O .

An individual sequence diagram is translated into a collection of
finite state machines (FSMs), one for each object involved in the
interaction. Messages directed towards a particular object are
considered events in the FSM for that class. Messages directed
away from an object are considered actions.

Once FSMs have been created for the individual sequence
diagrams, the FSMs for each class are merged together. Merging
state machines derived from different sequence diagrams is based

alt

upon identifying similar states in the FSMs. Ultimately, similarity
is a heuristic measure because the sequence diagrams contain
incomplete information. However, merging such states is
worthwhile – generated states with little or no merging tend to be
difficult to understand. Similarity will not be discussed in this
paper and so is not defined.

We now apply the synthesis algorithm to the composed
interaction in Figure 7. Figure 8 shows a state machine produced
by the algorithm for the Lot Exit Machine. State machines can
also be generated for the other objects in the interaction and the
whole system can be simulated by injecting events using
commercially available tools.

s1

s2

entry/ checkTicket (t)

insertTicket(t)

s3

s5
timeout / alertSupervisor (t); displayErrorMessage

/ recordTransaction(t); ejectTicket; open

s4

takeTicket

sensorValidatedTicket / close

Figure 8: State machine for Lot Exit Machine

5. RELATED WORK
Rashid et al. [4] support separation of crosscutting properties at
the requirements level. Composition rules are defined using XML.
They use a list of constraint actions and operators, which are used
to specify how an aspectual requirement influences or constrains
the behavior of a set of non-aspectual requirements. Moreover, a
conflict resolution scheme is presented.

Georg et al. [3] propose an aspect-oriented design approach that
defines an aspect through role models to be woven into UML
diagrams. The approach is similar to ours in that aspects are
treated as patterns. In particular, interaction aspects may be
modeled as interaction role models. However, [3] does not allow
concrete modeling elements in the role models. The addition of
concrete modeling elements may be useful in practice to reduce
the number of instantiations that the user must provide. In
addition, [3] only considers instantiation for interaction role
models, not composition of role models with non-aspectual
interactions. Finally, [3] does not address validation of the
interactions.

Clarke and Walker [1] use UML templates to define aspects.
Interaction pattern specifications provide a much more precise
way of defining aspects. [1] also is concerned more with how to
specify the aspects rather than weaving aspects into non-aspectual
models. Clarke and Walker compose static structural properties of

aspects with non-aspectual class models, but do not compose
interaction properties of aspects with interaction models.

6. CONCLUSIONS
This paper presented an approach to modeling interactions using
aspect-oriented principles. Aspectual interactions are modeled
using Interaction Pattern Specifications and are composed with
non-aspectual interactions. This composition is realized through
instantiation and composition rules. The approach also includes
the generation of state machines from composed scenarios, which
can be used to validate the interactions. The technicalities of the
approach are described in [8]. This paper validates the ideas using
a car parking system example and focuses on error-handling
aspects.

The advantages of the approach are common to aspect-oriented
software development in general: better modularization and
traceability in order to achieve system evolvability. This is
reflected in the flexible and simple way that the composition rules
are expressed.

Future work will address how to use the result of the validation
step to augment or correct the interaction models. We will also
investigate additional composition operators.

7. REFERENCES

[1]. S. Clarke and R. J. Walker, "Composition Patterns: An
Approach to Designing Reusable Aspects". Proceedings of
the 23rd International Conference on Software Engineering
(ICSE), 2001.

[2]. D-K. Kim, R. France, S. Ghosh and E. Song, "Using Role-
Based Modeling Language (RBML) as Precise
Characterizations of Model Families", In Proceedings of The
8th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2002.

[3]. G. Georg, I. Ray and R. France. “Using Aspects to Design a
Secure System”. 8th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS’02),
Greenbelt, Maryland, USA, 2 – 4 December, 2002.

[4]. A.Rashid, P. Sawyer, A. Moreira, and J. Araújo, "Early
Aspects: A Model for Aspect-Oriented Requirements
Engineering". IEEE Joint International Conference on
Requirements Engineering, 2002, IEEE CS Press, pp. 199-
202.

[5]. Unified Modeling Language Specification, version 1.5,
January 2003. Available from the Object Management
Group, http://www.omg.org

[6]. J. Warmer and A. Kleppe, “The Object Constraint Language:
Precise Modeling with UML”. Addison-Wesley Object
Technology Series. Addison-Wesley, 1999.

[7]. J. Whittle and J. Schumann. “Generating Statechart Designs
from Scenarios”. Proceedings of the International
Conference on Software Engineering (ICSE) 2000, pages
314-323.

[8]. J. Whittle and J. Araújo. “Scenario Modeling with Aspects”.
IEE Proceedings Software. Under review.

