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ABSTRACT
We present an approach utilizing aspect-oriented program-
ming (AOP) techniques for mapping between different ab-
straction levels of software. The goal is to facilitate valida-
tion and testing of a software implementation against con-
straints specified on an associated UML model. We use AOP
techniques for defining a monitor that observes the behavior
of an implementation and maps it to model behavior. The
model behavior is then validated against constraints with
an existing tool. Constraint violations can thus be identi-
fied and traced to a specification of the model.

1. INTRODUCTION
Aspect-oriented techniques are popular today for addressing
crosscutting concerns in software development. We describe
an approach utilizing aspect-oriented techniques for map-
ping between different abstraction levels of software. The
goal is to facilitate validation and testing of a software im-
plementation against constraints specified on its associated
UML model.

The Object Constraint Language OCL is used in UML to
specify constraints such as invariants and pre- and postcon-
ditions [7]. OCL is a formal language for which various forms
of tool support exist (see, for example, [6]). A tool developed
by our group is called USE (UML-based Specification Envi-
ronment) [3]. The USE tool allows validation of a formally
defined subset of UML models and OCL constraints [5, 4].

The motivation for the work presented in this paper is that it
should be possible to check constraints which were specified
during modeling against an implementation of the model.
A common approach to check constraints in an implemen-
tation is by mapping constraints to the target language [1].
This usually implies that a constraint checker has to be im-
plemented in the target language and becomes part of the
implementation.

The USE tool already has a sophisticated OCL interpreter
and constraint checker that can be used to validate mod-
els. In order to also validate and test implementations we
developed an approach for reusing this facility. The gen-
eral idea is to map actions that manipulate implementation
objects back to actions on the model level which manipu-
late objects specified with UML. These actions can then be
validated with the USE tool. If, for example, a Java im-
plementation violates an invariant that has been specified
in the UML model this would be detected and flagged as a
constraint failure.

The task of identifying actions where model and constraint
related information is manipulated is a typical crosscutting
concern. We use aspect-oriented programming (AOP) tech-
niques for defining a monitor that observes the behavior of
an implementation and maps it to model behavior. This
monitor aspect bridges the gap between a model and its im-
plementation by providing a mapping between the different
abstraction levels.

There are several benefits to this approach. The aspect-
oriented monitor directly attaches to a real application. It
therefore allows validation of applications with real user data
thus increasing the fidelity of the validation results. The
development process improves because constraints not only
add to the specification of a software. The same constraints
can now also be checked without modification against an
implementation. Consistency problems are avoided because
there is only one place – the model – where constraints are
specified. The monitor aspect only depends on the struc-
ture of a model. It needs no change if only constraints are
changed. This allows for fast test-and-respecify cycles.

The aspect-oriented approach further has the advantage that
an existing implementation does not have to be modified for
adding the monitoring capability. Provided that it fulfills
some general requirements allowing a backward mapping to
the model it just has to be recompiled with an AOP capable
compiler and the monitor aspect definition added.

The paper is structured as follows. In Section 2 we give
a general outline of our approach. Section 3 describes how
aspect-oriented techniques are used to add monitoring capa-
bilities to existing Java applications. A small but complete
example is given in Section 4. Some requirements on the
applicability of our approach are described in Section 5. We
close with a summary and draw some conclusions for future
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Figure 1: Overview of the process for monitoring
implementation behavior

work.

2. MONITORING BEHAVIOR
The basic approach of monitoring is as follows. We monitor
the behavior of an implementation, map the behavior back
to state transformations on the design model, and finally
validate constraints on the design model with the USE tool.

Figure 1 gives an overall picture of the process. The start-
ing point is a UML design model with constraints and a
program that implements this model in a language like Java
or C++. The USE tool provides support for validating the
UML model [5]. The extended USE version described in this
paper additionally allows to generate a monitor aspect that
is derived from the model specification. This aspect is com-
piled together with the implementation in order to produce
a monitored implementation. When this implementation is
run the monitor automatically generates data about the ap-
plication’s behavior. This data is then used as input for
validation.

The monitoring process allows two different modes for val-
idation. Synchronized validation takes place while the ap-
plication executes. This allows to observe immediately the
effects of application behavior. For example, an object di-
agram in the USE tool can be synchronized with the cur-
rent state of the application. If objects in the application
change their state, this change will be visible in the diagram.
Also, constraint violations are signaled as soon as they are
detected. As the application is running in parallel, there
should be enough context available for analyzing possible
reasons that may have caused the constraint to fail. The
drawback of synchronized validation is that the monitoring
process implies a certain degree of communication overhead.
This may lead to different results with timing sensitive ap-
plications.

The second mode of validation is offline validation and hap-
pens after the application has completed. The application is
monitored while it is running but the data is just recorded
for later use. The recorded data contains all the informa-
tion that is necessary to replay the behavior in the validation
tool.

3. MONITORING WITH ASPECTS

Action Pointcut
object creation before constructor
object destruction after destructor

(finalizer in Java)
attribute modification on field assignment
association link insertion on collection add
association link removal on collection remove

Table 1: Actions and associated pointcuts

Constraint Pointcut
invariant before/after each public method

or constructor invocation
precondition before operation call
postcondition after operation call

Table 2: Constraints and associated pointcuts

The monitoring code that is responsible for observing the
behavior of an implementation is added to the implementa-
tion using aspect-oriented programming (AOP) techniques.
The USE tool can automatically generate aspect definitions
for the AspectJ compiler [2]. These aspect definitions are
derived from the UML model of an application and iden-
tify places where model related behavior is located. Ideally,
an existing software only needs to be recompiled with the
AspectJ compiler to insert the monitoring code at the ap-
propriate places.

3.1 Aspect Definition
The purpose of the monitoring aspect is twofold. First, it
specifies pointcuts where state changes in a program hap-
pen. State changes of interest are mapped to corresponding
USE actions. Second, the monitoring aspect identifies places
where constraints have to be checked.

State changes are defined by the actions listed in Table 1.
For each action the associated generic pointcut is given. For
example, pointcuts are defined for all constructors of mon-
itored classes. An advice instructs AspectJ to insert code
before constructor executions that records the creation of
a new object. Likewise, attribute modifications can be ob-
served by monitoring field assignments. Actions related to
association manipulations are identified with certain opera-
tions on selected collections.

OCL constraints that are monitored include class invari-
ants, and pre- and postconditions on operations. The places
where these constraints are checked are listed in Table 2. A
class invariant specifies a contract on the public interface of
a class. It has to be checked before and after any invoca-
tion of a public method or constructor. Note that private
methods are considered part of the implementation of a class
and are therefore allowed to temporarily break an invariant.
After all, private methods can only be called from public
methods of the same class and finally end with a return
from a public method. At that point invariants have to hold
again. Pre- and postconditions are simply mapped to entry
and exit points of methods.

3.2 Aspect Example



In this section, we give an impression of how a monitor as-
pect looks like. A monitor aspect is defined in a single file
following AspectJ syntax. Here, we only look at the part
that is responsible for monitoring the creation of new ob-
jects.

The aspect generation is driven by a template. For example,
the following template provides a generic pointcut definition
for all monitored classes. A string of the form @. . . @ is
a placeholder that will be replaced with a concrete term
depending on the UML model to be validated.

/**
* Monitored classes.
*/

pointcut pcClass() :
@POINTCUT_CLASS@

;

Assuming that our model contains classes Company and
Person the concrete pointcut designator will look as follows.
See [2] for a description of the meaning of terms used within
the pointcut declaration. This pointcut selects the classes
Company and Person occurring in any Java package and
rejects any classes nested within Company or Person.

/**
* Monitored classes.
*/

pointcut pcClass() :
// Start of model-dependent information generated by USE

(within(*..Company) && ! within(*..Company.*))
|| (within(*..Person) && ! within(*..Person.*))

// End of model-dependent information generated by USE
;

The following pointcut identifies places in the previously se-
lected classes where object creation is occurring.

/**
* The constructors of monitored classes.
*/

pointcut pcConstructor(Object _this) :
this(_this) && pcClass() && execution(new(..));

These pointcuts are now used to define advices for monitor-
ing. The before advice generates an action in USE syntax
to be performed by the USE tool. The tool will create a
new object of the given class with a unique identifier. Af-
ter the constructor has executed, a constraint check will be
performed.

/**
* Monitor object creation.
*/

before (Object _this) : pcConstructor(_this) {
logLocation(thisJoinPoint,

"before constructor execution");
// assign object a unique ID for identification
// in USE
...
// strip off package name

� �
� �
� �
� �Company

name : String
location : String age : Integer

salary : Real

name : String

raiseSalary(rate : Real) : Real

Person

hire(p : Person)
fire(p : Person)

WorksFor1 *
employeeemployer

Figure 2: UML class diagram for example

...
// generate USE action
log("!create " + getUSEObjectName(_this)

+ " : " + classname);
}

after(Object t) : pcConstructor(t) {
logLocation(thisJoinPoint,

"after constructor execution");
// trigger a constraint check for invariants
log("check");

}

Another AOP feature used in the monitor is responsible for
mapping between object identities in the implementation
and the model. The USE object model assigns each new
object a unique identifier. A Java object has an identity
but no public identifier. The solution is to use introduction
which is an AOP concept allowing to modify a program’s
static structure. We introduce a field carrying the USE ob-
ject identifier into each monitored class and let the class
implement an interface providing access to the identifier.

4. EXAMPLE
In this section, we demonstrate our approach by monitoring
a small Java application. The UML class diagram for the
example is shown in Figure 2. There are classes Company
and Person which are related to each other by a WorksFor
association. Both classes have attributes and operations.
The model is enhanced with OCL constraints that are not
shown in the diagram but which will be discussed shortly.

The input for the USE tool is a model specification in textual
form. The following is the complete USE specification of
our example. It defines the classes and associations shown
in Figure 2, and defines additional OCL constraints.

model Example

-- classes

class Company
attributes

name : String
location : String

operations
hire(p : Person)
fire(p : Person)

end

class Person
attributes

name : String
age : Integer
salary : Real

operations
raiseSalary(rate : Real) : Real

end



-- associations

association WorksFor between
Company[0..1] role employer
Person[*] role employee

end

-- constraints

constraints

context Person inv:
age >= 18

context Person::raiseSalary(rate : Real) : Real
post raiseSalaryPost:
salary = salary@pre * (1.0 + rate)

post resultPost:
result = salary

context Company::hire(p : Person)
pre hirePre1: p.isDefined()
pre hirePre2: employee->excludes(p)
post hirePost: employee->includes(p)

context Company::fire(p : Person)
pre firePre: employee->includes(p)
post firePost: employee->excludes(p)

The constraints include a class invariant making sure that
all persons in our example are at least 18 years old. Fur-
thermore, we define several pre- and postconditions on the
operations. The postcondition on raiseSalary asserts that
an employee’s salary is indeed raised after the operation
and that the new value is returned as a result of the opera-
tion call. Later in the example, we will show how an incor-
rect Java implementation of this constraint will be detected
with our monitoring approach. The precondition specified
on the operation hire makes explicit our assumption that a
person is not already working for a company when she is
hired. Likewise, the postcondition states that the person is
included in the set of employees after hiring. Constraints on
the operation fire work analogously.

Next, we show a straightforward translation of this model
into a Java implementation. Note that the code does not
contain an implementation of the constraints. Our goal is
to validate applications (fulfilling certain requirements, see
Sect. 5) that do not spend extra effort on constraint check-
ing. A great benefit of this approach is that the constraints
can easily be modified in the model specification. In this
case the application can be revalidated without having to
change the implementation.

import java.util.*;

public class Company {
private String name;
private String location;
private Set employee;

public Company(String name, String location) {
this.name = name;
this.location = location;
this.employee = new HashSet();

}

public void hire(Person p) {
employee.add(p);

}

public void fire(Person p) {
employee.remove(p);

}
}

Next comes the implementation for class Person. The body
of the method raiseSalary intentionally does not match the
postcondition specified on the model.

public class Person {
private String name;
private int age;
private double salary;

public Person(String name, int age, double salary) {
this.name = name;
this.age = age;
this.salary = salary;

}

public double raiseSalary(double rate) {
// this is wrong w.r.t. to the specification!
return salary += 10;

}
}

Finally, a short main program is added. It creates two ob-
jects and calls each of the methods.

public class Main {
public static void main(String[] args) {

Company company =
new Company("Foo, Inc.", "Bremen");

Person bob = new Person("Bob", 35, 2000);
company.hire(bob);
bob.raiseSalary(0.10);
company.fire(bob);

}
}

4.1 Validation
We now have a UML model and a Java implementation.
The validation process for the given example is as follows.
First, we load the specification into the USE tool. The tool
uses the information contained in the model to generate an
aspect definition for the monitoring process as has been out-
lined in Section 3. Next, the Java application together with
the monitoring aspect is compiled with the AspectJ com-
piler. As explained earlier, we can now choose to run the
application in parallel to the USE tool or to record actions
into a file for later use. Parallel validation runs over a net-
work connection. The USE tool opens a network socket
allowing the monitored application to remotely control the
validation process. While the application is sending com-
mands to USE the state of the running system is updated
in the USE user interface.

Figure 3 shows the user interface at the end of the main pro-
gram. The left part of the window shows static information
from the model specification including classes, associations,



Figure 3: Screenshot of the USE tool validating the example model

and constraints. The lower left panel shows details of a se-
lected constraint. The object diagram in the center of the
window is synchronized with the current application state.
There is a company object and a person object. After the
hire operation has been executed there also was a link be-
tween both objects. However, as expected, the fire operation
has removed the link again. The panel below the object di-
agram shows the history of actions. It can be seen that the
fire operation has just exited. The bottom panel shows the
result of all invariants in the model. In our example, there
is only one invariant and it is satisfied in this system state.
The sequence diagram on the right is automatically gener-
ated and shows a trace of operation calls in the system. It
expands to the bottom as methods are called in the Java
application.

If a pre- or postcondition on a method call fails the corre-
sponding transition in the sequence diagram is marked with
red color. Related to our example, we can observe that
the postcondition on the raiseSalary operation has been vi-
olated. According to our specification the new salary value
should be 2100 but the application delivered the valued
2010. By monitoring the application, we were able to iden-
tify a deviation of the implementation from its specification.
With this information the Java code can easily be corrected.

4.2 Monitor Trace
We have seen how the behavior of the example program can
be monitored and visualized with the validation tool. In the
following, we will take a closer look at the steps performed
during monitoring. Let us first see what happens when the
program executes the first statement in the main method:

Company company = new Company("Foo, Inc.", "Bremen");

This is a constructor call creating a new object of type Com-
pany. The task of the monitoring aspect is to (1) generate
an action for object creation (according to Table 1), and (2)
to trigger an invariant check (according to Table 2). For
this example, the monitoring aspect generates the following
verbatim output. This output complies with the command
script syntax of USE. It can therefore directly be used to
control the simulated system in USE.

-- Company.java:8: before constructor execution
!create obj1 : Company
-- Company.java:9: setting field
!set obj1.name = ’Foo, Inc.’
-- Company.java:10: setting field
!set obj1.location = ’Bremen’
-- Company.java:8: after constructor execution
check

Lines starting with two dashes are comments. Here they
are used to indicate the location in the Java source code
where a pointcut advice has been applied. An exclamation
mark starts a USE action to be performed on the model
instance. The first action creates a new company object.
Note that the mapping performed between Java objects and
UML objects also introduces unique object identifiers such
as obj1. A set action assigns an object attribute a value.
Finally, an invariant check is triggered after the constructor
execution has finished.

The next statement creates a new person object.

Person bob = new Person("Bob", 35, 2000);

The generated monitor output looks very similar to the out-
put shown above and is therefore omitted here. More inter-
esting is the following statement which is a method call.



company.hire(bob);

If we look at the method’s implementation, we see that it
adds the person bob to the set of company employees. On
the UML model level this corresponds to establishing a link
of the WorksFor association between classes Company and
Person. This is exactly what the following sequence of USE
actions generated by the monitor does.

-- Company.java:14: before method execution
!openter obj1 hire(obj2)
-- Company.java:15: adding link
!insert (obj2, obj1) into WorksFor
-- Company.java:14: after method execution
!opexit

The method call as a whole is wrapped into enter and exit
actions. These are the places where pre- and postconditions
are checked, respectively. The modification of the employee
set in the body of the hire method is recognized by the
monitor aspect as an action that modifies the link set of the
WorksFor association. The corresponding USE action there-
fore inserts a link specified by the pair of related objects.

The next statement is again a method call.

bob.raiseSalary(0.10);

The method call results in the following actions.

-- Person.java:12: before method execution
!openter obj2 raiseSalary(0.1)
-- Person.java:13: setting field
!set obj2.salary = 2010.0
-- Person.java:12: after method execution
!opexit 2010.0

In the UML model, the corresponding operation is defined
to return a result value. The monitor passes this value to
the opexit action so that it can be used for evaluation of the
postcondition. In this example, we have supplied a wrong
implementation of the raiseSalary operation that does not
conform to the specified constraint. The expected value
is 2100 but the monitor observed that the implementation
computed 2010. As explained above, this is highlighted in
the USE sequence diagram as an error return from the op-
eration.

The last statement in the program is

company.fire(bob);

This method removes the previously established link from
the WorksFor association. The corresponding USE action is
a delete command wrapped between enter and exit actions.

-- Company.java:18: before method execution

!openter obj1 fire(obj2)
-- Company.java:19: removing link
!delete (obj2, obj1) from WorksFor
-- Company.java:18: after method execution
!opexit

Again, the final state at program termination can be seen
in Figure 3.

5. APPLICABILITY
We make some assumptions about a model and its imple-
mentation in order to be applicable to our approach. For
example, a simple requirement is that names assigned in the
UML model can uniquely be mapped to equivalent names
used within the implementation’s source code. However, it
is not required – and actually almost never the case – that all
implementation classes are specified in the model. In gen-
eral, only the important classes representing the business
or application logic are modeled. Implementation specific
classes are added to the program but usually these are bet-
ter tested by other means, for example, with unit tests.

A more restraining requirement concerns the mapping of
associations. This is a construct that has no direct coun-
terpart in programming languages like Java. There are nu-
merous ways an association can be implemented. Finding
an aspect definition for association handling code is simi-
lar to the problem of reverse engineering UML associations
from software. We have chosen a straightforward solution
based on a simple pattern that can be found in many Java
implementations. We assume that associations are imple-
mented either with simple references for multiplicities of no
more than one, or with Java Collection classes like sets for
multiplicities greater than one. These references or sets are
placed in the classes participating in the association.

These assumptions were made to provide a simple and direct
mapping for which a monitor can automatically be instan-
tiated. Of course, more complex mappings could be defined
if necessary or provided manually.

6. CONCLUSION
We presented an aspect-oriented approach that facilitates
validation and testing of a software implementation against
constraints specified on an associated UML design model.
The key component of this approach is a monitor that is
added to an implementation without requiring changes of
an existing application. The monitor provides a mapping
between program behavior and model behavior and enforces
a clear separation of abstraction levels: the model does not
use Java constructs, and the implementation does not need
to know about the UML model. All steps in this process can
be automated so that a framework for automated tests seems
possible. We are currently investigating the scalability of
our approach with a larger case study. The application is a
distributed multimedia conferencing tool with audio/video,
chat and shared white-board components. Results so far
show that not only the aspect of constraint checking aspect
is useful. Also the fact that the application behavior can be
visualized in terms of UML object and sequence diagrams
helps to understand the way of how an application works.
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