
*contact author

Modeling Performance as an Aspect: a UML Based
Approach

Kendra Cooper
Department of Computer Science

Mail Station 31
University of Texas at Dallas

Richardson, TX, USA P.O. 830688
972 883 4216

kcooper@utdallas.edu

Lirong Dai*
Department of Computer Science

Mail Station 31
University of Texas at Dallas

Richardson, TX, USA P.O. 830688
972 883 4216

lirongd@utdallas.edu

Jing Dong
Department of Computer Science

Mail Station 31
University of Texas at Dallas

Richardson, TX, USA P.O. 830688
972 883 2187

jdong@utdallas.edu

Yi Deng
School of Computer Science

Florida International

University
Miami, FL, USA 33199

305 348 1831
deng@cs.fiu.edu

ABSTRACT
Non-functional properties, key criteria in determining the success of
a software system, need to be addressed early in the software
development lifecycle. As these properties interact with, or
crosscut, many components and connectors in the architecture of a
system, an aspect-oriented design approach appears to be a suitable
solution for modeling them. This work presents an overview of our
aspect-oriented formal design analysis framework (FDAF) and how
it can be used to design and analyze performance properties. Our
approach uses a new extension to the real-time UML notation that
supports modeling response time performance as an aspect. The
extended UML design is manually translated using algorithms into
the architectural description language Rapide and analyzed using
Rapide's tools for timing simulation and violations. The approach is
illustrated using a Domain Name Service (DNS) example. The
DNS is a real-time, distributed system.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
object-oriented design methods, computer-aided software
engineering (CASE) , modules and interfaces.

General Terms
Performance, Design, Verification.

Keywords
aspect-oriented, formal methods, UML, Rapide

1. INTRODUCTION
Qualities, such as performance, security, modifiability etc., should be
“built” into the system in an early phase (i.e., before it is
implemented). The significant benefits of performing such design
and analysis work are to detect and remove defects earlier, reduce
development costs and time, and improve the quality of the product.

These benefits motivate researchers to investigate software
engineering methodologies to support the effective development of
large-scale systems that meet their non-functional aspects. Aspect-
Oriented Software Development (AOSD) [19], [22] has been
proposed as a technology to address this issue. AOSD techniques
allow one to modularize crosscutting concerns into separate
"aspects" of a system and integrate those aspects with other kinds
of modules throughout the software development lifecycle. A
property of a system needs to be implemented as an aspect when it
cannot be clearly encapsulated in a generalized procedure [15]. In
our work, aspects include non-functional properties such as
performance, security, adaptability.

A design aspect [8] provides a design view that contains only
information about a concern realization and it may or may not be
implemented in the final product. Clements [6] points out that
performance is basically a function of the frequency and nature of
inter-component communication, in addition to performance
characteristics of those component themselves. Hence,
performance concern tends to crosscut a number of components in
a system and can be viewed as an aspect.

In this work, we define performance as an aspect. More
specifically, we define the performance aspect as a collection of
subaspects which include response time, rate throughput, resource

utilization, probability, time between errors, durations of event, time
between events. These elements have been identified in earlier
research in performance analysis [10], [25]. The subaspects are
available as a re-usable collection of components [7]. We focus on
modeling the response time performance aspect and propose an
aspect-oriented extension to the Unified Modeling Language (UML)
[5] to model it.

We have chosen real-time UML as the base notation in the
approach [20] because it is a well-known semi-formal notation that
has been used to describe object-oriented models in the software
engineering community. An advantage of using UML is that it is
considered to be easier to read and understand than many formal
methods. In the effort to improve UML’s expressive power to
model real-time constraints such as schedulability, performance, and
time, the real-time extension has been proposed [20]. Concepts to
support performance analysis defined in the extension is adopted by
our approach.

One of the main motivations of modeling performance is to evaluate
and analyze whether the design meets the system’s performance
requirements. However, the standard UML lacks such formal
analysis mechanism as formal notations do. Several approaches [4],
[9] and [23] have been proposed to translate certain UML diagrams
into different formal notations in order to analyze performance. An
obvious advantage of these approaches is by using formal analytical
methods, quantitative analysis can be integrated into software
development [2]. Based on the same reason, the UML extension
with additional performance aspect information in our approach is
translated into Architecture Description Language (ADL) Rapide
[16]. ADLs have been developed as formal notations to represent
and reason about software architectures. The reason we chose
Rapide as the notation in the approach is that Rapide is an event-
based concurrent object-oriented language designed for simulation
and behavioral analysis of architectures of distributed systems, such
as our example system, the Domain Name System (DNS) [17].
Rapide also provides timing model to allow designers to describe
and analyze time sensitive prototypes. In addition, analysis tools are
available in Rapide and can be used to simulate a software
architecture’s response time.

The DNS example is used in this paper to illustrate our approach. It
has been selected because the DNS is a complex system with a rich
set of functional and non-functional requirements. It is real-time,
distributed, needs to be secure, and (optionally) supports recursive
queries. In addition, the DNS is a non-proprietary standard.

At current stage, the translation from the UML extension into
Rapide is done manually. The translation algorithms have been
defined and documented; they are going to be implemented in the
next step of our work to provide automated tool support.

The paper is organized as follows. Following the Introduction,
Section 2 presents the related work. Our performance modeling
approached is discussed in Section 3 and performance analysis
techniques are presented in Section 4. Section 5 illustrates the DNS
application of our approach. Conclusions and future work are
presented in Section 6.

2. RELATED WORK
Much attention has been focused on the problem of analyzing a
systems’ performance during the design phase. Such approaches
can be found in [11], [13], [27] and [28]. The Software Architecture
Analysis Method (SAAM) [11] is an approach that uses scenarios
to drives information about an architecture’s ability to meet certain
quality objectives such as performance, reliability, or modifiability.
Later, SAAM has been extended by the Architecture Tradeoff
Analysis Method (ATAM) [13] to consider interactions among
quality objectives and identify architectural features that are
sensitive to more than one quality attributes. Tradeoffs between
quality objectives are evaluated once those sensitivities have been
identified. PASA [28] is another method for performance
assessment of software architectures. This approach uses the
principles and techniques of software performance engineering
(SPE) [25] to determine whether an architecture is capable of
supporting its performance objectives.

Software performance engineering (SPE) [25] is a method for
constructing software systems to meet performance objectives.
The SPE process begins early in the software lifecycle and uses
quantitative methods to identify satisfactory designs and to eliminate
those that are likely to have unacceptable performance, before
developers invest significant time in implementation. SPE
approaches have been tailored to the UML in [26].

As the UML is a widely accepted notation for system specification
because of its easy understandable graphical representations, the
UML has been selected to derive systems’ performance models
from software architecture specifications in several approaches,
such as [4], [9] and [23]. All these approaches focus on mapping
UML specifications into a certain type of performance model.
Three main classes of stochastic performance models are:
Stochastic Timed Petri nets (STPN), Queuing Network models
(QNM) and Stochastic Process Algebras (SPA). Bernardi et al. [4]
proposed an approach to validate and evaluate systems’
performance by translating UML sequence diagrams and
statecharts into Petri nets. While in [9], a UML model is translated
to a queuing network in order to calculate systems’ response time
and its resource utilization. An approach of using both UML and
SPA for performance analysis is described in [23]. In this approach,
UML designs are transformed systematically into process algebra
models and so, by suitable simulation, used to provide performance
estimates.

To support Aspect-Oriented Design, a number of UML extensions
have been proposed. Examples of such extensions are [1], [3], and
[21]. Aldawud et al. [1] initiated a proposal of a UML profile to
support aspect-oriented software development as well as
requirements for completing such a profile. In [3], an UML
extension is introduced to model aspects with new design element,
whose graphical representation is a circle with a cross inside, added
into the current existing UML. This notation is used to indicate the
join points as it assume that the project is developed using aspect-
oriented programming language AspectJ [14]. The approach [21]
also presents a UML notation for designing aspect-oriented
applications, which is extracted from the concepts defined in the
AspectJ language. This notation is proposed for a first step towards
a high-level designing graphical language that can be used when
building aspect-oriented applications. Three main additional concepts
defined are: groups (provide classification means for heterogeneous

and distributed entities), pointcut relationships (allow the
programmer to define crosscuts within the functional program), and
aspect-classes (actually implement the extension of the program on
the crosscutting points denoted by the pointcut relations). Two
example aspects, authentication aspect and session aspect are
modeled in [21]. As this extension is largely based on AspectJ, it
may be more suitable to model aspects (such as security) that need
to be implemented in the final product. However, for aspects such
as a performance aspect whose modeling purpose is to assist
designers to evaluate their design and is not implemented as
functional capabilities in code this extension is not sufficient.

3. PERFORMNCE ASPECT MODELING
3.1 Performance Aspect Definition
As described in [10], a performance study needs a set of
performance criteria or metrics. One approach to prepare this set is
to list the services offered by the system and categorize the possible
outcomes into three groups. The first group is the system performs
the service correctly. Within this category, the time taken to
perform the service, the rate at which the service is performed, and
the resource utilization may be measured. The second category is
the system does not perform the service correctly. Here, the
probability of an error occurring and the time between errors can be
measured. The third category is the system cannot perform the
service (e.g., the system may be down). In this category, the
duration of the event and the time between events can be
measured. Based on the study, we defined performance aspect as
set of subaspects, which can be mathematically expressed as:
Performance Aspect = {Response Time, Rate Throughput,
Resource Utilization, Probability, Time Between Errors, Durations
Of Event, Time Between Events}. As a system could have its own
special requirements, performance subaspects are not limited to
those listed. According to the need of a particular application,
requirement engineers and designers might define their own
performance subaspects of interest and add them into this set.

3.2 Performance Aspect Modeling
The base notation to model performance aspect in our approach is
the UML. In this section, a description of how to extend UML to
capture performance aspect is presented.

In order to express performance information in a UML model, one
has to identify the basic abstractions and relationships that are used
in performance analysis. For this purpose, OMG [20] describes a
profile that is intended to provide general facilities for capturing
performance requirements within the design context, and associating
performance-related QoS characteristics with selected elements of
a UML model. A general performance model is introduced in the
document and its concepts have been adopted in our approach. In
[20], a set of performance related stereotypes and their association
constraints are defined. Each stereotype may have one or more tags
to denote its corresponding performance values. In addition, [20]
argues that simple numeric values for performance-related QoS
characteristics are not sufficient. Therefore, the concept of
performance values is introduced, which gives more information to a
value, e.g., a given value may represent an average or maximum, or,
it may be a prediction or a measurement.

One of the initial steps of performance analysis of software systems
is identifying key performance scenarios [12], [20], [28]. A scenario

is a sequence of actions performed by a group of different objects
and represents responses with response times and throughputs. QoS
requirements are placed on scenarios.

In our UML extension, to make those identified performance related
elements in the design diagram obvious to designers, a wedge-like,
triangular symbol instead of the UML regular note notation is used.
As a UML regular note notation could be used anywhere to record
information related to the design and it is not so easy for a designer
to extract performance aspect information. In this extension, the
UML note notation is stilled used to denote additional information
associated with that element, such as performance concepts
(stereotypes) and their performance values, OCL constraints etc.
However, for those performance aspect elements, the triangular
symbol is used to specifically indicate that the element is a
performance aspect element. In this way, designers could only
focus on performance aspect elements in an aspect-oriented model.
A graphical representation of the UML extension is depicted in
Figure 1, where the UML design element could be a UML class, an
UML operation etc.

An UML Design Element

performance
stereotype
information

4. PERFORMANCE ASPECT ANALYSIS
Three techniques suggested by [10] for performance evaluation are
analytical modeling, simulation, and measurement. A number of
considerations of how to select a technique are also given by it. In
current iteration, we consider to use the simulation technique to
evaluate response time for the DNS query processing subsystem by
using Rapide’s analyzing tools. The reason is that simulations can
incorporate more details and requires less assumptions than
analytical modeling [10].

4.1 Rapide Architecture Description
 Language
As the UML is a pure modeling language but not a simulation
language, we decide to translate the extended UML model into
Rapide [16]. As discussed before, Rapide, which has evolved from
VHDL, ML, and TSL etc., is an architecture description language
for defining and executing models of system architecture. The result
of executing a Rapide model is a set of events that occurred during
the execution together with casual and timing relationship between
events.

Rapide provides five types of sublanguages: the Types language to
provide the basic feature for defining interface types and function

Figure 1. A UML Extension for Modeling
Performance Aspect

types; the Architecture language to extend the Types language with
constructs for building interface connection architectures; the
Executable Module language to add modules, control constructs,
standard types and functions; the Constraint language provides
features for expressing constraints on the poset behaviors of
modules and functions; and the Event Pattern language to serve as
a fundamental part of all of the executable constructs in the
executable module, architecture language, and constraint language.

Rapide is presently supported by three kinds of tools for analyzing
simulations: constraint checks, to analyzes the conformance of the
simulation to the formal constraints defined by the program; poset
browsers, to represents graphically the events generated by the
simulation, and allows complex manipulation and filtering of the
events; animation tools, to depict the execution in a graphical, real-
time animation environment.

4.2 Translate UML diagrams into Rapide ADL
There are several types of UML diagrams. In our approach,
extended UML class diagram, statechart diagram, and sequence
diagrams/collaboration diagram are selected as the base diagrams to
translate. The study of Rapide language has showed that
information captured by these diagrams is sufficient for a Rapide
architecture simulation:

• UML class diagram is used to describe the static
structure of a system and can be translated into the
Rapide’s Types language. One UML class is translated
into one Rapide type interface;

• UML statechart diagram is used to describe the dynamic
behavior of an object/system in response to external
stimuli and is similar to state transitions described in the
behavior part of a Rapide type specification;

• UML sequence diagram/collaboration diagram is used to
describe interactions between objects. Information
presented in either one of these two diagrams can be
used to decide connections between Rapide types as well
as events generating order in Rapide;

In our DNS example, which is explained in the Section 5, we
extended the conventional UML collaboration diagram with
performance aspect information. The performance aspect selected
to model and analyze is response time. This performance aspect is
translated into Rapide’s timing clauses. A Rapide timing clause
determines the start and finish time of an event. Thus it can be used
to calculate the duration of an event. A detailed description and an
example of the translation are presented.

4.3 A Translation Algorithm
To build a tool support for automatic translation of part of UML into
Rapide, we have defined and documented the translation algorithms.
A simple comparison of a UML class and its Rapide specification is
presented in Figure 2. The upper part of this diagram is a simple
UML class DNSClient with one public attribute and two operations.
The Rapide specification for this class is presented below it. Bold
words in this part of specification are Rapide keywords. The
translation of class attributes is straightforward. However, to
translate UML operations, additional information is needed. As in
Rapide, there are two kinds of actions: out actions (declare the
types of events of the component may generate and thereby send to

other components) and in actions (are used by other components to
send events of the action into the component), which are similar
with the concepts of stimulus generation events and stimulus
reception events discussed in [20].

DNSClient

+ clientID : int

+ sendRequest(string request, int msg_no) : void
+ reply(string answer, int msg_no) : void

type DNSClient is interface
clientID : integer;
action out sendRequest(request : string; msg_no : integer);
action in reply(answer : string; msg_no : integer);
end DNSClient

Algorithm of Translating UML Class into Rapide

Input: a UML class

Output: a Rapide type interface specification

Assumptions:

1. The designer extends the translating UML class’s
operations with additional modifiers. The first two
modifiers are stereotypes <<CRasynch>> and
<<CRsynch>> defined in the real time UML [20], where
<<CRasynch>> represents the concept of an
asynchronous invocation and <<CRsynch>> represents
the concept of a synchronous invocation. For a
<<CRasynch>> operation, the designers could then use
stereotypes <<SGE>> and <<SRE>> further to describe
it. <<SGE>> and <<SRE>> are defined in this approach
to translate asynchronous invoking/invoked UML
operations. The idea behind these two stereotypes is from
the real time UML. <<SGE>> stands for stimulus
generation event, which is an occurrence of an event that
results in the generation of a stimulus. <<SRE>> stands
for stimulus reception event, which is an occurrence of an
event that represents the acceptance of a stimulus by a
receiver instance.

2. <<SGE>> and <<SRE>> have to be used on only public
or protected <<CRasynch>> operations. They are not
applied to private <<CRasynch>> operations and all
<<CRsynch>> operations;

3. <<Cyasynch>> operations should have a void return type;

Algorithm:

1. Output the UML class’s name as the name of the Rapide
type;

2. Output the UML class’s attributes and their types (e.g.,
integer, string) as the same name attributes and equivalent
types for the Rapide type interface;

3. If the visibility of the translating UML attribute is “public’
or “protected”, the attribute should be translated to a

Figure 2. A UML Class and Its Rapide Specification

constituent of the Rapide type’s public interface; if the
visibility of the translating UML attribute is “private”, the
attribute should be translated to a constituent of the
Rapide type’s private interface;

4. If the translating UML operation is a <<CRsynch>>
operation, it is translated into a Rapide function with the
same name, parameter list, and return type;

5. If the translating UML operation is a <<CRasynch>> one,
it is translated into a Rapide action with the same name
and same parameter list. If it is also denoted with
<<SGE>>, the operation should be translated into a “out”
Rapide action; if it is denoted with <<SRE>>, it should be
translated into a “in” Rapide action; if it isn’t denoted with
either one of <<SGE>> and <<SRE>>, it should be
translated into a private action for that Rapide type;

6. The translation of UML <<CRsynch>> operations’
visibility follows the same procedure of UML attributes’
visibility as described in step 3; the translation of UML
<<CRasynch>> operations are done by step 5.

5. ILLUSTRATION USING DNS EXAMPLE
An example is given through the Domain Name System server in
this section to illustrate the application of the UML extension.

5.1 Domain Name System
The Domain Name System (DNS) [17] provides a way to map a
numeric IP address to a character one. IP addresses uniquely
identify every computer on the Internet. However, remembering 32
bits numeric address is hard. Therefore, the purpose of DNS is to
make it easier for users to access and remember the names of hosts
on the Internet. DNS allows networks and hosts to be addressed
using common-language names as well as IP addresses and maps
host names to various types of addresses through a distributed
database.

An example of its use is a simple Internet operation---a hypertext
page transfer:

1. A Web browser requested this URL:
http://www.FreeSoft.org/Connected/index.html;

2. The DNS protocol was used to convert
www.FreeSoft.org into the 32-bit IP address
205.177.42.129;

3. The HTTP protocol was used to construct a GET
/Connected/index.html message;

4. A table lookup in /etc/services revealed that HTTP uses
TCP port 80;

5. The TCP protocol was used to open a connection to
205.177.42.129, port 80, and transmit the GET
/Connected/index.html message;

6. The IP protocol was used to transmit the TCP packets to
205.177.42.129;

7. Some media-dependent protocols were used to actually
transmit the IP packets across the physical network.

5.2 Domain Name Server Performance Aspect
Modeling Example

The DNS performance aspect modeling example is presented in
Figure 3. The main task of a DNS server is to resolve requests from
DNS clients. Therefore, query processing is identified as the key
performance scenario here. Several processes involved in this
scenario are:

• DNSclient to send out requests;

• MessageReceiver to receive requests;

• MessageDecoder to interpret requests;

• RRRequestProcessor to search the correct resource
records in the server’s domain name space;

• MessageEncoder to format resource records into a DNS
message;

• MessageSender to send the answer to the client;

In this example, the response time is the part of the performance
aspect of interest. Response time is defined as the interval between
a user’s request and the system response.
Performance analysis stereotypes from [20] used in this model are:

• <<PAcontext>>--models a performance analysis
context. This stereotype could associate with a
collaboration diagram and has no tags defined;

• <<PAclosedLoad>>--models a closed workload (has a
fixed number of active or potential jobs). It has four tags
already defined:

PAresTime (response time)

PApriority (priority)

PApopulation (population) and

PAextDelay (external delay).

We considered that many times designers may want to
specify the arrival rate of jobs directly. Therefore, we
added an extra tag, PAarvlRate, for this stereotype;

• <<PAstep>>--models a step in a performance analysis
scenario. Tags of this stereotype include:

PAdemand (host execution demand)

PArespTime (response time)

PAprob (probability),

PArep (repetition),

PAdelay (delay),

PAextOp (operations), and

PAinternal (interval).

PAdemand and PAdelay are two tags of the stereotype
<<PAstep>> and used in our example (Figure 3). PAdemand is
used to represent the demand execution time of a process, while
PAdelay is used to represent the time of a delay, e.g., a message
delay. Both of them are involved in the calculation of response time.
Each tag has been assigned a performance value which is

contained in the UML note notation. To obtain an accurate
performance evaluation, performance values should be acquired
through the process of SPE data gathering [25]. In this example,
performance values are estimated. We assume that it takes 10
milliseconds for a message to travel on the network and is
expressed as “PAdelay= ('assm', 'mean', (10, 'ms'))”. The
execution time of MessageReceiver and MessageSender is
ignored here as their tasks are just receiving and sending
messages. The execution time of MessageDecoder and
MessageEncoder are estimated as 2 milliseconds and is captured
in the statement “PAdemand=('assm', 'mean', (2, 'ms'))”. Same
tag is used on RRRequestProcessor and we assume that it would
take average 10 milliseconds to find the correct answer in the
server’s domain name space for the request. In these tag
expressions, ‘assm’ is one of the source modifiers defined in [20]
and means that the value is assumed, while ‘mean’ is one of the
type modifiers and means that the value is an average one.

Currently, we manually translate this extended UML collaboration
diagram and the corresponding class diagram into Rapide
specification (presented in Figure 4) using the algorithms defined.
Automatic translation is planned in the next step of our work.

In the Rapide specification, a simplified DNS system is described,
which has only one DNS client and one DNS server. In this
example, the server only performs query processing activity. On
the client side, the object DNSClient, for example, is translated as
a DNSClient interface type in Rapide. A Rapide module called
newDNSClient is used to specify the client’s behavior. On the
server side, UML objects are translated into several processes for

the DNSServer type in Rapide. We simulated that each of these
processes (e.g., MessgeReceiver, MessageEncoder, etc.)
executes concurrently and independently of other processes (using
Rapide keywords “parallel”).

Response time performance aspect information such as the
request’s arrival rate and processors’ execution time in this
example are also translated into Rapide’s timing clauses. As
mentioned in the Section 4.2, a Rapide timing clause determines
the start and finish time of an event. Here we use the “pause”
timing clause. “Pause” is used after an action call and is followed
by an integer, which is called Tick type in Rapide. Ticks are time
or values of a clock’s counter. Statement “sendRequest(“A DNS
request2”, 2) pause 4” means that if the call begins at t Ticks
then it will be completed at t+4 Ticks. Another way to interpret
this statement is: the DNS client sends a request after every 4
Ticks. One tick can be viewed as a millisecond here since it is a
logic clock counter. Therefore, the “pause” timing clause captures
those timing information specified in Figure 3.

5.3 Domain Name Server Performance
Aspect Analysis Results

In this section we present the analysis results for the Rapide
specification presented in Figure 4. Basically, defining, compiling
and running a model in Rapide results in a poset, which can be
represented as a directed acyclic graph. Part of simulation results
support for the DNS example is presented in Figure 5 and Figure
6. Data we used in this simulation are: the request’s arrival rate is
one per 4 Ticks and the DNS server’s service time for one

: DNSClient : MessageReceiver : MessageDecoder

:RRRequestProcessor
DNS Name Space

<<ADT>>

: MessageEncoder:MessageSender

1: IP Message 2 : DNSMessage

3 :RRRequestFromClient

4: Query

5:ResourceRecords

6: RRResponseToClient

7:DNSMessage

8:IP Message

<<PAcontext>>

<<PAclosedLoad>>
{PAarvlRate=15 }

<<PAstep>>
{PAdelay=('assm', 'mean', (10,
'ms'))}

<<PAstep>>
{PAdemand=('assm', 'mean', (2,
'ms'))}

<<PAstep>>
{PAdemand=('assm', 'mean', (10,
'ms'))}

<<PAstep>>
{PAdemand=('assm', 'mean', (2,
'ms'))}

<<PAstep>>
{PAdelay=('assm', 'mean', (10,
'ms'))}

Figure 3. A DNS Performance Aspect Modeling Example

request is assumed as 14 Ticks. Message network delay is ignored
here as it is not the critical consideration of a design. Figure 5
presents the poset generated by the DNS subsystem simulation.
As the whole diagram is very big, only part of the figure is
presented here. The diagram is oriented vertically with the
causally earlier events at the top. Events generated in the
simulation are represented by rectangles and the arrow between

two events, for example A → B, means that event A happens
before event B. Once an event is selected, a popup window is
appeared with the information about that particular event, such as
its thread ID, timing, parameters etc.

Events’ timestamps are presented in Figure 6, where an event’s
generating thread name, thread number, its start timestamp and

type DNSClient is interface
 action out sendRequest(question : data; msg : msg_no);
 action in reply(answer : data; msg : msg_no);
end DNSClient;

type DNSServer is interface
 action out messageSender(answer : data; msg : msg_no);
 action in messageReceiver(question : data; msg :
 msg_no);
end DNSServer;

module newDNSClient() return DNSClient is
parallel
 sendRequest("a DNS request1", 1);
 sendRequest("a DNS request2", 2) pause 4;
 sendRequest("a DNS request3", 3) pause 4;
 sendRequest("a DNS request4", 4) pause 4;
 sendRequest("a DNS request5", 5) pause 4;
end;

module newDNSServer() return DNSServer is
 action messageDecoder(dnsQuestion : data; msg :
 msg_no),
 rrRequestProcessor(dnsQuestion : data; msg :
 msg_no),
 messageEncoder(dnsQuestion : data; msg :
 msg_no);
parallel
 when (?d : data; ?n : integer) messageReceiver(?d, ?n)
 do messageDecoder(?d, ?n) pause 2; end;
 ||
 when (?d : data; ?n : integer) messageDecoder(?d, ?n)
 do rrRequestProcessor(?d, ?n) pause 10; end;
 ||
 when (?d : data; ?n : integer) rrRequestProcessor(?d, ?n)
 do messageEncoder(?d, ?n) pause 2; end ;
 ||
 when (?d : data; ?n : integer) m essageEncoder(?d, ?n)
 do messageSender("A DNS answer", ?n); end;
end;

Figure 4. DNS Server Querying Processing Subsystem Rapide Specification

Figure 5. Partial Ordered Event Sets Generated by the DNS

end timestamp are listed in each row. From these timestamps, we
can analyze the server’s mean response time. In each request
sent by the DNS client, we associated a message number with it.
In this way, we can retrieve each request’s sending time and
replying time. Totally, 5 requests are simulated. After calculate the
response time for each request respectively, we obtained the
analysis result for the server’s average response time in this
design is 26 Ticks without the consideration of network delay.

In order to clearly illustrate how to model response time
performance aspect in an UML extension and then analyze it by
using existing analysis tools, we only used one of the DNS
subsystems, the query processing subsystem. The activity
performed by this subsystem is to read resource records from the
server’s database. As basically only one kind of activities is
involved, the generated poset is quite simple and no obvious
defects could be detected in the design. However, another
important functionality of the DNS server is its periodical zone
refreshing, which updates records in the database. Once this part
of functionality is added into the design, the Rapide simulation
results could be much interesting and valuable since the database
has to be consistent all the time. In Rapide, designers can specify
these concerns, such as reading and writing the same record at
the same time should never happen, race conditions, etc. as
constraints of the system. If in the simulation such constraints are
violated, a predefined Rapide event “Inconsistent” will be
generated and presented in the poset. Therefore, the use of the
poset can help designers to understand the model’s behavior,

verify the correctness of the model by checking its behavior and
any possible constraint violations. Another use of the poset is its
timing information makes it possible for performance analysis. In
our example, the server’s response time performance data is
obtained. Other performance data can also be obtained include
the speedup of a model, cache performance etc. In an early
design phase, obtaining these performance data are very
important. They can help designers to make decisions among
various alternatives, perform trade-off analysis, and select the
most suitable one for the system. A research using Rapide to
prototype a shared memory multi-processor system, simulate the
system and measure performance for three design alternatives
can be found in [24].

6. CONCLUSIONS
This paper presents a UML based approach to model and analysis
performance aspect. A performance aspect is a set of aspects
including response time, rate throughput, resource utilization,
probability, time between errors, durations of event, time between
events. Response time aspect is defined in extended real-time
UML in this approach.

In this approach, the semi-formal extended UML aspect-oriented
design model is translated into Rapide ADL to evaluate the
system’s response time performance aspect. We have used part
of the DNS example to illustrate the approach. Part of translation
algorithms and Rapide performance simulation results are also
presented. The example results prove that response time

Figure 6. DNS Query Processing Subsystem Event Information

performance aspect can be designed and analyzed even in an
early stage.

The approach provides a systematic way for designers to model
and analysis interested performance aspect in the design phase.
One benefit of the approach is it can help designers to evaluate
performance for different design alternatives, make decisions
among those alternatives, and ensure the final system’s
completeness and consistency.

We plan to continue this work in a number of interesting
directions. One direction is to define and validate additional
performance aspects for a complete Domain Name System. We
also aim to use other performance evaluation techniques, such as
measurement. To use this technique, we selected Armani [18] to
translate the UML extension. Armani is a language for capturing
software architecture design expertise and specifying software
architecture designs. It provides core language constructs to
support design analysis. Depending on the estimated data (such as
request arrival rate, service time) provided by the designer,
Armani’s analysis tool can evaluate the design’s performance
results, e.g., server utilization rate, overloaded component etc.
through performance measure techniques such as presented in
[10] and [25]. In addition, the algorithms defined to translate the
extended UML design into Rapide are going to be captured in tool
support, allowing the automatic translation of an extended UML
diagram into Rapide.

7. REFERENCES
[1] Aldawud, O., Elrad, T., and Bader, A., “UML profile for

aspect-oriented software development”, Proceedings of
Third International Workshop on Aspect-Oriented Modeling,
March 2003.

[2] Balsamo, S., and Simeoni, M., “On transforming UML
models into performance models”, Workshop on
Transformations in UML (ETAPS01), 2001.

[3] Basch, M. and Sanchez, A., “Incorporating aspects into the
UML”, Proceedings of Third International Workshop on
Aspect-Oriented Modeling, March 2003.

[4] Bernardi, S., Donatelli, S., and Merseguer, J., “From UML
sequence diagrams and statecharts to analysable petrinet
models”. Proceedings of the Third International Workshop on
Software and Performance (WOSP’2002), July 2002, pp. 35-
45.

[5] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified
Modeling Language User Guide. Reading, Mass.: Addison-
Wesley, 1999.

[6] Clements, P.C., “Coming attractions in software
architecture”, Technical Report No. CMU/SEI-96-TR-008,
Software Engineering Institute, Carnegie Mellon University,
January 1996.

[7] Cooper, K., Dai, L., Deng, Y. and Dong, J., “Process
Definition for the Formal Design Analysis Framework:
Creating an Aspect-oriented Design Supporting Response
Time Performance”, Technical Report UTDCS-20-03, The
University of Texas at Dallas, 2003.

[8] France, R., Georg G., and Ray, I., “Supporting multi-
dimensional separation of design concerns”, Proceedings of
the Third International Workshop on Aspect-Oriented
Modeling, March 2003.

[9] Hoeben, F., “Using UML models for performance
calculation”, Proceedings of the Second International
Workshop on Software and Performance (WOSP’2000),
Sep. 2000, pp. 77-82.

[10] Jain, R., The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley- Interscience,
New York, NY, April 1991.

[11] Kazman, R., Abowd, G., Bass, L., and Clements, P.,
“Scenario-based analysis of software architecture”, IEEE
Software, November 1996, Vol. 13, Issue: 6, pp. 47-55.

[12] Kazman, R., Barbacci, M., Klein, M., S. Carrière, J., and
Woods, S. G., “Experience with performing architecture
tradeoff analysis”, Proceedings of the 21st International
Conference on Software Engineering, May 1999.

[13] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson,
H., and Carriere, J., “The architecture tradeoff analysis
method”, Proceedings of the Fourth IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS '98), Aug 1998, pp. 68-78.

[14] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W., “Getting started with AspectJ”,
Communications of the ACM, October,2001, Vol. 44, Issue:
10, pp. 59-65.

[15] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M., and Irwin, J. “Aspect-oriented
programming”, Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP ’97),
pp. 220 – 242.

[16] Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J.,
Bryan, D., and Mann, W., “Specification and analysis of
system architecture using Rapide”,
IEEE Transactions on Software Engineering, April 1995, Vol.
21, Issue: 4 , pp. 336 -354.

[17] Mockapetris, P.V., "Domain Names - Concepts and
Facilities", IETF STD0013, November 1987.

[18] Monroe, R.T., “Capturing software architecture design
expertise with Armani”, Technical Report No. CMU-CS-98-
163, Carnegie Mellon University School of Computer
Science, October 1998.

[19] Netinant, P., Constantinides, C.A., Elrad, T., Fayad, M.E.,
and Bader, A., “Supporting the design of adaptable operating
systems using aspect-oriented frameworks”, Proceedings of
the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'2000),
2000, Vol.1, pp. 271 – 277.

[20] Object Management Group, UMLTM Profile for
Schedulability, Performance, and Time Specification, OMG
Documents ptc/2003-03-02, March 2003.

[21] Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F.,
Seinturier, L., and Martelli, L., "A UML notation for aspect-
oriented software design”, International Workshop on
Aspect-Oriented Modeling with UML, April 2002.

[22] Pinto, M., Fuentes, L., Fayad, M., and Troya, J.M.,
“Separation of coordination in a dynamic aspect oriented
framework”, Proceedings of the First International
Conference on Aspect-oriented Software Development,
April 2002, pp. 134 – 140.

[23] Pooley, R., “Using UML to derive stochastic process algebra
models”, Proceedings of XV UK Performance Engineering
Workshop, 1999.

[24] Santoro, A., “Case study in prototyping with Rapide: a shared
memory multiprocessor system”, Technical Report CSL-TR-
93-564, Computer Systems Laboratory, Stanford University,
March 1993.

[25] Smith, C. U., Performance Engineering of Software Systems,
Reading, MA, Addison-Wesley, 1990.

[26] Smith, C.U., and Williams, L.G., “Performance evaluation of
software architectures”, Proceedings of the First
International Workshop on Software and Performance
(WOSP’1998), 1998, pp. 164-177.

[27] Spitznagel, B., Garlan, D., “Architecture-based performance
analysis”, Proceedings of the 1998 Conference on Software
Engineering and Knowledge Engineering (SEKE’98), June
1998.

[28] Williams, L. G., and Smith, C. U., “PASASM: a method for
the performance assessment of software architectures”,
Proceedings of the Third international Workshop on Software
and Performance (WOSP’2002), July 2002, pp 179-188.

